blob: 80a8da097c438243875f838e874048740f488030 [file] [log] [blame]
<?xml version="1.0"?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
]>
<refentry id="glib-running">
<refmeta>
<refentrytitle>Running GLib Applications</refentrytitle>
<manvolnum>3</manvolnum>
<refmiscinfo>GLib Library</refmiscinfo>
</refmeta>
<refnamediv>
<refname>Running GLib Applications</refname>
<refpurpose>
How to run and debug your GLib application
</refpurpose>
</refnamediv>
<refsect1>
<title>Running and debugging GLib Applications</title>
<refsect2>
<title>Environment variables</title>
<para>
The runtime behaviour of GLib applications can be influenced by a
number of environment variables.
</para>
<formalpara>
<title>Standard variables</title>
<para>
GLib reads standard environment variables like <envar>LANG</envar>,
<envar>PATH</envar>, <envar>HOME</envar>, <envar>TMPDIR</envar>,
<envar>TZ</envar> and <envar>LOGNAME</envar>.
</para>
</formalpara>
<formalpara>
<title>XDG directories</title>
<para>
GLib consults the environment variables <envar>XDG_DATA_HOME</envar>,
<envar>XDG_DATA_DIRS</envar>, <envar>XDG_CONFIG_HOME</envar>,
<envar>XDG_CONFIG_DIRS</envar>, <envar>XDG_CACHE_HOME</envar> and
<envar>XDG_RUNTIME_DIR</envar> for the various XDG directories.
For more information, see the <ulink url="http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html">XDG basedir spec</ulink>.
</para>
</formalpara>
<formalpara id="G_FILENAME_ENCODING">
<title><envar>G_FILENAME_ENCODING</envar></title>
<para>
This environment variable can be set to a comma-separated list of character
set names. GLib assumes that filenames are encoded in the first character
set from that list rather than in UTF-8. The special token "@locale" can be
used to specify the character set for the current locale.
</para>
</formalpara>
<formalpara id="G_BROKEN_FILENAMES">
<title><envar>G_BROKEN_FILENAMES</envar></title>
<para>
If this environment variable is set, GLib assumes that filenames are in
the locale encoding rather than in UTF-8. G_FILENAME_ENCODING takes
priority over G_BROKEN_FILENAMES.
</para>
</formalpara>
<formalpara id="G_MESSAGES_PREFIXED">
<title><envar>G_MESSAGES_PREFIXED</envar></title>
<para>
A list of log levels for which messages should be prefixed by the
program name and PID of the application. The default is to prefix
everything except <literal>G_LOG_LEVEL_MESSAGE</literal> and
<literal>G_LOG_LEVEL_INFO</literal>.
The possible values are
<literal>error</literal>,
<literal>warning</literal>,
<literal>critical</literal>,
<literal>message</literal>,
<literal>info</literal> and
<literal>debug</literal>.
You can also use the special values
<literal>all</literal> and
<literal>help</literal>.
</para>
<para>
This environment variable only affects the default log handler,
g_log_default_handler().
</para>
</formalpara>
<formalpara id="G_MESSAGES_DEBUG">
<title><envar>G_MESSAGES_DEBUG</envar></title>
<para>
A space-separated list of log domains for which informational
and debug messages should be printed. By default, these
messages are not printed.
</para>
<para>
You can also use the special value <literal>all</literal>.
</para>
<para>
This environment variable only affects the default log handler,
g_log_default_handler().
</para>
</formalpara>
<formalpara id="G-DEBUG:CAPS">
<title><envar>G_DEBUG</envar></title>
<para>
This environment variable can be set to a list of debug options,
which cause GLib to print out different types of debugging information.
<variablelist>
<varlistentry>
<term>fatal-warnings</term>
<listitem><para>Causes GLib to abort the program at the first call
to g_warning() or g_critical(). Use of this flag is not
recommended except when debugging.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>fatal-criticals</term>
<listitem><para>Causes GLib to abort the program at the first call
to g_critical(). This flag can be useful during debugging and
testing.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>gc-friendly</term>
<listitem><para>Newly allocated memory that isn't directly initialized,
as well as memory being freed will be reset to 0. The point here is
to allow memory checkers and similar programs that use Boehm GC alike
algorithms to produce more accurate results.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>resident-modules</term>
<listitem><para>All modules loaded by GModule will be made resident.
This can be useful for tracking memory leaks in modules which are
later unloaded; but it can also hide bugs where code is accessed
after the module would have normally been unloaded.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>bind-now-modules</term>
<listitem><para>All modules loaded by GModule will bind their symbols
at load time, even when the code uses %G_MODULE_BIND_LAZY.</para>
</listitem>
</varlistentry>
</variablelist>
The special value <literal>all</literal> can be used to turn on all debug options.
The special value <literal>help</literal> can be used to print all available options.
</para>
</formalpara>
<formalpara id="G_SLICE">
<title><envar>G_SLICE</envar></title>
<para>
This environment variable allows reconfiguration of the GSlice
memory allocator.
<variablelist>
<varlistentry>
<term>always-malloc</term>
<listitem><para>This will cause all slices allocated through
g_slice_alloc() and released by g_slice_free1() to be actually
allocated via direct calls to g_malloc() and g_free().
This is most useful for memory checkers and similar programs that
use Boehm GC alike algorithms to produce more accurate results.
It can also be in conjunction with debugging features of the system's
malloc() implementation such as glibc's MALLOC_CHECK_=2 to debug
erroneous slice allocation code, although
<literal>debug-blocks</literal> is usually a better suited debugging
tool.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>debug-blocks</term>
<listitem><para>Using this option (present since GLib 2.13) engages
extra code which performs sanity checks on the released memory
slices. Invalid slice addresses or slice sizes will be reported and
lead to a program halt. This option is for debugging scenarios.
In particular, client packages sporting their own test suite should
<emphasis>always enable this option when running tests</emphasis>.
Global slice validation is ensured by storing size and address
information for each allocated chunk, and maintaining a global
hash table of that data. That way, multi-thread scalability is
given up, and memory consumption is increased. However, the
resulting code usually performs acceptably well, possibly better
than with comparable memory checking carried out using external
tools.</para>
<para>An example of a memory corruption scenario that cannot be
reproduced with <literal>G_SLICE=always-malloc</literal>, but will
be caught by <literal>G_SLICE=debug-blocks</literal> is as follows:
<programlisting>
/* void* gives up type-safety */
void *slist = g_slist_alloc ();
/* corruption: sizeof (GSList) != sizeof (GList) */
g_list_free (slist);
</programlisting></para>
</listitem>
</varlistentry>
</variablelist>
The special value <literal>all</literal> can be used to turn on all options.
The special value <literal>help</literal> can be used to print all available options.
</para>
</formalpara>
<formalpara id="G_RANDOM_VERSION">
<title><envar>G_RANDOM_VERSION</envar></title>
<para>
If this environment variable is set to '2.0', the outdated
pseudo-random number seeding and generation algorithms from
GLib 2.0 are used instead of the newer, better ones. You should
only set this variable if you have sequences of numbers that were
generated with Glib 2.0 that you need to reproduce exactly.
</para>
</formalpara>
<formalpara id="LIBCHARSET_ALIAS_DIR">
<title><envar>LIBCHARSET_ALIAS_DIR</envar></title>
<para>
Allows to specify a nonstandard location for the
<filename>charset.aliases</filename> file that is used by the
character set conversion routines. The default location is the
<replaceable>libdir</replaceable> specified at compilation time.
</para>
</formalpara>
<formalpara id="TZDIR">
<title><envar>TZDIR</envar></title>
<para>
Allows to specify a nonstandard location for the timezone data files
that are used by the #GDateTime API. The default location is under
<filename>/usr/share/zoneinfo</filename>. For more information,
also look at the <command>tzset</command> manual page.
</para>
</formalpara>
<formalpara id="G_ENABLE_DIAGNOSTIC">
<title><envar>G_ENABLE_DIAGNOSTIC</envar></title>
<para>
If set to a non-zero value, this environment variable enables
diagnostic messages, like deprecation messages for GObject properties
and signals.
</para>
</formalpara>
<formalpara id="G_DEBUGGER">
<title><envar>G_DEBUGGER</envar></title>
<para>
When running on Windows, if set to a non-empty string, GLib will
try to interpret the contents of this environment variable as
a command line to a debugger, and run it if the process crashes.
The debugger command line should contain <literal>%p</literal> and <literal>%e</literal> substitution
tokens, which GLib will replace with the process ID of the crashing
process and a handle to an event that the debugger should signal
to let GLib know that the debugger successfully attached to the
process. If <literal>%e</literal> is absent, or if the debugger is not able to
signal events, GLib will resume execution after 60 seconds.
If <literal>%p</literal> is absent, the debugger won't know which process to attach to,
and GLib will also resume execution after 60 seconds.
</para>
<para>
Additionally, even if <envar>G_DEBUGGER</envar> is not set, GLib would still
try to print basic exception information (code and address) into
stderr.
</para>
<para>
By default the debugger gets a new console allocated for it.
Set the <envar>G_DEBUGGER_OLD_CONSOLE</envar> environment variable to any
non-empty string to make the debugger inherit the console of
the crashing process. Normally this is only used by the GLib
testsuite.
</para>
<para>
The exception handler is written with the aim of making it as
simple as possible, to minimize the risk of it invoking
buggy functions or running buggy code, which would result
in exceptions being raised recursively. Because of that
it lacks most of the amenities that one would expect of GLib.
Namely, it does not support Unicode, so it is highly advisable
to only use ASCII characters in <envar>G_DEBUGGER</envar>.
</para>
<para>
See also <link linkend="G_VEH_CATCH"><envar>G_VEH_CATCH</envar></link>.
</para>
</formalpara>
<formalpara id="G_VEH_CATCH">
<title><envar>G_VEH_CATCH</envar></title>
<para>
Catching some exceptions can break the program, since Windows
will sometimes use exceptions for execution flow control and
other purposes other than signalling a crash.
</para>
<para>
The <envar>G_VEH_CATCH</envar> environment variable augments
<ulink url="https://docs.microsoft.com/en-us/windows/desktop/debug/vectored-exception-handling">Vectored Exception Handling</ulink>
on Windows (see <link linkend="G_DEBUGGER"><envar>G_DEBUGGER</envar></link>), allowing GLib to catch more
exceptions. Set this variable to a comma-separated list of
hexadecimal exception codes that should additionally be caught.
</para>
<para>
By default GLib will only catch Access Violation, Stack Overflow and
Illegal Instruction <ulink url="https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-_exception_record">exceptions</ulink>.
</para>
</formalpara>
</refsect2>
<refsect2 id="setlocale">
<title>Locale</title>
<para>
A number of interfaces in GLib depend on the current locale in which
an application is running. Therefore, most GLib-using applications should
call <function>setlocale (LC_ALL, "")</function> to set up the current
locale.
</para>
<para>
On Windows, in a C program there are several locale concepts
that not necessarily are synchronized. On one hand, there is the
system default ANSI code-page, which determines what encoding is used
for file names handled by the C library's functions and the Win32
API. (We are talking about the "narrow" functions here that take
character pointers, not the "wide" ones.)
</para>
<para>
On the other hand, there is the C library's current locale. The
character set (code-page) used by that is not necessarily the same as
the system default ANSI code-page. Strings in this character set are
returned by functions like <function>strftime()</function>.
</para>
</refsect2>
<para>
GLib ships with a set of Python macros for the GDB debugger. These includes pretty
printers for lists, hashtables and GObject types. It also has a backtrace filter
that makes backtraces with signal emissions easier to read.
</para>
<para>
To use this you need a version of GDB that supports Python scripting; anything
from 7.0 should be fine. You then need to install GLib in the same prefix as
GDB so that the Python GDB autoloaded files get installed in the right place
for GDB to pick up.
</para>
<para>
General pretty printing should just happen without having to do anything special.
To get the signal emission filtered backtrace you must use the "new-backtrace" command
instead of the standard one.
</para>
<para>
There is also a new command called gforeach that can be used to apply a command
on each item in a list. E.g. you can do
<programlisting>
gforeach i in some_list_variable: print *(GtkWidget *)l
</programlisting>
Which would print the contents of each widget in a list of widgets.
</para>
<refsect2>
<title>SystemTap</title>
<para>
<ulink url="http://sourceware.org/systemtap/">SystemTap</ulink> is a dynamic whole-system
analysis toolkit. GLib ships with a file <filename>libglib-2.0.so.*.stp</filename> which defines a
set of probe points, which you can hook into with custom SystemTap scripts.
See the files <filename>libglib-2.0.so.*.stp</filename>, <filename>libgobject-2.0.so.*.stp</filename>
and <filename>libgio-2.0.so.*.stp</filename> which
are in your shared SystemTap scripts directory.
</para>
</refsect2>
<refsect2>
<title>Memory statistics</title>
<para>
g_mem_profile() will output a summary g_malloc() memory usage, if memory
profiling has been enabled by calling
<literal>g_mem_set_vtable (glib_mem_profiler_table)</literal> upon startup.
</para>
<para>
If GLib has been configured with <option>--enable-debug=yes</option>,
then g_slice_debug_tree_statistics() can be called in a debugger to
output details about the memory usage of the slice allocator.
</para>
</refsect2>
</refsect1>
</refentry>