blob: 6eb0ecc76c9936c8e1367d08c44aaf6c5b78dac4 [file] [log] [blame]
#version 330 core
layout( triangles ) in;
layout( triangle_strip, max_vertices = 3 ) out;
in EyeSpaceVertex {
vec3 position;
vec3 normal;
} gs_in[];
out WireframeVertex {
vec3 position;
vec3 normal;
noperspective vec4 edgeA;
noperspective vec4 edgeB;
flat int configuration;
} gs_out;
uniform mat4 viewportMatrix;
const int infoA[] = int[]( 0, 0, 0, 0, 1, 1, 2 );
const int infoB[] = int[]( 1, 1, 2, 0, 2, 1, 2 );
const int infoAd[] = int[]( 2, 2, 1, 1, 0, 0, 0 );
const int infoBd[] = int[]( 2, 2, 1, 2, 0, 2, 1 );
vec2 transformToViewport( const in vec4 p )
{
return vec2( viewportMatrix * ( p / p.w ) );
}
void main()
{
gs_out.configuration = int(gl_in[0].gl_Position.z < 0) * int(4)
+ int(gl_in[1].gl_Position.z < 0) * int(2)
+ int(gl_in[2].gl_Position.z < 0);
// If all vertices are behind us, cull the primitive
if (gs_out.configuration == 7)
return;
// Transform each vertex into viewport space
vec2 p[3];
p[0] = transformToViewport( gl_in[0].gl_Position );
p[1] = transformToViewport( gl_in[1].gl_Position );
p[2] = transformToViewport( gl_in[2].gl_Position );
if (gs_out.configuration == 0)
{
// Common configuration where all vertices are within the viewport
gs_out.edgeA = vec4(0.0);
gs_out.edgeB = vec4(0.0);
// Calculate lengths of 3 edges of triangle
float a = length( p[1] - p[2] );
float b = length( p[2] - p[0] );
float c = length( p[1] - p[0] );
// Calculate internal angles using the cosine rule
float alpha = acos( ( b * b + c * c - a * a ) / ( 2.0 * b * c ) );
float beta = acos( ( a * a + c * c - b * b ) / ( 2.0 * a * c ) );
// Calculate the perpendicular distance of each vertex from the opposing edge
float ha = abs( c * sin( beta ) );
float hb = abs( c * sin( alpha ) );
float hc = abs( b * sin( alpha ) );
// Now add this perpendicular distance as a per-vertex property in addition to
// the position and normal calculated in the vertex shader.
// Vertex 0 (a)
gs_out.edgeA = vec4( ha, 0.0, 0.0, 0.0 );
gs_out.normal = gs_in[0].normal;
gs_out.position = gs_in[0].position;
gl_Position = gl_in[0].gl_Position;
EmitVertex();
// Vertex 1 (b)
gs_out.edgeA = vec4( 0.0, hb, 0.0, 0.0 );
gs_out.normal = gs_in[1].normal;
gs_out.position = gs_in[1].position;
gl_Position = gl_in[1].gl_Position;
EmitVertex();
// Vertex 2 (c)
gs_out.edgeA = vec4( 0.0, 0.0, hc, 0.0 );
gs_out.normal = gs_in[2].normal;
gs_out.position = gs_in[2].position;
gl_Position = gl_in[2].gl_Position;
EmitVertex();
// Finish the primitive off
EndPrimitive();
}
else
{
// Viewport projection breaks down for one or two vertices.
// Caclulate what we can here and defer rest to fragment shader.
// Since this is coherent for the entire primitive the conditional
// in the fragment shader is still cheap as all concurrent
// fragment shader invocations will take the same code path.
// Copy across the viewport-space points for the (up to) two vertices
// in the viewport
gs_out.edgeA.xy = p[infoA[gs_out.configuration]];
gs_out.edgeB.xy = p[infoB[gs_out.configuration]];
// Copy across the viewport-space edge vectors for the (up to) two vertices
// in the viewport
gs_out.edgeA.zw = normalize( gs_out.edgeA.xy - p[ infoAd[gs_out.configuration] ] );
gs_out.edgeB.zw = normalize( gs_out.edgeB.xy - p[ infoBd[gs_out.configuration] ] );
// Pass through the other vertex attributes
gs_out.normal = gs_in[0].normal;
gs_out.position = gs_in[0].position;
gl_Position = gl_in[0].gl_Position;
EmitVertex();
gs_out.normal = gs_in[1].normal;
gs_out.position = gs_in[1].position;
gl_Position = gl_in[1].gl_Position;
EmitVertex();
gs_out.normal = gs_in[2].normal;
gs_out.position = gs_in[2].position;
gl_Position = gl_in[2].gl_Position;
EmitVertex();
// Finish the primitive off
EndPrimitive();
}
}