| /* SPDX-License-Identifier: LGPL-2.1-or-later */ |
| |
| #include <errno.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "sd-messages.h" |
| |
| #include "alloc-util.h" |
| #include "async.h" |
| #include "bus-error.h" |
| #include "bus-kernel.h" |
| #include "bus-util.h" |
| #include "dbus-service.h" |
| #include "dbus-unit.h" |
| #include "def.h" |
| #include "env-util.h" |
| #include "escape.h" |
| #include "exit-status.h" |
| #include "fd-util.h" |
| #include "fileio.h" |
| #include "format-util.h" |
| #include "fs-util.h" |
| #include "load-dropin.h" |
| #include "load-fragment.h" |
| #include "log.h" |
| #include "manager.h" |
| #include "parse-util.h" |
| #include "path-util.h" |
| #include "process-util.h" |
| #include "serialize.h" |
| #include "service.h" |
| #include "signal-util.h" |
| #include "special.h" |
| #include "stdio-util.h" |
| #include "string-table.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "unit-name.h" |
| #include "unit.h" |
| #include "utf8.h" |
| #include "util.h" |
| |
| static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = { |
| [SERVICE_DEAD] = UNIT_INACTIVE, |
| [SERVICE_CONDITION] = UNIT_ACTIVATING, |
| [SERVICE_START_PRE] = UNIT_ACTIVATING, |
| [SERVICE_START] = UNIT_ACTIVATING, |
| [SERVICE_START_POST] = UNIT_ACTIVATING, |
| [SERVICE_RUNNING] = UNIT_ACTIVE, |
| [SERVICE_EXITED] = UNIT_ACTIVE, |
| [SERVICE_RELOAD] = UNIT_RELOADING, |
| [SERVICE_STOP] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_POST] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, |
| [SERVICE_FAILED] = UNIT_FAILED, |
| [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, |
| [SERVICE_CLEANING] = UNIT_MAINTENANCE, |
| }; |
| |
| /* For Type=idle we never want to delay any other jobs, hence we |
| * consider idle jobs active as soon as we start working on them */ |
| static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = { |
| [SERVICE_DEAD] = UNIT_INACTIVE, |
| [SERVICE_CONDITION] = UNIT_ACTIVE, |
| [SERVICE_START_PRE] = UNIT_ACTIVE, |
| [SERVICE_START] = UNIT_ACTIVE, |
| [SERVICE_START_POST] = UNIT_ACTIVE, |
| [SERVICE_RUNNING] = UNIT_ACTIVE, |
| [SERVICE_EXITED] = UNIT_ACTIVE, |
| [SERVICE_RELOAD] = UNIT_RELOADING, |
| [SERVICE_STOP] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, |
| [SERVICE_STOP_POST] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, |
| [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, |
| [SERVICE_FAILED] = UNIT_FAILED, |
| [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, |
| [SERVICE_CLEANING] = UNIT_MAINTENANCE, |
| }; |
| |
| static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata); |
| static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata); |
| static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata); |
| static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata); |
| |
| static void service_enter_signal(Service *s, ServiceState state, ServiceResult f); |
| static void service_enter_reload_by_notify(Service *s); |
| |
| static void service_init(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(u); |
| assert(u->load_state == UNIT_STUB); |
| |
| s->timeout_start_usec = u->manager->default_timeout_start_usec; |
| s->timeout_stop_usec = u->manager->default_timeout_stop_usec; |
| s->timeout_abort_usec = u->manager->default_timeout_abort_usec; |
| s->timeout_abort_set = u->manager->default_timeout_abort_set; |
| s->restart_usec = u->manager->default_restart_usec; |
| s->runtime_max_usec = USEC_INFINITY; |
| s->type = _SERVICE_TYPE_INVALID; |
| s->socket_fd = -1; |
| s->stdin_fd = s->stdout_fd = s->stderr_fd = -1; |
| s->guess_main_pid = true; |
| |
| s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; |
| |
| s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ? |
| EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT; |
| |
| s->watchdog_original_usec = USEC_INFINITY; |
| |
| s->oom_policy = _OOM_POLICY_INVALID; |
| } |
| |
| static void service_unwatch_control_pid(Service *s) { |
| assert(s); |
| |
| if (s->control_pid <= 0) |
| return; |
| |
| unit_unwatch_pid(UNIT(s), s->control_pid); |
| s->control_pid = 0; |
| } |
| |
| static void service_unwatch_main_pid(Service *s) { |
| assert(s); |
| |
| if (s->main_pid <= 0) |
| return; |
| |
| unit_unwatch_pid(UNIT(s), s->main_pid); |
| s->main_pid = 0; |
| } |
| |
| static void service_unwatch_pid_file(Service *s) { |
| if (!s->pid_file_pathspec) |
| return; |
| |
| log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path); |
| path_spec_unwatch(s->pid_file_pathspec); |
| path_spec_done(s->pid_file_pathspec); |
| s->pid_file_pathspec = mfree(s->pid_file_pathspec); |
| } |
| |
| static int service_set_main_pid(Service *s, pid_t pid) { |
| assert(s); |
| |
| if (pid <= 1) |
| return -EINVAL; |
| |
| if (pid == getpid_cached()) |
| return -EINVAL; |
| |
| if (s->main_pid == pid && s->main_pid_known) |
| return 0; |
| |
| if (s->main_pid != pid) { |
| service_unwatch_main_pid(s); |
| exec_status_start(&s->main_exec_status, pid); |
| } |
| |
| s->main_pid = pid; |
| s->main_pid_known = true; |
| s->main_pid_alien = pid_is_my_child(pid) == 0; |
| |
| if (s->main_pid_alien) |
| log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", pid); |
| |
| return 0; |
| } |
| |
| void service_close_socket_fd(Service *s) { |
| assert(s); |
| |
| /* Undo the effect of service_set_socket_fd(). */ |
| |
| s->socket_fd = asynchronous_close(s->socket_fd); |
| |
| if (UNIT_ISSET(s->accept_socket)) { |
| socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket))); |
| unit_ref_unset(&s->accept_socket); |
| } |
| } |
| |
| static void service_stop_watchdog(Service *s) { |
| assert(s); |
| |
| s->watchdog_event_source = sd_event_source_disable_unref(s->watchdog_event_source); |
| s->watchdog_timestamp = DUAL_TIMESTAMP_NULL; |
| } |
| |
| static void service_start_watchdog(Service *s) { |
| usec_t watchdog_usec; |
| int r; |
| |
| assert(s); |
| |
| watchdog_usec = service_get_watchdog_usec(s); |
| if (IN_SET(watchdog_usec, 0, USEC_INFINITY)) { |
| service_stop_watchdog(s); |
| return; |
| } |
| |
| if (s->watchdog_event_source) { |
| r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec)); |
| if (r < 0) { |
| log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m"); |
| return; |
| } |
| |
| r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT); |
| } else { |
| r = sd_event_add_time( |
| UNIT(s)->manager->event, |
| &s->watchdog_event_source, |
| CLOCK_MONOTONIC, |
| usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0, |
| service_dispatch_watchdog, s); |
| if (r < 0) { |
| log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m"); |
| return; |
| } |
| |
| (void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog"); |
| |
| /* Let's process everything else which might be a sign |
| * of living before we consider a service died. */ |
| r = sd_event_source_set_priority(s->watchdog_event_source, SD_EVENT_PRIORITY_IDLE); |
| } |
| if (r < 0) |
| log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m"); |
| } |
| |
| static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) { |
| usec_t current; |
| int r; |
| |
| assert(s); |
| |
| /* Extends the specified event source timer to at least the specified time, unless it is already later |
| * anyway. */ |
| |
| if (!source) |
| return; |
| |
| r = sd_event_source_get_time(source, ¤t); |
| if (r < 0) { |
| const char *desc; |
| (void) sd_event_source_get_description(s->timer_event_source, &desc); |
| log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc)); |
| return; |
| } |
| |
| if (current >= extended) /* Current timeout is already longer, ignore this. */ |
| return; |
| |
| r = sd_event_source_set_time(source, extended); |
| if (r < 0) { |
| const char *desc; |
| (void) sd_event_source_get_description(s->timer_event_source, &desc); |
| log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for even source '%s', ignoring %m", strna(desc)); |
| } |
| } |
| |
| static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) { |
| usec_t extended; |
| |
| assert(s); |
| |
| if (IN_SET(extend_timeout_usec, 0, USEC_INFINITY)) |
| return; |
| |
| extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec); |
| |
| service_extend_event_source_timeout(s, s->timer_event_source, extended); |
| service_extend_event_source_timeout(s, s->watchdog_event_source, extended); |
| } |
| |
| static void service_reset_watchdog(Service *s) { |
| assert(s); |
| |
| dual_timestamp_get(&s->watchdog_timestamp); |
| service_start_watchdog(s); |
| } |
| |
| static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) { |
| assert(s); |
| |
| s->watchdog_override_enable = true; |
| s->watchdog_override_usec = watchdog_override_usec; |
| service_reset_watchdog(s); |
| |
| log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec); |
| log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec); |
| } |
| |
| static void service_fd_store_unlink(ServiceFDStore *fs) { |
| |
| if (!fs) |
| return; |
| |
| if (fs->service) { |
| assert(fs->service->n_fd_store > 0); |
| LIST_REMOVE(fd_store, fs->service->fd_store, fs); |
| fs->service->n_fd_store--; |
| } |
| |
| sd_event_source_disable_unref(fs->event_source); |
| |
| free(fs->fdname); |
| safe_close(fs->fd); |
| free(fs); |
| } |
| |
| static void service_release_fd_store(Service *s) { |
| assert(s); |
| |
| if (s->n_keep_fd_store > 0) |
| return; |
| |
| log_unit_debug(UNIT(s), "Releasing all stored fds"); |
| while (s->fd_store) |
| service_fd_store_unlink(s->fd_store); |
| |
| assert(s->n_fd_store == 0); |
| } |
| |
| static void service_release_resources(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| if (!s->fd_store && s->stdin_fd < 0 && s->stdout_fd < 0 && s->stderr_fd < 0) |
| return; |
| |
| log_unit_debug(u, "Releasing resources."); |
| |
| s->stdin_fd = safe_close(s->stdin_fd); |
| s->stdout_fd = safe_close(s->stdout_fd); |
| s->stderr_fd = safe_close(s->stderr_fd); |
| |
| service_release_fd_store(s); |
| } |
| |
| static void service_done(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| s->pid_file = mfree(s->pid_file); |
| s->status_text = mfree(s->status_text); |
| |
| s->exec_runtime = exec_runtime_unref(s->exec_runtime, false); |
| exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); |
| s->control_command = NULL; |
| s->main_command = NULL; |
| |
| dynamic_creds_unref(&s->dynamic_creds); |
| |
| exit_status_set_free(&s->restart_prevent_status); |
| exit_status_set_free(&s->restart_force_status); |
| exit_status_set_free(&s->success_status); |
| |
| /* This will leak a process, but at least no memory or any of |
| * our resources */ |
| service_unwatch_main_pid(s); |
| service_unwatch_control_pid(s); |
| service_unwatch_pid_file(s); |
| |
| if (s->bus_name) { |
| unit_unwatch_bus_name(u, s->bus_name); |
| s->bus_name = mfree(s->bus_name); |
| } |
| |
| s->bus_name_owner = mfree(s->bus_name_owner); |
| |
| s->usb_function_descriptors = mfree(s->usb_function_descriptors); |
| s->usb_function_strings = mfree(s->usb_function_strings); |
| |
| service_close_socket_fd(s); |
| s->peer = socket_peer_unref(s->peer); |
| |
| unit_ref_unset(&s->accept_socket); |
| |
| service_stop_watchdog(s); |
| |
| s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); |
| s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); |
| |
| s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); |
| |
| service_release_resources(u); |
| } |
| |
| static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) { |
| ServiceFDStore *fs = userdata; |
| |
| assert(e); |
| assert(fs); |
| |
| /* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */ |
| log_unit_debug(UNIT(fs->service), |
| "Received %s on stored fd %d (%s), closing.", |
| revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP", |
| fs->fd, strna(fs->fdname)); |
| service_fd_store_unlink(fs); |
| return 0; |
| } |
| |
| static int service_add_fd_store(Service *s, int fd, const char *name, bool do_poll) { |
| ServiceFDStore *fs; |
| int r; |
| |
| /* fd is always consumed if we return >= 0 */ |
| |
| assert(s); |
| assert(fd >= 0); |
| |
| if (s->n_fd_store >= s->n_fd_store_max) |
| return -EXFULL; /* Our store is full. |
| * Use this errno rather than E[NM]FILE to distinguish from |
| * the case where systemd itself hits the file limit. */ |
| |
| LIST_FOREACH(fd_store, fs, s->fd_store) { |
| r = same_fd(fs->fd, fd); |
| if (r < 0) |
| return r; |
| if (r > 0) { |
| safe_close(fd); |
| return 0; /* fd already included */ |
| } |
| } |
| |
| fs = new(ServiceFDStore, 1); |
| if (!fs) |
| return -ENOMEM; |
| |
| *fs = (ServiceFDStore) { |
| .fd = fd, |
| .service = s, |
| .do_poll = do_poll, |
| .fdname = strdup(name ?: "stored"), |
| }; |
| |
| if (!fs->fdname) { |
| free(fs); |
| return -ENOMEM; |
| } |
| |
| if (do_poll) { |
| r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fd, 0, on_fd_store_io, fs); |
| if (r < 0 && r != -EPERM) { /* EPERM indicates fds that aren't pollable, which is OK */ |
| free(fs->fdname); |
| free(fs); |
| return r; |
| } else if (r >= 0) |
| (void) sd_event_source_set_description(fs->event_source, "service-fd-store"); |
| } |
| |
| LIST_PREPEND(fd_store, s->fd_store, fs); |
| s->n_fd_store++; |
| |
| return 1; /* fd newly stored */ |
| } |
| |
| static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) { |
| int r; |
| |
| assert(s); |
| |
| while (fdset_size(fds) > 0) { |
| _cleanup_close_ int fd = -1; |
| |
| fd = fdset_steal_first(fds); |
| if (fd < 0) |
| break; |
| |
| r = service_add_fd_store(s, fd, name, do_poll); |
| if (r == -EXFULL) |
| return log_unit_warning_errno(UNIT(s), r, |
| "Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.", |
| s->n_fd_store_max); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m"); |
| if (r > 0) |
| log_unit_debug(UNIT(s), "Added fd %u (%s) to fd store.", fd, strna(name)); |
| fd = -1; |
| } |
| |
| return 0; |
| } |
| |
| static void service_remove_fd_store(Service *s, const char *name) { |
| ServiceFDStore *fs, *n; |
| |
| assert(s); |
| assert(name); |
| |
| LIST_FOREACH_SAFE(fd_store, fs, n, s->fd_store) { |
| if (!streq(fs->fdname, name)) |
| continue; |
| |
| log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name); |
| service_fd_store_unlink(fs); |
| } |
| } |
| |
| static int service_arm_timer(Service *s, usec_t usec) { |
| int r; |
| |
| assert(s); |
| |
| if (s->timer_event_source) { |
| r = sd_event_source_set_time(s->timer_event_source, usec); |
| if (r < 0) |
| return r; |
| |
| return sd_event_source_set_enabled(s->timer_event_source, SD_EVENT_ONESHOT); |
| } |
| |
| if (usec == USEC_INFINITY) |
| return 0; |
| |
| r = sd_event_add_time( |
| UNIT(s)->manager->event, |
| &s->timer_event_source, |
| CLOCK_MONOTONIC, |
| usec, 0, |
| service_dispatch_timer, s); |
| if (r < 0) |
| return r; |
| |
| (void) sd_event_source_set_description(s->timer_event_source, "service-timer"); |
| |
| return 0; |
| } |
| |
| static int service_verify(Service *s) { |
| assert(s); |
| assert(UNIT(s)->load_state == UNIT_LOADED); |
| |
| for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) { |
| ExecCommand *command; |
| |
| LIST_FOREACH(command, command, s->exec_command[c]) { |
| if (!path_is_absolute(command->path) && !filename_is_valid(command->path)) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), |
| "Service %s= binary path \"%s\" is neither a valid executable name nor an absolute path. Refusing.", |
| command->path, |
| service_exec_command_to_string(c)); |
| if (strv_isempty(command->argv)) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), |
| "Service has an empty argv in %s=. Refusing.", |
| service_exec_command_to_string(c)); |
| } |
| } |
| |
| if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP] && |
| UNIT(s)->success_action == EMERGENCY_ACTION_NONE) |
| /* FailureAction= only makes sense if one of the start or stop commands is specified. |
| * SuccessAction= will be executed unconditionally if no commands are specified. Hence, |
| * either a command or SuccessAction= are required. */ |
| |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing."); |
| |
| if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START]) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); |
| |
| if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing."); |
| |
| if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); |
| |
| if (s->type == SERVICE_ONESHOT && |
| !IN_SET(s->restart, SERVICE_RESTART_NO, SERVICE_RESTART_ON_FAILURE, SERVICE_RESTART_ON_ABNORMAL, SERVICE_RESTART_ON_WATCHDOG, SERVICE_RESTART_ON_ABORT)) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing."); |
| |
| if (s->type == SERVICE_ONESHOT && !exit_status_set_is_empty(&s->restart_force_status)) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has RestartForceStatus= set, which isn't allowed for Type=oneshot services. Refusing."); |
| |
| if (s->type == SERVICE_DBUS && !s->bus_name) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing."); |
| |
| if (s->exec_context.pam_name && !IN_SET(s->kill_context.kill_mode, KILL_CONTROL_GROUP, KILL_MIXED)) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing."); |
| |
| if (s->usb_function_descriptors && !s->usb_function_strings) |
| log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring."); |
| |
| if (!s->usb_function_descriptors && s->usb_function_strings) |
| log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring."); |
| |
| if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT) |
| log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring."); |
| |
| return 0; |
| } |
| |
| static int service_add_default_dependencies(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| if (!UNIT(s)->default_dependencies) |
| return 0; |
| |
| /* Add a number of automatic dependencies useful for the |
| * majority of services. */ |
| |
| if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) { |
| /* First, pull in the really early boot stuff, and |
| * require it, so that we fail if we can't acquire |
| * it. */ |
| |
| r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT); |
| if (r < 0) |
| return r; |
| } else { |
| |
| /* In the --user instance there's no sysinit.target, |
| * in that case require basic.target instead. */ |
| |
| r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); |
| if (r < 0) |
| return r; |
| } |
| |
| /* Second, if the rest of the base system is in the same |
| * transaction, order us after it, but do not pull it in or |
| * even require it. */ |
| r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); |
| if (r < 0) |
| return r; |
| |
| /* Third, add us in for normal shutdown. */ |
| return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT); |
| } |
| |
| static void service_fix_stdio(Service *s) { |
| assert(s); |
| |
| /* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the |
| * default value that is subject to automatic overriding triggered by other settings and an explicit |
| * choice the user can make. We don't distinguish between these cases currently. */ |
| |
| if (s->exec_context.std_input == EXEC_INPUT_NULL && |
| s->exec_context.stdin_data_size > 0) |
| s->exec_context.std_input = EXEC_INPUT_DATA; |
| |
| if (IN_SET(s->exec_context.std_input, |
| EXEC_INPUT_TTY, |
| EXEC_INPUT_TTY_FORCE, |
| EXEC_INPUT_TTY_FAIL, |
| EXEC_INPUT_SOCKET, |
| EXEC_INPUT_NAMED_FD)) |
| return; |
| |
| /* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from |
| * stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense, |
| * too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be |
| * duplicated for both input and output at the same time (since they then would cause a feedback |
| * loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */ |
| |
| if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT && |
| s->exec_context.std_output == EXEC_OUTPUT_INHERIT) |
| s->exec_context.std_error = UNIT(s)->manager->default_std_error; |
| |
| if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT) |
| s->exec_context.std_output = UNIT(s)->manager->default_std_output; |
| } |
| |
| static int service_setup_bus_name(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| /* If s->bus_name is not set, then the unit will be refused by service_verify() later. */ |
| if (!s->bus_name) |
| return 0; |
| |
| if (s->type == SERVICE_DBUS) { |
| r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m"); |
| |
| /* We always want to be ordered against dbus.socket if both are in the transaction. */ |
| r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m"); |
| } |
| |
| r = unit_watch_bus_name(UNIT(s), s->bus_name); |
| if (r == -EEXIST) |
| return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name); |
| |
| return 0; |
| } |
| |
| static int service_add_extras(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| if (s->type == _SERVICE_TYPE_INVALID) { |
| /* Figure out a type automatically */ |
| if (s->bus_name) |
| s->type = SERVICE_DBUS; |
| else if (s->exec_command[SERVICE_EXEC_START]) |
| s->type = SERVICE_SIMPLE; |
| else |
| s->type = SERVICE_ONESHOT; |
| } |
| |
| /* Oneshot services have disabled start timeout by default */ |
| if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined) |
| s->timeout_start_usec = USEC_INFINITY; |
| |
| service_fix_stdio(s); |
| |
| r = unit_patch_contexts(UNIT(s)); |
| if (r < 0) |
| return r; |
| |
| r = unit_add_exec_dependencies(UNIT(s), &s->exec_context); |
| if (r < 0) |
| return r; |
| |
| r = unit_set_default_slice(UNIT(s)); |
| if (r < 0) |
| return r; |
| |
| /* If the service needs the notify socket, let's enable it automatically. */ |
| if (s->notify_access == NOTIFY_NONE && |
| (s->type == SERVICE_NOTIFY || s->watchdog_usec > 0 || s->n_fd_store_max > 0)) |
| s->notify_access = NOTIFY_MAIN; |
| |
| /* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when |
| * delegation is on, in that case it we assume the payload knows better what to do and can process |
| * things in a more focused way. */ |
| if (s->oom_policy < 0) |
| s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->default_oom_policy; |
| |
| /* Let the kernel do the killing if that's requested. */ |
| s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL; |
| |
| r = service_add_default_dependencies(s); |
| if (r < 0) |
| return r; |
| |
| r = service_setup_bus_name(s); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| static int service_load(Unit *u) { |
| Service *s = SERVICE(u); |
| int r; |
| |
| r = unit_load_fragment_and_dropin(u, true); |
| if (r < 0) |
| return r; |
| |
| if (u->load_state != UNIT_LOADED) |
| return 0; |
| |
| /* This is a new unit? Then let's add in some extras */ |
| r = service_add_extras(s); |
| if (r < 0) |
| return r; |
| |
| return service_verify(s); |
| } |
| |
| static void service_dump(Unit *u, FILE *f, const char *prefix) { |
| char buf_restart[FORMAT_TIMESPAN_MAX], buf_start[FORMAT_TIMESPAN_MAX], buf_stop[FORMAT_TIMESPAN_MAX], |
| buf_runtime[FORMAT_TIMESPAN_MAX], buf_watchdog[FORMAT_TIMESPAN_MAX], buf_abort[FORMAT_TIMESPAN_MAX]; |
| ServiceExecCommand c; |
| Service *s = SERVICE(u); |
| const char *prefix2; |
| |
| assert(s); |
| |
| prefix = strempty(prefix); |
| prefix2 = strjoina(prefix, "\t"); |
| |
| fprintf(f, |
| "%sService State: %s\n" |
| "%sResult: %s\n" |
| "%sReload Result: %s\n" |
| "%sClean Result: %s\n" |
| "%sPermissionsStartOnly: %s\n" |
| "%sRootDirectoryStartOnly: %s\n" |
| "%sRemainAfterExit: %s\n" |
| "%sGuessMainPID: %s\n" |
| "%sType: %s\n" |
| "%sRestart: %s\n" |
| "%sNotifyAccess: %s\n" |
| "%sNotifyState: %s\n" |
| "%sOOMPolicy: %s\n", |
| prefix, service_state_to_string(s->state), |
| prefix, service_result_to_string(s->result), |
| prefix, service_result_to_string(s->reload_result), |
| prefix, service_result_to_string(s->clean_result), |
| prefix, yes_no(s->permissions_start_only), |
| prefix, yes_no(s->root_directory_start_only), |
| prefix, yes_no(s->remain_after_exit), |
| prefix, yes_no(s->guess_main_pid), |
| prefix, service_type_to_string(s->type), |
| prefix, service_restart_to_string(s->restart), |
| prefix, notify_access_to_string(s->notify_access), |
| prefix, notify_state_to_string(s->notify_state), |
| prefix, oom_policy_to_string(s->oom_policy)); |
| |
| if (s->control_pid > 0) |
| fprintf(f, |
| "%sControl PID: "PID_FMT"\n", |
| prefix, s->control_pid); |
| |
| if (s->main_pid > 0) |
| fprintf(f, |
| "%sMain PID: "PID_FMT"\n" |
| "%sMain PID Known: %s\n" |
| "%sMain PID Alien: %s\n", |
| prefix, s->main_pid, |
| prefix, yes_no(s->main_pid_known), |
| prefix, yes_no(s->main_pid_alien)); |
| |
| if (s->pid_file) |
| fprintf(f, |
| "%sPIDFile: %s\n", |
| prefix, s->pid_file); |
| |
| if (s->bus_name) |
| fprintf(f, |
| "%sBusName: %s\n" |
| "%sBus Name Good: %s\n", |
| prefix, s->bus_name, |
| prefix, yes_no(s->bus_name_good)); |
| |
| if (UNIT_ISSET(s->accept_socket)) |
| fprintf(f, |
| "%sAccept Socket: %s\n", |
| prefix, UNIT_DEREF(s->accept_socket)->id); |
| |
| fprintf(f, |
| "%sRestartSec: %s\n" |
| "%sTimeoutStartSec: %s\n" |
| "%sTimeoutStopSec: %s\n" |
| "%sTimeoutStartFailureMode: %s\n" |
| "%sTimeoutStopFailureMode: %s\n", |
| prefix, format_timespan(buf_restart, sizeof(buf_restart), s->restart_usec, USEC_PER_SEC), |
| prefix, format_timespan(buf_start, sizeof(buf_start), s->timeout_start_usec, USEC_PER_SEC), |
| prefix, format_timespan(buf_stop, sizeof(buf_stop), s->timeout_stop_usec, USEC_PER_SEC), |
| prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode), |
| prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode)); |
| |
| if (s->timeout_abort_set) |
| fprintf(f, |
| "%sTimeoutAbortSec: %s\n", |
| prefix, format_timespan(buf_abort, sizeof(buf_abort), s->timeout_abort_usec, USEC_PER_SEC)); |
| |
| fprintf(f, |
| "%sRuntimeMaxSec: %s\n" |
| "%sWatchdogSec: %s\n", |
| prefix, format_timespan(buf_runtime, sizeof(buf_runtime), s->runtime_max_usec, USEC_PER_SEC), |
| prefix, format_timespan(buf_watchdog, sizeof(buf_watchdog), s->watchdog_usec, USEC_PER_SEC)); |
| |
| kill_context_dump(&s->kill_context, f, prefix); |
| exec_context_dump(&s->exec_context, f, prefix); |
| |
| for (c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) { |
| |
| if (!s->exec_command[c]) |
| continue; |
| |
| fprintf(f, "%s-> %s:\n", |
| prefix, service_exec_command_to_string(c)); |
| |
| exec_command_dump_list(s->exec_command[c], f, prefix2); |
| } |
| |
| if (s->status_text) |
| fprintf(f, "%sStatus Text: %s\n", |
| prefix, s->status_text); |
| |
| if (s->n_fd_store_max > 0) |
| fprintf(f, |
| "%sFile Descriptor Store Max: %u\n" |
| "%sFile Descriptor Store Current: %zu\n", |
| prefix, s->n_fd_store_max, |
| prefix, s->n_fd_store); |
| |
| cgroup_context_dump(UNIT(s), f, prefix); |
| } |
| |
| static int service_is_suitable_main_pid(Service *s, pid_t pid, int prio) { |
| Unit *owner; |
| |
| assert(s); |
| assert(pid_is_valid(pid)); |
| |
| /* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the |
| * PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is |
| * good */ |
| |
| if (pid == getpid_cached() || pid == 1) |
| return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the manager, refusing.", pid); |
| |
| if (pid == s->control_pid) |
| return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the control process, refusing.", pid); |
| |
| if (!pid_is_alive(pid)) |
| return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(ESRCH), "New main PID "PID_FMT" does not exist or is a zombie.", pid); |
| |
| owner = manager_get_unit_by_pid(UNIT(s)->manager, pid); |
| if (owner == UNIT(s)) { |
| log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid); |
| return 1; /* Yay, it's definitely a good PID */ |
| } |
| |
| return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */ |
| } |
| |
| static int service_load_pid_file(Service *s, bool may_warn) { |
| char procfs[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)]; |
| bool questionable_pid_file = false; |
| _cleanup_free_ char *k = NULL; |
| _cleanup_close_ int fd = -1; |
| int r, prio; |
| pid_t pid; |
| |
| assert(s); |
| |
| if (!s->pid_file) |
| return -ENOENT; |
| |
| prio = may_warn ? LOG_INFO : LOG_DEBUG; |
| |
| r = chase_symlinks(s->pid_file, NULL, CHASE_SAFE, NULL, &fd); |
| if (r == -ENOLINK) { |
| log_unit_debug_errno(UNIT(s), r, |
| "Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file); |
| |
| questionable_pid_file = true; |
| |
| r = chase_symlinks(s->pid_file, NULL, 0, NULL, &fd); |
| } |
| if (r < 0) |
| return log_unit_full_errno(UNIT(s), prio, fd, |
| "Can't open PID file %s (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state)); |
| |
| /* Let's read the PID file now that we chased it down. But we need to convert the O_PATH fd |
| * chase_symlinks() returned us into a proper fd first. */ |
| xsprintf(procfs, "/proc/self/fd/%i", fd); |
| r = read_one_line_file(procfs, &k); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, |
| "Can't convert PID files %s O_PATH file descriptor to proper file descriptor: %m", |
| s->pid_file); |
| |
| r = parse_pid(k, &pid); |
| if (r < 0) |
| return log_unit_full_errno(UNIT(s), prio, r, "Failed to parse PID from file %s: %m", s->pid_file); |
| |
| if (s->main_pid_known && pid == s->main_pid) |
| return 0; |
| |
| r = service_is_suitable_main_pid(s, pid, prio); |
| if (r < 0) |
| return r; |
| if (r == 0) { |
| struct stat st; |
| |
| if (questionable_pid_file) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), |
| "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file); |
| |
| /* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */ |
| |
| if (fstat(fd, &st) < 0) |
| return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file O_PATH fd: %m"); |
| |
| if (st.st_uid != 0) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), |
| "New main PID "PID_FMT" does not belong to service, and PID file is not owned by root. Refusing.", pid); |
| |
| log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, but we'll accept it since PID file is owned by root.", pid); |
| } |
| |
| if (s->main_pid_known) { |
| log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid, pid); |
| |
| service_unwatch_main_pid(s); |
| s->main_pid_known = false; |
| } else |
| log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pid); |
| |
| r = service_set_main_pid(s, pid); |
| if (r < 0) |
| return r; |
| |
| r = unit_watch_pid(UNIT(s), pid, false); |
| if (r < 0) /* FIXME: we need to do something here */ |
| return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", pid); |
| |
| return 1; |
| } |
| |
| static void service_search_main_pid(Service *s) { |
| pid_t pid = 0; |
| int r; |
| |
| assert(s); |
| |
| /* If we know it anyway, don't ever fall back to unreliable |
| * heuristics */ |
| if (s->main_pid_known) |
| return; |
| |
| if (!s->guess_main_pid) |
| return; |
| |
| assert(s->main_pid <= 0); |
| |
| if (unit_search_main_pid(UNIT(s), &pid) < 0) |
| return; |
| |
| log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid); |
| if (service_set_main_pid(s, pid) < 0) |
| return; |
| |
| r = unit_watch_pid(UNIT(s), pid, false); |
| if (r < 0) |
| /* FIXME: we need to do something here */ |
| log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" from: %m", pid); |
| } |
| |
| static void service_set_state(Service *s, ServiceState state) { |
| ServiceState old_state; |
| const UnitActiveState *table; |
| |
| assert(s); |
| |
| if (s->state != state) |
| bus_unit_send_pending_change_signal(UNIT(s), false); |
| |
| table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table; |
| |
| old_state = s->state; |
| s->state = state; |
| |
| service_unwatch_pid_file(s); |
| |
| if (!IN_SET(state, |
| SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, |
| SERVICE_RUNNING, |
| SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, |
| SERVICE_AUTO_RESTART, |
| SERVICE_CLEANING)) |
| s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); |
| |
| if (!IN_SET(state, |
| SERVICE_START, SERVICE_START_POST, |
| SERVICE_RUNNING, SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL)) { |
| service_unwatch_main_pid(s); |
| s->main_command = NULL; |
| } |
| |
| if (!IN_SET(state, |
| SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, |
| SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, |
| SERVICE_CLEANING)) { |
| service_unwatch_control_pid(s); |
| s->control_command = NULL; |
| s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; |
| } |
| |
| if (IN_SET(state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_AUTO_RESTART)) { |
| unit_unwatch_all_pids(UNIT(s)); |
| unit_dequeue_rewatch_pids(UNIT(s)); |
| } |
| |
| if (!IN_SET(state, |
| SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, |
| SERVICE_RUNNING, SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL) && |
| !(state == SERVICE_DEAD && UNIT(s)->job)) |
| service_close_socket_fd(s); |
| |
| if (state != SERVICE_START) |
| s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); |
| |
| if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) |
| service_stop_watchdog(s); |
| |
| /* For the inactive states unit_notify() will trim the cgroup, |
| * but for exit we have to do that ourselves... */ |
| if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(UNIT(s)->manager)) |
| unit_prune_cgroup(UNIT(s)); |
| |
| if (old_state != state) |
| log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state)); |
| |
| unit_notify(UNIT(s), table[old_state], table[state], |
| (s->reload_result == SERVICE_SUCCESS ? 0 : UNIT_NOTIFY_RELOAD_FAILURE) | |
| (s->will_auto_restart ? UNIT_NOTIFY_WILL_AUTO_RESTART : 0)); |
| } |
| |
| static usec_t service_coldplug_timeout(Service *s) { |
| assert(s); |
| |
| switch (s->deserialized_state) { |
| |
| case SERVICE_CONDITION: |
| case SERVICE_START_PRE: |
| case SERVICE_START: |
| case SERVICE_START_POST: |
| case SERVICE_RELOAD: |
| return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec); |
| |
| case SERVICE_RUNNING: |
| return usec_add(UNIT(s)->active_enter_timestamp.monotonic, s->runtime_max_usec); |
| |
| case SERVICE_STOP: |
| case SERVICE_STOP_SIGTERM: |
| case SERVICE_STOP_SIGKILL: |
| case SERVICE_STOP_POST: |
| case SERVICE_FINAL_SIGTERM: |
| case SERVICE_FINAL_SIGKILL: |
| return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec); |
| |
| case SERVICE_STOP_WATCHDOG: |
| case SERVICE_FINAL_WATCHDOG: |
| return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s)); |
| |
| case SERVICE_AUTO_RESTART: |
| return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, s->restart_usec); |
| |
| case SERVICE_CLEANING: |
| return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec); |
| |
| default: |
| return USEC_INFINITY; |
| } |
| } |
| |
| static int service_coldplug(Unit *u) { |
| Service *s = SERVICE(u); |
| int r; |
| |
| assert(s); |
| assert(s->state == SERVICE_DEAD); |
| |
| if (s->deserialized_state == s->state) |
| return 0; |
| |
| r = service_arm_timer(s, service_coldplug_timeout(s)); |
| if (r < 0) |
| return r; |
| |
| if (s->main_pid > 0 && |
| pid_is_unwaited(s->main_pid) && |
| (IN_SET(s->deserialized_state, |
| SERVICE_START, SERVICE_START_POST, |
| SERVICE_RUNNING, SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL))) { |
| r = unit_watch_pid(UNIT(s), s->main_pid, false); |
| if (r < 0) |
| return r; |
| } |
| |
| if (s->control_pid > 0 && |
| pid_is_unwaited(s->control_pid) && |
| IN_SET(s->deserialized_state, |
| SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, |
| SERVICE_RELOAD, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, |
| SERVICE_CLEANING)) { |
| r = unit_watch_pid(UNIT(s), s->control_pid, false); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!IN_SET(s->deserialized_state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_AUTO_RESTART, SERVICE_CLEANING)) { |
| (void) unit_enqueue_rewatch_pids(u); |
| (void) unit_setup_dynamic_creds(u); |
| (void) unit_setup_exec_runtime(u); |
| } |
| |
| if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) |
| service_start_watchdog(s); |
| |
| if (UNIT_ISSET(s->accept_socket)) { |
| Socket* socket = SOCKET(UNIT_DEREF(s->accept_socket)); |
| |
| if (socket->max_connections_per_source > 0) { |
| SocketPeer *peer; |
| |
| /* Make a best-effort attempt at bumping the connection count */ |
| if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) { |
| socket_peer_unref(s->peer); |
| s->peer = peer; |
| } |
| } |
| } |
| |
| service_set_state(s, s->deserialized_state); |
| return 0; |
| } |
| |
| static int service_collect_fds( |
| Service *s, |
| int **fds, |
| char ***fd_names, |
| size_t *n_socket_fds, |
| size_t *n_storage_fds) { |
| |
| _cleanup_strv_free_ char **rfd_names = NULL; |
| _cleanup_free_ int *rfds = NULL; |
| size_t rn_socket_fds = 0, rn_storage_fds = 0; |
| int r; |
| |
| assert(s); |
| assert(fds); |
| assert(fd_names); |
| assert(n_socket_fds); |
| assert(n_storage_fds); |
| |
| if (s->socket_fd >= 0) { |
| |
| /* Pass the per-connection socket */ |
| |
| rfds = new(int, 1); |
| if (!rfds) |
| return -ENOMEM; |
| rfds[0] = s->socket_fd; |
| |
| rfd_names = strv_new("connection"); |
| if (!rfd_names) |
| return -ENOMEM; |
| |
| rn_socket_fds = 1; |
| } else { |
| Unit *u; |
| |
| /* Pass all our configured sockets for singleton services */ |
| |
| UNIT_FOREACH_DEPENDENCY(u, UNIT(s), UNIT_ATOM_TRIGGERED_BY) { |
| _cleanup_free_ int *cfds = NULL; |
| Socket *sock; |
| int cn_fds; |
| |
| if (u->type != UNIT_SOCKET) |
| continue; |
| |
| sock = SOCKET(u); |
| |
| cn_fds = socket_collect_fds(sock, &cfds); |
| if (cn_fds < 0) |
| return cn_fds; |
| |
| if (cn_fds <= 0) |
| continue; |
| |
| if (!rfds) { |
| rfds = TAKE_PTR(cfds); |
| rn_socket_fds = cn_fds; |
| } else { |
| int *t; |
| |
| t = reallocarray(rfds, rn_socket_fds + cn_fds, sizeof(int)); |
| if (!t) |
| return -ENOMEM; |
| |
| memcpy(t + rn_socket_fds, cfds, cn_fds * sizeof(int)); |
| |
| rfds = t; |
| rn_socket_fds += cn_fds; |
| } |
| |
| r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| if (s->n_fd_store > 0) { |
| ServiceFDStore *fs; |
| size_t n_fds; |
| char **nl; |
| int *t; |
| |
| t = reallocarray(rfds, rn_socket_fds + s->n_fd_store, sizeof(int)); |
| if (!t) |
| return -ENOMEM; |
| |
| rfds = t; |
| |
| nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + 1, sizeof(char *)); |
| if (!nl) |
| return -ENOMEM; |
| |
| rfd_names = nl; |
| n_fds = rn_socket_fds; |
| |
| LIST_FOREACH(fd_store, fs, s->fd_store) { |
| rfds[n_fds] = fs->fd; |
| rfd_names[n_fds] = strdup(strempty(fs->fdname)); |
| if (!rfd_names[n_fds]) |
| return -ENOMEM; |
| |
| rn_storage_fds++; |
| n_fds++; |
| } |
| |
| rfd_names[n_fds] = NULL; |
| } |
| |
| *fds = TAKE_PTR(rfds); |
| *fd_names = TAKE_PTR(rfd_names); |
| *n_socket_fds = rn_socket_fds; |
| *n_storage_fds = rn_storage_fds; |
| |
| return 0; |
| } |
| |
| static int service_allocate_exec_fd_event_source( |
| Service *s, |
| int fd, |
| sd_event_source **ret_event_source) { |
| |
| _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL; |
| int r; |
| |
| assert(s); |
| assert(fd >= 0); |
| assert(ret_event_source); |
| |
| r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m"); |
| |
| /* This is a bit lower priority than SIGCHLD, as that carries a lot more interesting failure information */ |
| |
| r = sd_event_source_set_priority(source, SD_EVENT_PRIORITY_NORMAL-3); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m"); |
| |
| (void) sd_event_source_set_description(source, "service exec_fd"); |
| |
| r = sd_event_source_set_io_fd_own(source, true); |
| if (r < 0) |
| return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m"); |
| |
| *ret_event_source = TAKE_PTR(source); |
| return 0; |
| } |
| |
| static int service_allocate_exec_fd( |
| Service *s, |
| sd_event_source **ret_event_source, |
| int *ret_exec_fd) { |
| |
| _cleanup_close_pair_ int p[] = { -1, -1 }; |
| int r; |
| |
| assert(s); |
| assert(ret_event_source); |
| assert(ret_exec_fd); |
| |
| if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0) |
| return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m"); |
| |
| r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source); |
| if (r < 0) |
| return r; |
| |
| TAKE_FD(p[0]); |
| *ret_exec_fd = TAKE_FD(p[1]); |
| |
| return 0; |
| } |
| |
| static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) { |
| assert(s); |
| |
| /* Notifications are accepted depending on the process and |
| * the access setting of the service: |
| * process: \ access: NONE MAIN EXEC ALL |
| * main no yes yes yes |
| * control no no yes yes |
| * other (forked) no no no yes */ |
| |
| if (flags & EXEC_IS_CONTROL) |
| /* A control process */ |
| return IN_SET(s->notify_access, NOTIFY_EXEC, NOTIFY_ALL); |
| |
| /* We only spawn main processes and control processes, so any |
| * process that is not a control process is a main process */ |
| return s->notify_access != NOTIFY_NONE; |
| } |
| |
| static int service_spawn( |
| Service *s, |
| ExecCommand *c, |
| usec_t timeout, |
| ExecFlags flags, |
| pid_t *ret_pid) { |
| |
| _cleanup_(exec_params_clear) ExecParameters exec_params = { |
| .flags = flags, |
| .stdin_fd = -1, |
| .stdout_fd = -1, |
| .stderr_fd = -1, |
| .exec_fd = -1, |
| }; |
| _cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL; |
| _cleanup_strv_free_ char **final_env = NULL, **our_env = NULL; |
| size_t n_env = 0; |
| pid_t pid; |
| int r; |
| |
| assert(s); |
| assert(c); |
| assert(ret_pid); |
| |
| r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */ |
| if (r < 0) |
| return r; |
| |
| assert(!s->exec_fd_event_source); |
| |
| if (flags & EXEC_IS_CONTROL) { |
| /* If this is a control process, mask the permissions/chroot application if this is requested. */ |
| if (s->permissions_start_only) |
| exec_params.flags &= ~EXEC_APPLY_SANDBOXING; |
| if (s->root_directory_start_only) |
| exec_params.flags &= ~EXEC_APPLY_CHROOT; |
| } |
| |
| if ((flags & EXEC_PASS_FDS) || |
| s->exec_context.std_input == EXEC_INPUT_SOCKET || |
| s->exec_context.std_output == EXEC_OUTPUT_SOCKET || |
| s->exec_context.std_error == EXEC_OUTPUT_SOCKET) { |
| |
| r = service_collect_fds(s, |
| &exec_params.fds, |
| &exec_params.fd_names, |
| &exec_params.n_socket_fds, |
| &exec_params.n_storage_fds); |
| if (r < 0) |
| return r; |
| |
| log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds); |
| } |
| |
| if (!FLAGS_SET(flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) { |
| r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd); |
| if (r < 0) |
| return r; |
| } |
| |
| r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), timeout)); |
| if (r < 0) |
| return r; |
| |
| our_env = new0(char*, 10); |
| if (!our_env) |
| return -ENOMEM; |
| |
| if (service_exec_needs_notify_socket(s, flags)) { |
| if (asprintf(our_env + n_env++, "NOTIFY_SOCKET=%s", UNIT(s)->manager->notify_socket) < 0) |
| return -ENOMEM; |
| |
| exec_params.notify_socket = UNIT(s)->manager->notify_socket; |
| } |
| |
| if (s->main_pid > 0) |
| if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid) < 0) |
| return -ENOMEM; |
| |
| if (MANAGER_IS_USER(UNIT(s)->manager)) |
| if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0) |
| return -ENOMEM; |
| |
| if (s->pid_file) |
| if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0) |
| return -ENOMEM; |
| |
| if (s->socket_fd >= 0) { |
| union sockaddr_union sa; |
| socklen_t salen = sizeof(sa); |
| |
| /* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something |
| * useful. Note that we do this only when we are still connected at this point in time, which we might |
| * very well not be. Hence we ignore all errors when retrieving peer information (as that might result |
| * in ENOTCONN), and just use whate we can use. */ |
| |
| if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 && |
| IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) { |
| _cleanup_free_ char *addr = NULL; |
| char *t; |
| unsigned port; |
| |
| r = sockaddr_pretty(&sa.sa, salen, true, false, &addr); |
| if (r < 0) |
| return r; |
| |
| t = strjoin("REMOTE_ADDR=", addr); |
| if (!t) |
| return -ENOMEM; |
| our_env[n_env++] = t; |
| |
| r = sockaddr_port(&sa.sa, &port); |
| if (r < 0) |
| return r; |
| |
| if (asprintf(&t, "REMOTE_PORT=%u", port) < 0) |
| return -ENOMEM; |
| our_env[n_env++] = t; |
| } |
| } |
| |
| if (flags & EXEC_SETENV_RESULT) { |
| if (asprintf(our_env + n_env++, "SERVICE_RESULT=%s", service_result_to_string(s->result)) < 0) |
| return -ENOMEM; |
| |
| if (s->main_exec_status.pid > 0 && |
| dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) { |
| if (asprintf(our_env + n_env++, "EXIT_CODE=%s", sigchld_code_to_string(s->main_exec_status.code)) < 0) |
| return -ENOMEM; |
| |
| if (s->main_exec_status.code == CLD_EXITED) |
| r = asprintf(our_env + n_env++, "EXIT_STATUS=%i", s->main_exec_status.status); |
| else |
| r = asprintf(our_env + n_env++, "EXIT_STATUS=%s", signal_to_string(s->main_exec_status.status)); |
| if (r < 0) |
| return -ENOMEM; |
| } |
| } |
| |
| r = unit_set_exec_params(UNIT(s), &exec_params); |
| if (r < 0) |
| return r; |
| |
| final_env = strv_env_merge(2, exec_params.environment, our_env, NULL); |
| if (!final_env) |
| return -ENOMEM; |
| |
| /* System D-Bus needs nss-systemd disabled, so that we don't deadlock */ |
| SET_FLAG(exec_params.flags, EXEC_NSS_DYNAMIC_BYPASS, |
| MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE)); |
| |
| strv_free_and_replace(exec_params.environment, final_env); |
| exec_params.watchdog_usec = service_get_watchdog_usec(s); |
| exec_params.selinux_context_net = s->socket_fd_selinux_context_net; |
| if (s->type == SERVICE_IDLE) |
| exec_params.idle_pipe = UNIT(s)->manager->idle_pipe; |
| exec_params.stdin_fd = s->stdin_fd; |
| exec_params.stdout_fd = s->stdout_fd; |
| exec_params.stderr_fd = s->stderr_fd; |
| |
| r = exec_spawn(UNIT(s), |
| c, |
| &s->exec_context, |
| &exec_params, |
| s->exec_runtime, |
| &s->dynamic_creds, |
| &pid); |
| if (r < 0) |
| return r; |
| |
| s->exec_fd_event_source = TAKE_PTR(exec_fd_source); |
| s->exec_fd_hot = false; |
| |
| r = unit_watch_pid(UNIT(s), pid, true); |
| if (r < 0) |
| return r; |
| |
| *ret_pid = pid; |
| |
| return 0; |
| } |
| |
| static int main_pid_good(Service *s) { |
| assert(s); |
| |
| /* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */ |
| |
| /* If we know the pid file, then let's just check if it is |
| * still valid */ |
| if (s->main_pid_known) { |
| |
| /* If it's an alien child let's check if it is still |
| * alive ... */ |
| if (s->main_pid_alien && s->main_pid > 0) |
| return pid_is_alive(s->main_pid); |
| |
| /* .. otherwise assume we'll get a SIGCHLD for it, |
| * which we really should wait for to collect exit |
| * status and code */ |
| return s->main_pid > 0; |
| } |
| |
| /* We don't know the pid */ |
| return -EAGAIN; |
| } |
| |
| static int control_pid_good(Service *s) { |
| assert(s); |
| |
| /* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to |
| * make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also |
| * means: we can't figure it out. */ |
| |
| return s->control_pid > 0; |
| } |
| |
| static int cgroup_good(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| /* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't |
| * figure it out */ |
| |
| if (!UNIT(s)->cgroup_path) |
| return 0; |
| |
| r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, UNIT(s)->cgroup_path); |
| if (r < 0) |
| return r; |
| |
| return r == 0; |
| } |
| |
| static bool service_shall_restart(Service *s, const char **reason) { |
| assert(s); |
| |
| /* Don't restart after manual stops */ |
| if (s->forbid_restart) { |
| *reason = "manual stop"; |
| return false; |
| } |
| |
| /* Never restart if this is configured as special exception */ |
| if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) { |
| *reason = "prevented by exit status"; |
| return false; |
| } |
| |
| /* Restart if the exit code/status are configured as restart triggers */ |
| if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) { |
| *reason = "forced by exit status"; |
| return true; |
| } |
| |
| *reason = "restart setting"; |
| switch (s->restart) { |
| |
| case SERVICE_RESTART_NO: |
| return false; |
| |
| case SERVICE_RESTART_ALWAYS: |
| return true; |
| |
| case SERVICE_RESTART_ON_SUCCESS: |
| return s->result == SERVICE_SUCCESS; |
| |
| case SERVICE_RESTART_ON_FAILURE: |
| return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION); |
| |
| case SERVICE_RESTART_ON_ABNORMAL: |
| return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION); |
| |
| case SERVICE_RESTART_ON_WATCHDOG: |
| return s->result == SERVICE_FAILURE_WATCHDOG; |
| |
| case SERVICE_RESTART_ON_ABORT: |
| return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP); |
| |
| default: |
| assert_not_reached("unknown restart setting"); |
| } |
| } |
| |
| static bool service_will_restart(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| if (s->will_auto_restart) |
| return true; |
| if (s->state == SERVICE_AUTO_RESTART) |
| return true; |
| |
| return unit_will_restart_default(u); |
| } |
| |
| static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) { |
| ServiceState end_state; |
| int r; |
| |
| assert(s); |
| |
| /* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not |
| * undo what has already been enqueued. */ |
| if (unit_stop_pending(UNIT(s))) |
| allow_restart = false; |
| |
| if (s->result == SERVICE_SUCCESS) |
| s->result = f; |
| |
| if (s->result == SERVICE_SUCCESS) { |
| unit_log_success(UNIT(s)); |
| end_state = SERVICE_DEAD; |
| } else if (s->result == SERVICE_SKIP_CONDITION) { |
| unit_log_skip(UNIT(s), service_result_to_string(s->result)); |
| end_state = SERVICE_DEAD; |
| } else { |
| unit_log_failure(UNIT(s), service_result_to_string(s->result)); |
| end_state = SERVICE_FAILED; |
| } |
| unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_stop); |
| |
| if (!allow_restart) |
| log_unit_debug(UNIT(s), "Service restart not allowed."); |
| else { |
| const char *reason; |
| bool shall_restart; |
| |
| shall_restart = service_shall_restart(s, &reason); |
| log_unit_debug(UNIT(s), "Service will %srestart (%s)", |
| shall_restart ? "" : "not ", |
| reason); |
| if (shall_restart) |
| s->will_auto_restart = true; |
| } |
| |
| /* Make sure service_release_resources() doesn't destroy our FD store, while we are changing through |
| * SERVICE_FAILED/SERVICE_DEAD before entering into SERVICE_AUTO_RESTART. */ |
| s->n_keep_fd_store ++; |
| |
| service_set_state(s, end_state); |
| |
| if (s->will_auto_restart) { |
| s->will_auto_restart = false; |
| |
| r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->restart_usec)); |
| if (r < 0) { |
| s->n_keep_fd_store--; |
| goto fail; |
| } |
| |
| service_set_state(s, SERVICE_AUTO_RESTART); |
| } else |
| /* If we shan't restart, then flush out the restart counter. But don't do that immediately, so that the |
| * user can still introspect the counter. Do so on the next start. */ |
| s->flush_n_restarts = true; |
| |
| /* The new state is in effect, let's decrease the fd store ref counter again. Let's also re-add us to the GC |
| * queue, so that the fd store is possibly gc'ed again */ |
| s->n_keep_fd_store--; |
| unit_add_to_gc_queue(UNIT(s)); |
| |
| /* The next restart might not be a manual stop, hence reset the flag indicating manual stops */ |
| s->forbid_restart = false; |
| |
| /* We want fresh tmpdirs in case service is started again immediately */ |
| s->exec_runtime = exec_runtime_unref(s->exec_runtime, true); |
| |
| /* Also, remove the runtime directory */ |
| unit_destroy_runtime_data(UNIT(s), &s->exec_context); |
| |
| /* Get rid of the IPC bits of the user */ |
| unit_unref_uid_gid(UNIT(s), true); |
| |
| /* Release the user, and destroy it if we are the only remaining owner */ |
| dynamic_creds_destroy(&s->dynamic_creds); |
| |
| /* Try to delete the pid file. At this point it will be |
| * out-of-date, and some software might be confused by it, so |
| * let's remove it. */ |
| if (s->pid_file) |
| (void) unlink(s->pid_file); |
| |
| /* Reset TTY ownership if necessary */ |
| exec_context_revert_tty(&s->exec_context); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run install restart timer: %m"); |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false); |
| } |
| |
| static void service_enter_stop_post(Service *s, ServiceResult f) { |
| int r; |
| assert(s); |
| |
| if (s->result == SERVICE_SUCCESS) |
| s->result = f; |
| |
| service_unwatch_control_pid(s); |
| (void) unit_enqueue_rewatch_pids(UNIT(s)); |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST]; |
| if (s->control_command) { |
| s->control_command_id = SERVICE_EXEC_STOP_POST; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_stop_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP, |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_STOP_POST); |
| } else |
| service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop-post' task: %m"); |
| service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static int state_to_kill_operation(Service *s, ServiceState state) { |
| switch (state) { |
| |
| case SERVICE_STOP_WATCHDOG: |
| case SERVICE_FINAL_WATCHDOG: |
| return KILL_WATCHDOG; |
| |
| case SERVICE_STOP_SIGTERM: |
| if (unit_has_job_type(UNIT(s), JOB_RESTART)) |
| return KILL_RESTART; |
| _fallthrough_; |
| |
| case SERVICE_FINAL_SIGTERM: |
| return KILL_TERMINATE; |
| |
| case SERVICE_STOP_SIGKILL: |
| case SERVICE_FINAL_SIGKILL: |
| return KILL_KILL; |
| |
| default: |
| return _KILL_OPERATION_INVALID; |
| } |
| } |
| |
| static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) { |
| int kill_operation, r; |
| |
| assert(s); |
| |
| if (s->result == SERVICE_SUCCESS) |
| s->result = f; |
| |
| /* Before sending any signal, make sure we track all members of this cgroup */ |
| (void) unit_watch_all_pids(UNIT(s)); |
| |
| /* Also, enqueue a job that we recheck all our PIDs a bit later, given that it's likely some processes have |
| * died now */ |
| (void) unit_enqueue_rewatch_pids(UNIT(s)); |
| |
| kill_operation = state_to_kill_operation(s, state); |
| r = unit_kill_context( |
| UNIT(s), |
| &s->kill_context, |
| kill_operation, |
| s->main_pid, |
| s->control_pid, |
| s->main_pid_alien); |
| if (r < 0) |
| goto fail; |
| |
| if (r > 0) { |
| r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), |
| kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec)); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, state); |
| } else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill) |
| service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS); |
| else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) |
| service_enter_stop_post(s, SERVICE_SUCCESS); |
| else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill) |
| service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); |
| else |
| service_enter_dead(s, SERVICE_SUCCESS, true); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m"); |
| |
| if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) |
| service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES); |
| else |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true); |
| } |
| |
| static void service_enter_stop_by_notify(Service *s) { |
| assert(s); |
| |
| (void) unit_enqueue_rewatch_pids(UNIT(s)); |
| |
| service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->timeout_stop_usec)); |
| |
| /* The service told us it's stopping, so it's as if we SIGTERM'd it. */ |
| service_set_state(s, SERVICE_STOP_SIGTERM); |
| } |
| |
| static void service_enter_stop(Service *s, ServiceResult f) { |
| int r; |
| |
| assert(s); |
| |
| if (s->result == SERVICE_SUCCESS) |
| s->result = f; |
| |
| service_unwatch_control_pid(s); |
| (void) unit_enqueue_rewatch_pids(UNIT(s)); |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_STOP]; |
| if (s->control_command) { |
| s->control_command_id = SERVICE_EXEC_STOP; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_stop_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP, |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_STOP); |
| } else |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop' task: %m"); |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static bool service_good(Service *s) { |
| int main_pid_ok; |
| assert(s); |
| |
| if (s->type == SERVICE_DBUS && !s->bus_name_good) |
| return false; |
| |
| main_pid_ok = main_pid_good(s); |
| if (main_pid_ok > 0) /* It's alive */ |
| return true; |
| if (main_pid_ok == 0) /* It's dead */ |
| return false; |
| |
| /* OK, we don't know anything about the main PID, maybe |
| * because there is none. Let's check the control group |
| * instead. */ |
| |
| return cgroup_good(s) != 0; |
| } |
| |
| static void service_enter_running(Service *s, ServiceResult f) { |
| assert(s); |
| |
| if (s->result == SERVICE_SUCCESS) |
| s->result = f; |
| |
| service_unwatch_control_pid(s); |
| |
| if (s->result != SERVICE_SUCCESS) |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, f); |
| else if (service_good(s)) { |
| |
| /* If there are any queued up sd_notify() notifications, process them now */ |
| if (s->notify_state == NOTIFY_RELOADING) |
| service_enter_reload_by_notify(s); |
| else if (s->notify_state == NOTIFY_STOPPING) |
| service_enter_stop_by_notify(s); |
| else { |
| service_set_state(s, SERVICE_RUNNING); |
| service_arm_timer(s, usec_add(UNIT(s)->active_enter_timestamp.monotonic, s->runtime_max_usec)); |
| } |
| |
| } else if (s->remain_after_exit) |
| service_set_state(s, SERVICE_EXITED); |
| else |
| service_enter_stop(s, SERVICE_SUCCESS); |
| } |
| |
| static void service_enter_start_post(Service *s) { |
| int r; |
| assert(s); |
| |
| service_unwatch_control_pid(s); |
| service_reset_watchdog(s); |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_START_POST]; |
| if (s->control_command) { |
| s->control_command_id = SERVICE_EXEC_START_POST; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_start_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP, |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_START_POST); |
| } else |
| service_enter_running(s, SERVICE_SUCCESS); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-post' task: %m"); |
| service_enter_stop(s, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static void service_kill_control_process(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| if (s->control_pid <= 0) |
| return; |
| |
| r = kill_and_sigcont(s->control_pid, SIGKILL); |
| if (r < 0) { |
| _cleanup_free_ char *comm = NULL; |
| |
| (void) get_process_comm(s->control_pid, &comm); |
| |
| log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", |
| s->control_pid, strna(comm)); |
| } |
| } |
| |
| static int service_adverse_to_leftover_processes(Service *s) { |
| assert(s); |
| |
| /* KillMode=mixed and control group are used to indicate that all process should be killed off. |
| * SendSIGKILL= is used for services that require a clean shutdown. These are typically database |
| * service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup |
| * time is quite variable (so Timeout settings aren't of use). |
| * |
| * Here we take these two factors and refuse to start a service if there are existing processes |
| * within a control group. Databases, while generally having some protection against multiple |
| * instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service |
| * aren't as rigoriously written to protect aganst against multiple use. */ |
| |
| if (unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_start) > 0 && |
| IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) && |
| !s->kill_context.send_sigkill) |
| return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY), |
| "Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist"); |
| |
| return 0; |
| } |
| |
| static void service_enter_start(Service *s) { |
| ExecCommand *c; |
| usec_t timeout; |
| pid_t pid; |
| int r; |
| |
| assert(s); |
| |
| service_unwatch_control_pid(s); |
| service_unwatch_main_pid(s); |
| |
| r = service_adverse_to_leftover_processes(s); |
| if (r < 0) |
| goto fail; |
| |
| if (s->type == SERVICE_FORKING) { |
| s->control_command_id = SERVICE_EXEC_START; |
| c = s->control_command = s->exec_command[SERVICE_EXEC_START]; |
| |
| s->main_command = NULL; |
| } else { |
| s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; |
| s->control_command = NULL; |
| |
| c = s->main_command = s->exec_command[SERVICE_EXEC_START]; |
| } |
| |
| if (!c) { |
| if (s->type != SERVICE_ONESHOT) { |
| /* There's no command line configured for the main command? Hmm, that is strange. |
| * This can only happen if the configuration changes at runtime. In this case, |
| * let's enter a failure state. */ |
| r = log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENXIO), "There's no 'start' task anymore we could start."); |
| goto fail; |
| } |
| |
| /* We force a fake state transition here. Otherwise, the unit would go directly from |
| * SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE |
| * in between. This way we can later trigger actions that depend on the state |
| * transition, including SuccessAction=. */ |
| service_set_state(s, SERVICE_START); |
| |
| service_enter_start_post(s); |
| return; |
| } |
| |
| if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) |
| /* For simple + idle this is the main process. We don't apply any timeout here, but |
| * service_enter_running() will later apply the .runtime_max_usec timeout. */ |
| timeout = USEC_INFINITY; |
| else |
| timeout = s->timeout_start_usec; |
| |
| r = service_spawn(s, |
| c, |
| timeout, |
| EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_WRITE_CREDENTIALS, |
| &pid); |
| if (r < 0) |
| goto fail; |
| |
| if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) { |
| /* For simple services we immediately start |
| * the START_POST binaries. */ |
| |
| service_set_main_pid(s, pid); |
| service_enter_start_post(s); |
| |
| } else if (s->type == SERVICE_FORKING) { |
| |
| /* For forking services we wait until the start |
| * process exited. */ |
| |
| s->control_pid = pid; |
| service_set_state(s, SERVICE_START); |
| |
| } else if (IN_SET(s->type, SERVICE_ONESHOT, SERVICE_DBUS, SERVICE_NOTIFY, SERVICE_EXEC)) { |
| |
| /* For oneshot services we wait until the start process exited, too, but it is our main process. */ |
| |
| /* For D-Bus services we know the main pid right away, but wait for the bus name to appear on the |
| * bus. 'notify' and 'exec' services are similar. */ |
| |
| service_set_main_pid(s, pid); |
| service_set_state(s, SERVICE_START); |
| } else |
| assert_not_reached("Unknown service type"); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'start' task: %m"); |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static void service_enter_start_pre(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| service_unwatch_control_pid(s); |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_START_PRE]; |
| if (s->control_command) { |
| |
| r = service_adverse_to_leftover_processes(s); |
| if (r < 0) |
| goto fail; |
| |
| s->control_command_id = SERVICE_EXEC_START_PRE; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_start_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN, |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_START_PRE); |
| } else |
| service_enter_start(s); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-pre' task: %m"); |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true); |
| } |
| |
| static void service_enter_condition(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| service_unwatch_control_pid(s); |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_CONDITION]; |
| if (s->control_command) { |
| |
| r = service_adverse_to_leftover_processes(s); |
| if (r < 0) |
| goto fail; |
| |
| s->control_command_id = SERVICE_EXEC_CONDITION; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_start_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN, |
| &s->control_pid); |
| |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_CONDITION); |
| } else |
| service_enter_start_pre(s); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'exec-condition' task: %m"); |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true); |
| } |
| |
| static void service_enter_restart(Service *s) { |
| _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; |
| int r; |
| |
| assert(s); |
| |
| if (unit_has_job_type(UNIT(s), JOB_STOP)) { |
| /* Don't restart things if we are going down anyway */ |
| log_unit_info(UNIT(s), "Stop job pending for unit, skipping automatic restart."); |
| return; |
| } |
| |
| /* Any units that are bound to this service must also be |
| * restarted. We use JOB_RESTART (instead of the more obvious |
| * JOB_START) here so that those dependency jobs will be added |
| * as well. */ |
| r = manager_add_job(UNIT(s)->manager, JOB_RESTART, UNIT(s), JOB_REPLACE, NULL, &error, NULL); |
| if (r < 0) |
| goto fail; |
| |
| /* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't fully |
| * stopped, i.e. as long as it remains up or remains in auto-start states. The user can reset the counter |
| * explicitly however via the usual "systemctl reset-failure" logic. */ |
| s->n_restarts ++; |
| s->flush_n_restarts = false; |
| |
| log_unit_struct(UNIT(s), LOG_INFO, |
| "MESSAGE_ID=" SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR, |
| LOG_UNIT_INVOCATION_ID(UNIT(s)), |
| LOG_UNIT_MESSAGE(UNIT(s), "Scheduled restart job, restart counter is at %u.", s->n_restarts), |
| "N_RESTARTS=%u", s->n_restarts); |
| |
| /* Notify clients about changed restart counter */ |
| unit_add_to_dbus_queue(UNIT(s)); |
| |
| /* Note that we stay in the SERVICE_AUTO_RESTART state here, |
| * it will be canceled as part of the service_stop() call that |
| * is executed as part of JOB_RESTART. */ |
| |
| return; |
| |
| fail: |
| log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r)); |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false); |
| } |
| |
| static void service_enter_reload_by_notify(Service *s) { |
| _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; |
| int r; |
| |
| assert(s); |
| |
| service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->timeout_start_usec)); |
| service_set_state(s, SERVICE_RELOAD); |
| |
| /* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */ |
| r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error); |
| if (r < 0) |
| log_unit_warning(UNIT(s), "Failed to schedule propagation of reload: %s", bus_error_message(&error, r)); |
| } |
| |
| static void service_enter_reload(Service *s) { |
| int r; |
| |
| assert(s); |
| |
| service_unwatch_control_pid(s); |
| s->reload_result = SERVICE_SUCCESS; |
| |
| s->control_command = s->exec_command[SERVICE_EXEC_RELOAD]; |
| if (s->control_command) { |
| s->control_command_id = SERVICE_EXEC_RELOAD; |
| |
| r = service_spawn(s, |
| s->control_command, |
| s->timeout_start_usec, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP, |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_state(s, SERVICE_RELOAD); |
| } else |
| service_enter_running(s, SERVICE_SUCCESS); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run 'reload' task: %m"); |
| s->reload_result = SERVICE_FAILURE_RESOURCES; |
| service_enter_running(s, SERVICE_SUCCESS); |
| } |
| |
| static void service_run_next_control(Service *s) { |
| usec_t timeout; |
| int r; |
| |
| assert(s); |
| assert(s->control_command); |
| assert(s->control_command->command_next); |
| |
| assert(s->control_command_id != SERVICE_EXEC_START); |
| |
| s->control_command = s->control_command->command_next; |
| service_unwatch_control_pid(s); |
| |
| if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) |
| timeout = s->timeout_start_usec; |
| else |
| timeout = s->timeout_stop_usec; |
| |
| r = service_spawn(s, |
| s->control_command, |
| timeout, |
| EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL| |
| (IN_SET(s->control_command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_STOP_POST) ? EXEC_APPLY_TTY_STDIN : 0)| |
| (IN_SET(s->control_command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_SETENV_RESULT : 0)| |
| (IN_SET(s->control_command_id, SERVICE_EXEC_START_POST, SERVICE_EXEC_RELOAD, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_CONTROL_CGROUP : 0), |
| &s->control_pid); |
| if (r < 0) |
| goto fail; |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run next control task: %m"); |
| |
| if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP)) |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); |
| else if (s->state == SERVICE_STOP_POST) |
| service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true); |
| else if (s->state == SERVICE_RELOAD) { |
| s->reload_result = SERVICE_FAILURE_RESOURCES; |
| service_enter_running(s, SERVICE_SUCCESS); |
| } else |
| service_enter_stop(s, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static void service_run_next_main(Service *s) { |
| pid_t pid; |
| int r; |
| |
| assert(s); |
| assert(s->main_command); |
| assert(s->main_command->command_next); |
| assert(s->type == SERVICE_ONESHOT); |
| |
| s->main_command = s->main_command->command_next; |
| service_unwatch_main_pid(s); |
| |
| r = service_spawn(s, |
| s->main_command, |
| s->timeout_start_usec, |
| EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG, |
| &pid); |
| if (r < 0) |
| goto fail; |
| |
| service_set_main_pid(s, pid); |
| |
| return; |
| |
| fail: |
| log_unit_warning_errno(UNIT(s), r, "Failed to run next main task: %m"); |
| service_enter_stop(s, SERVICE_FAILURE_RESOURCES); |
| } |
| |
| static int service_start(Unit *u) { |
| Service *s = SERVICE(u); |
| int r; |
| |
| assert(s); |
| |
| /* We cannot fulfill this request right now, try again later |
| * please! */ |
| if (IN_SET(s->state, |
| SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING)) |
| return -EAGAIN; |
| |
| /* Already on it! */ |
| if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST)) |
| return 0; |
| |
| /* A service that will be restarted must be stopped first to |
| * trigger BindsTo and/or OnFailure dependencies. If a user |
| * does not want to wait for the holdoff time to elapse, the |
| * service should be manually restarted, not started. We |
| * simply return EAGAIN here, so that any start jobs stay |
| * queued, and assume that the auto restart timer will |
| * eventually trigger the restart. */ |
| if (s->state == SERVICE_AUTO_RESTART) |
| return -EAGAIN; |
| |
| assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED)); |
| |
| /* Make sure we don't enter a busy loop of some kind. */ |
| r = unit_test_start_limit(u); |
| if (r < 0) { |
| service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false); |
| return r; |
| } |
| |
| r = unit_acquire_invocation_id(u); |
| if (r < 0) |
| return r; |
| |
| s->result = SERVICE_SUCCESS; |
| s->reload_result = SERVICE_SUCCESS; |
| s->main_pid_known = false; |
| s->main_pid_alien = false; |
| s->forbid_restart = false; |
| |
| s->status_text = mfree(s->status_text); |
| s->status_errno = 0; |
| |
| s->notify_state = NOTIFY_UNKNOWN; |
| |
| s->watchdog_original_usec = s->watchdog_usec; |
| s->watchdog_override_enable = false; |
| s->watchdog_override_usec = USEC_INFINITY; |
| |
| exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); |
| exec_status_reset(&s->main_exec_status); |
| |
| /* This is not an automatic restart? Flush the restart counter then */ |
| if (s->flush_n_restarts) { |
| s->n_restarts = 0; |
| s->flush_n_restarts = false; |
| } |
| |
| u->reset_accounting = true; |
| |
| service_enter_condition(s); |
| return 1; |
| } |
| |
| static int service_stop(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| /* Don't create restart jobs from manual stops. */ |
| s->forbid_restart = true; |
| |
| /* Already on it */ |
| if (IN_SET(s->state, |
| SERVICE_STOP, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, |
| SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL)) |
| return 0; |
| |
| /* A restart will be scheduled or is in progress. */ |
| if (s->state == SERVICE_AUTO_RESTART) { |
| service_set_state(s, SERVICE_DEAD); |
| return 0; |
| } |
| |
| /* If there's already something running we go directly into |
| * kill mode. */ |
| if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RELOAD, SERVICE_STOP_WATCHDOG)) { |
| service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); |
| return 0; |
| } |
| |
| /* If we are currently cleaning, then abort it, brutally. */ |
| if (s->state == SERVICE_CLEANING) { |
| service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); |
| return 0; |
| } |
| |
| assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED)); |
| |
| service_enter_stop(s, SERVICE_SUCCESS); |
| return 1; |
| } |
| |
| static int service_reload(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED)); |
| |
| service_enter_reload(s); |
| return 1; |
| } |
| |
| _pure_ static bool service_can_reload(Unit *u) { |
| Service *s = SERVICE(u); |
| |
| assert(s); |
| |
| return !!s->exec_command[SERVICE_EXEC_RELOAD]; |
| } |
| |
| static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, ExecCommand *current) { |
| Service *s = SERVICE(u); |
| unsigned idx = 0; |
| ExecCommand *first, *c; |
| |
| assert(s); |
| assert(id >= 0); |
| assert(id < _SERVICE_EXEC_COMMAND_MAX); |
| |
| first = s->exec_command[id]; |
| |
| /* Figure out where we are in the list by walking back to the beginning */ |
| for (c = current; c != first; c = c->command_prev) |
| idx++; |
| |
| return idx; |
| } |
| |
| static int service_serialize_exec_command(Unit *u, FILE *f, ExecCommand *command) { |
| _cleanup_free_ char *args = NULL, *p = NULL; |
| Service *s = SERVICE(u); |
| const char *type, *key; |
| ServiceExecCommand id; |
| size_t length = 0; |
| unsigned idx; |
| char **arg; |
| |
| assert(s); |
| assert(f); |
| |
| if (!command) |
| return 0; |
| |
| if (command == s->control_command) { |
| type = "control"; |
| id = s->control_command_id; |
| } else { |
| type = "main"; |
| id = SERVICE_EXEC_START; |
| } |
| |
| idx = service_exec_command_index(u, id, command); |
| |
| STRV_FOREACH(arg, command->argv) { |
| _cleanup_free_ char *e = NULL; |
| size_t n; |
| |
| e = cescape(*arg); |
| if (!e) |
| return log_oom(); |
| |
| n = strlen(e); |
| if (!GREEDY_REALLOC(args, length + 2 + n + 2)) |
| return log_oom(); |
| |
| if (length > 0) |
| args[length++] = ' '; |
| |
| args[length++] = '"'; |
| memcpy(args + length, e, n); |
| length += n; |
| args[length++] = '"'; |
| } |
| |
| if (!GREEDY_REALLOC(args, length + 1)) |
| return log_oom(); |
| |
| args[length++] = 0; |
| |
| p = cescape(command->path); |
| if (!p) |
| return log_oom(); |
| |
| key = strjoina(type, "-command"); |
| (void) serialize_item_format(f, key, "%s %u %s %s", service_exec_command_to_string(id), idx, p, args); |
| |
| return 0; |
| } |
| |
| static int service_serialize(Unit *u, FILE *f, FDSet *fds) { |
| Service *s = SERVICE(u); |
| ServiceFDStore *fs; |
| int r; |
| |
| assert(u); |
| assert(f); |
| assert(fds); |
| |
| (void) serialize_item(f, "state", service_state_to_string(s->state)); |
| (void) serialize_item(f, "result", service_result_to_string(s->result)); |
| (void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result)); |
| |
| if (s->control_pid > 0) |
| (void) serialize_item_format(f, "control-pid", PID_FMT, s->control_pid); |
| |
| if (s->main_pid_known && s->main_pid > 0) |
| (void) serialize_item_format(f, "main-pid", PID_FMT, s->main_pid); |
| |
| (void) serialize_bool(f, "main-pid-known", s->main_pid_known); |
| (void) serialize_bool(f, "bus-name-good", s->bus_name_good); |
| (void) serialize_bool(f, "bus-name-owner", s->bus_name_owner); |
| |
| (void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts); |
| (void) serialize_bool(f, "flush-n-restarts", s->flush_n_restarts); |
| |
| r = serialize_item_escaped(f, "status-text", s->status_text); |
| if (r < 0) |
| return r; |
| |
| service_serialize_exec_command(u, f, s->control_command); |
| service_serialize_exec_command(u, f, s->main_command); |
| |
| r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd); |
| if (r < 0) |
| return r; |
| r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd); |
| if (r < 0) |
| return r; |
| r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd); |
| if (r < 0) |
| return r; |
| |
| if (s->exec_fd_event_source) { |
| r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source)); |
| if (r < 0) |
| return r; |
| |
| (void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot); |
| } |
| |
| if (UNIT_ISSET(s->accept_socket)) { |
| r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id); |
| if (r < 0) |
| return r; |
| } |
| |
| r = serialize_fd(f, fds, "socket-fd", s->socket_fd); |
| if (r < 0) |
| return r; |
| |
| LIST_FOREACH(fd_store, fs, s->fd_store) { |
| _cleanup_free_ char *c = NULL; |
| int copy; |
| |
| copy = fdset_put_dup(fds, fs->fd); |
| if (copy < 0) |
| return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m"); |
| |
| c = cescape(fs->fdname); |
| if (!c) |
| return log_oom(); |
| |
| (void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %i", copy, c, fs->do_poll); |
| } |
| |
| if (s->main_exec_status.pid > 0) { |
| (void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid); |
| (void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp); |
| (void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp); |
| |
| if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) { |
| (void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code); |
| (void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status); |
| } |
| } |
| |
| (void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp); |
| (void) serialize_bool(f, "forbid-restart", s->forbid_restart); |
| |
| if (s->watchdog_override_enable) |
| (void) serialize_item_format(f, "watchdog-override-usec", USEC_FMT, s->watchdog_override_usec); |
| |
| if (s->watchdog_original_usec != USEC_INFINITY) |
| (void) serialize_item_format(f, "watchdog-original-usec", USEC_FMT, s->watchdog_original_usec); |
| |
| return 0; |
| } |
| |
| int service_deserialize_exec_command( |
| Unit *u, |
| const char *key, |
| const char *value) { |
| |
| Service *s = SERVICE(u); |
| int r; |
| unsigned idx = 0, i; |
| bool control, found = false; |
| ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID; |
| ExecCommand *command = NULL; |
| _cleanup_free_ char *path = NULL; |
| _cleanup_strv_free_ char **argv = NULL; |
| |
| enum ExecCommandState { |
| STATE_EXEC_COMMAND_TYPE, |
| STATE_EXEC_COMMAND_INDEX, |
| STATE_EXEC_COMMAND_PATH, |
| STATE_EXEC_COMMAND_ARGS, |
| _STATE_EXEC_COMMAND_MAX, |
| _STATE_EXEC_COMMAND_INVALID = -EINVAL, |
| } state; |
| |
| assert(s); |
| assert(key); |
| assert(value); |
| |
| control = streq(key, "control-command"); |
| |
| state = STATE_EXEC_COMMAND_TYPE; |
| |
| for (;;) { |
| _cleanup_free_ char *arg = NULL; |
| |
| r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| break; |
| |
| switch (state) { |
| case STATE_EXEC_COMMAND_TYPE: |
| id = service_exec_command_from_string(arg); |
| if (id < 0) |
| return id; |
| |
| state = STATE_EXEC_COMMAND_INDEX; |
| break; |
| case STATE_EXEC_COMMAND_INDEX: |
| r = safe_atou(arg, &idx); |
| if (r < 0) |
| return r; |
| |
| state = STATE_EXEC_COMMAND_PATH; |
| break; |
| case STATE_EXEC_COMMAND_PATH: |
| path = TAKE_PTR(arg); |
| state = STATE_EXEC_COMMAND_ARGS; |
| break; |
| case STATE_EXEC_COMMAND_ARGS: |
| r = strv_extend(&argv, arg); |
| if (r < 0) |
| return -ENOMEM; |
| break; |
| default: |
| assert_not_reached("Logic error in exec command deserialization"); |
| } |
| } |
| |
| if (state != STATE_EXEC_COMMAND_ARGS) |
| return -EINVAL; |
| if (strv_isempty(argv)) |
| return -EINVAL; /* At least argv[0] must be always present. */ |
| |
| /* Let's check whether exec command on given offset matches data that we just deserialized */ |
| for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) { |
| if (i != idx) |
| continue; |
| |
| found = strv_equal(argv, command->argv) && streq(command->path, path); |
| break; |
| } |
| |
| if (!found) { |
| /* Command at the index we serialized is different, let's look for command that exactly |
| * matches but is on different index. If there is no such command we will not resume execution. */ |
| for (command = s->exec_command[id]; command; command = command->command_next) |
| if (strv_equal(command->argv, argv) && streq(command->path, path)) |
| break; |
| } |
| |
| if (command && control) { |
| s->control_command = command; |
| s->control_command_id = id; |
| } else if (command) |
| s->main_command = command; |
| else |
| log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed."); |
| |
| return 0; |
| } |
| |
| static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) { |
| Service *s = SERVICE(u); |
| int r; |
| |
| assert(u); |
| assert(key); |
| assert(value); |
| assert(fds); |
| |
| if (streq(key, "state")) { |
| ServiceState state; |
| |
| state = service_state_from_string(value); |
| if (state < 0) |
| log_unit_debug(u, "Failed to parse state value: %s", value); |
| else |
| s->deserialized_state = state; |
| } else if (streq(key, "result")) { |
| ServiceResult f; |
| |
| f = service_result_from_string(value); |
| if (f < 0) |
| log_unit_debug(u, "Failed to parse result value: %s", value); |
| else if (f != SERVICE_SUCCESS) |
| s->result = f; |
| |
| } else if (streq(key, "reload-result")) { |
| ServiceResult f; |
| |
| f = service_result_from_string(value); |
| if (f < 0) |
| log_unit_debug(u, "Failed to parse reload result value: %s", value); |
| else if (f != SERVICE_SUCCESS) |
| s->reload_result = f; |
| |
| } else if (streq(key, "control-pid")) { |
| pid_t pid; |
| |
| if (parse_pid(value, &pid) < 0) |
| log_unit_debug(u, "Failed to parse control-pid value: %s", value); |
|