blob: 7ff1452e0845c70886ef763d3ac93717ab8ccd16 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <sys/wait.h>
#include "sd-event.h"
#include "alloc-util.h"
#include "fd-util.h"
#include "fs-util.h"
#include "log.h"
#include "macro.h"
#include "missing_syscall.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "random-util.h"
#include "rm-rf.h"
#include "signal-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "tests.h"
#include "tmpfile-util.h"
#include "util.h"
static int prepare_handler(sd_event_source *s, void *userdata) {
log_info("preparing %c", PTR_TO_INT(userdata));
return 1;
}
static bool got_a, got_b, got_c, got_unref;
static unsigned got_d;
static int unref_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
sd_event_source_unref(s);
got_unref = true;
return 0;
}
static int io_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
log_info("got IO on %c", PTR_TO_INT(userdata));
if (userdata == INT_TO_PTR('a')) {
assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
assert_se(!got_a);
got_a = true;
} else if (userdata == INT_TO_PTR('b')) {
assert_se(!got_b);
got_b = true;
} else if (userdata == INT_TO_PTR('d')) {
got_d++;
if (got_d < 2)
assert_se(sd_event_source_set_enabled(s, SD_EVENT_ONESHOT) >= 0);
else
assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
} else
assert_not_reached("Yuck!");
return 1;
}
static int child_handler(sd_event_source *s, const siginfo_t *si, void *userdata) {
assert_se(s);
assert_se(si);
assert_se(si->si_uid == getuid());
assert_se(si->si_signo == SIGCHLD);
assert_se(si->si_code == CLD_EXITED);
assert_se(si->si_status == 78);
log_info("got child on %c", PTR_TO_INT(userdata));
assert_se(userdata == INT_TO_PTR('f'));
assert_se(sd_event_exit(sd_event_source_get_event(s), 0) >= 0);
sd_event_source_unref(s);
return 1;
}
static int signal_handler(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
sd_event_source *p = NULL;
pid_t pid;
siginfo_t plain_si;
assert_se(s);
assert_se(si);
log_info("got signal on %c", PTR_TO_INT(userdata));
assert_se(userdata == INT_TO_PTR('e'));
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGCHLD, SIGUSR2, -1) >= 0);
pid = fork();
assert_se(pid >= 0);
if (pid == 0) {
sigset_t ss;
assert_se(sigemptyset(&ss) >= 0);
assert_se(sigaddset(&ss, SIGUSR2) >= 0);
zero(plain_si);
assert_se(sigwaitinfo(&ss, &plain_si) >= 0);
assert_se(plain_si.si_signo == SIGUSR2);
assert_se(plain_si.si_value.sival_int == 4711);
_exit(78);
}
assert_se(sd_event_add_child(sd_event_source_get_event(s), &p, pid, WEXITED, child_handler, INT_TO_PTR('f')) >= 0);
assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0);
assert_se(sd_event_source_set_child_process_own(p, true) >= 0);
/* We can't use structured initialization here, since the structure contains various unions and these
* fields lie in overlapping (carefully aligned) unions that LLVM is allergic to allow assignments
* to */
zero(plain_si);
plain_si.si_signo = SIGUSR2;
plain_si.si_code = SI_QUEUE;
plain_si.si_pid = getpid();
plain_si.si_uid = getuid();
plain_si.si_value.sival_int = 4711;
assert_se(sd_event_source_send_child_signal(p, SIGUSR2, &plain_si, 0) >= 0);
sd_event_source_unref(s);
return 1;
}
static int defer_handler(sd_event_source *s, void *userdata) {
sd_event_source *p = NULL;
assert_se(s);
log_info("got defer on %c", PTR_TO_INT(userdata));
assert_se(userdata == INT_TO_PTR('d'));
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGUSR1, -1) >= 0);
assert_se(sd_event_add_signal(sd_event_source_get_event(s), &p, SIGUSR1, signal_handler, INT_TO_PTR('e')) >= 0);
assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0);
raise(SIGUSR1);
sd_event_source_unref(s);
return 1;
}
static bool do_quit;
static int time_handler(sd_event_source *s, uint64_t usec, void *userdata) {
log_info("got timer on %c", PTR_TO_INT(userdata));
if (userdata == INT_TO_PTR('c')) {
if (do_quit) {
sd_event_source *p;
assert_se(sd_event_add_defer(sd_event_source_get_event(s), &p, defer_handler, INT_TO_PTR('d')) >= 0);
assert_se(sd_event_source_set_enabled(p, SD_EVENT_ONESHOT) >= 0);
} else {
assert_se(!got_c);
got_c = true;
}
} else
assert_not_reached("Huh?");
return 2;
}
static bool got_exit = false;
static int exit_handler(sd_event_source *s, void *userdata) {
log_info("got quit handler on %c", PTR_TO_INT(userdata));
got_exit = true;
return 3;
}
static bool got_post = false;
static int post_handler(sd_event_source *s, void *userdata) {
log_info("got post handler");
got_post = true;
return 2;
}
static void test_basic(bool with_pidfd) {
sd_event *e = NULL;
sd_event_source *w = NULL, *x = NULL, *y = NULL, *z = NULL, *q = NULL, *t = NULL;
static const char ch = 'x';
int a[2] = { -1, -1 }, b[2] = { -1, -1}, d[2] = { -1, -1}, k[2] = { -1, -1 };
uint64_t event_now;
int64_t priority;
log_info("/* %s(pidfd=%s) */", __func__, yes_no(with_pidfd));
assert_se(setenv("SYSTEMD_PIDFD", yes_no(with_pidfd), 1) >= 0);
assert_se(pipe(a) >= 0);
assert_se(pipe(b) >= 0);
assert_se(pipe(d) >= 0);
assert_se(pipe(k) >= 0);
assert_se(sd_event_default(&e) >= 0);
assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) > 0);
assert_se(sd_event_set_watchdog(e, true) >= 0);
/* Test whether we cleanly can destroy an io event source from its own handler */
got_unref = false;
assert_se(sd_event_add_io(e, &t, k[0], EPOLLIN, unref_handler, NULL) >= 0);
assert_se(write(k[1], &ch, 1) == 1);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(got_unref);
got_a = false, got_b = false, got_c = false, got_d = 0;
/* Add a oneshot handler, trigger it, reenable it, and trigger
* it again. */
assert_se(sd_event_add_io(e, &w, d[0], EPOLLIN, io_handler, INT_TO_PTR('d')) >= 0);
assert_se(sd_event_source_set_enabled(w, SD_EVENT_ONESHOT) >= 0);
assert_se(write(d[1], &ch, 1) >= 0);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(got_d == 1);
assert_se(write(d[1], &ch, 1) >= 0);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(got_d == 2);
assert_se(sd_event_add_io(e, &x, a[0], EPOLLIN, io_handler, INT_TO_PTR('a')) >= 0);
assert_se(sd_event_add_io(e, &y, b[0], EPOLLIN, io_handler, INT_TO_PTR('b')) >= 0);
do_quit = false;
assert_se(sd_event_add_time(e, &z, CLOCK_MONOTONIC, 0, 0, time_handler, INT_TO_PTR('c')) >= 0);
assert_se(sd_event_add_exit(e, &q, exit_handler, INT_TO_PTR('g')) >= 0);
assert_se(sd_event_source_set_priority(x, 99) >= 0);
assert_se(sd_event_source_get_priority(x, &priority) >= 0);
assert_se(priority == 99);
assert_se(sd_event_source_set_enabled(y, SD_EVENT_ONESHOT) >= 0);
assert_se(sd_event_source_set_prepare(x, prepare_handler) >= 0);
assert_se(sd_event_source_set_priority(z, 50) >= 0);
assert_se(sd_event_source_set_enabled(z, SD_EVENT_ONESHOT) >= 0);
assert_se(sd_event_source_set_prepare(z, prepare_handler) >= 0);
/* Test for floating event sources */
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGRTMIN+1, -1) >= 0);
assert_se(sd_event_add_signal(e, NULL, SIGRTMIN+1, NULL, NULL) >= 0);
assert_se(write(a[1], &ch, 1) >= 0);
assert_se(write(b[1], &ch, 1) >= 0);
assert_se(!got_a && !got_b && !got_c);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(!got_a && got_b && !got_c);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(!got_a && got_b && got_c);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(got_a && got_b && got_c);
sd_event_source_unref(x);
sd_event_source_unref(y);
do_quit = true;
assert_se(sd_event_add_post(e, NULL, post_handler, NULL) >= 0);
assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) == 0);
assert_se(sd_event_source_set_time(z, event_now + 200 * USEC_PER_MSEC) >= 0);
assert_se(sd_event_source_set_enabled(z, SD_EVENT_ONESHOT) >= 0);
assert_se(sd_event_loop(e) >= 0);
assert_se(got_post);
assert_se(got_exit);
sd_event_source_unref(z);
sd_event_source_unref(q);
sd_event_source_unref(w);
sd_event_unref(e);
safe_close_pair(a);
safe_close_pair(b);
safe_close_pair(d);
safe_close_pair(k);
assert_se(unsetenv("SYSTEMD_PIDFD") >= 0);
}
static void test_sd_event_now(void) {
_cleanup_(sd_event_unrefp) sd_event *e = NULL;
uint64_t event_now;
log_info("/* %s */", __func__);
assert_se(sd_event_new(&e) >= 0);
assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) > 0);
assert_se(sd_event_now(e, CLOCK_REALTIME, &event_now) > 0);
assert_se(sd_event_now(e, CLOCK_REALTIME_ALARM, &event_now) > 0);
if (clock_boottime_supported()) {
assert_se(sd_event_now(e, CLOCK_BOOTTIME, &event_now) > 0);
assert_se(sd_event_now(e, CLOCK_BOOTTIME_ALARM, &event_now) > 0);
}
assert_se(sd_event_now(e, -1, &event_now) == -EOPNOTSUPP);
assert_se(sd_event_now(e, 900 /* arbitrary big number */, &event_now) == -EOPNOTSUPP);
assert_se(sd_event_run(e, 0) == 0);
assert_se(sd_event_now(e, CLOCK_MONOTONIC, &event_now) == 0);
assert_se(sd_event_now(e, CLOCK_REALTIME, &event_now) == 0);
assert_se(sd_event_now(e, CLOCK_REALTIME_ALARM, &event_now) == 0);
if (clock_boottime_supported()) {
assert_se(sd_event_now(e, CLOCK_BOOTTIME, &event_now) == 0);
assert_se(sd_event_now(e, CLOCK_BOOTTIME_ALARM, &event_now) == 0);
}
assert_se(sd_event_now(e, -1, &event_now) == -EOPNOTSUPP);
assert_se(sd_event_now(e, 900 /* arbitrary big number */, &event_now) == -EOPNOTSUPP);
}
static int last_rtqueue_sigval = 0;
static int n_rtqueue = 0;
static int rtqueue_handler(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
last_rtqueue_sigval = si->ssi_int;
n_rtqueue++;
return 0;
}
static void test_rtqueue(void) {
sd_event_source *u = NULL, *v = NULL, *s = NULL;
sd_event *e = NULL;
log_info("/* %s */", __func__);
assert_se(sd_event_default(&e) >= 0);
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGRTMIN+2, SIGRTMIN+3, SIGUSR2, -1) >= 0);
assert_se(sd_event_add_signal(e, &u, SIGRTMIN+2, rtqueue_handler, NULL) >= 0);
assert_se(sd_event_add_signal(e, &v, SIGRTMIN+3, rtqueue_handler, NULL) >= 0);
assert_se(sd_event_add_signal(e, &s, SIGUSR2, rtqueue_handler, NULL) >= 0);
assert_se(sd_event_source_set_priority(v, -10) >= 0);
assert_se(sigqueue(getpid_cached(), SIGRTMIN+2, (union sigval) { .sival_int = 1 }) >= 0);
assert_se(sigqueue(getpid_cached(), SIGRTMIN+3, (union sigval) { .sival_int = 2 }) >= 0);
assert_se(sigqueue(getpid_cached(), SIGUSR2, (union sigval) { .sival_int = 3 }) >= 0);
assert_se(sigqueue(getpid_cached(), SIGRTMIN+3, (union sigval) { .sival_int = 4 }) >= 0);
assert_se(sigqueue(getpid_cached(), SIGUSR2, (union sigval) { .sival_int = 5 }) >= 0);
assert_se(n_rtqueue == 0);
assert_se(last_rtqueue_sigval == 0);
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(n_rtqueue == 1);
assert_se(last_rtqueue_sigval == 2); /* first SIGRTMIN+3 */
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(n_rtqueue == 2);
assert_se(last_rtqueue_sigval == 4); /* second SIGRTMIN+3 */
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(n_rtqueue == 3);
assert_se(last_rtqueue_sigval == 3); /* first SIGUSR2 */
assert_se(sd_event_run(e, UINT64_MAX) >= 1);
assert_se(n_rtqueue == 4);
assert_se(last_rtqueue_sigval == 1); /* SIGRTMIN+2 */
assert_se(sd_event_run(e, 0) == 0); /* the other SIGUSR2 is dropped, because the first one was still queued */
assert_se(n_rtqueue == 4);
assert_se(last_rtqueue_sigval == 1);
sd_event_source_unref(u);
sd_event_source_unref(v);
sd_event_source_unref(s);
sd_event_unref(e);
}
#define CREATE_EVENTS_MAX (70000U)
struct inotify_context {
bool delete_self_handler_called;
unsigned create_called[CREATE_EVENTS_MAX];
unsigned create_overflow;
unsigned n_create_events;
};
static void maybe_exit(sd_event_source *s, struct inotify_context *c) {
unsigned n;
assert(s);
assert(c);
if (!c->delete_self_handler_called)
return;
for (n = 0; n < 3; n++) {
unsigned i;
if (c->create_overflow & (1U << n))
continue;
for (i = 0; i < c->n_create_events; i++)
if (!(c->create_called[i] & (1U << n)))
return;
}
sd_event_exit(sd_event_source_get_event(s), 0);
}
static int inotify_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) {
struct inotify_context *c = userdata;
const char *description;
unsigned bit, n;
assert_se(sd_event_source_get_description(s, &description) >= 0);
assert_se(safe_atou(description, &n) >= 0);
assert_se(n <= 3);
bit = 1U << n;
if (ev->mask & IN_Q_OVERFLOW) {
log_info("inotify-handler <%s>: overflow", description);
c->create_overflow |= bit;
} else if (ev->mask & IN_CREATE) {
if (streq(ev->name, "sub"))
log_debug("inotify-handler <%s>: create on %s", description, ev->name);
else {
unsigned i;
assert_se(safe_atou(ev->name, &i) >= 0);
assert_se(i < c->n_create_events);
c->create_called[i] |= bit;
}
} else if (ev->mask & IN_DELETE) {
log_info("inotify-handler <%s>: delete of %s", description, ev->name);
assert_se(streq(ev->name, "sub"));
} else
assert_not_reached("unexpected inotify event");
maybe_exit(s, c);
return 1;
}
static int delete_self_handler(sd_event_source *s, const struct inotify_event *ev, void *userdata) {
struct inotify_context *c = userdata;
if (ev->mask & IN_Q_OVERFLOW) {
log_info("delete-self-handler: overflow");
c->delete_self_handler_called = true;
} else if (ev->mask & IN_DELETE_SELF) {
log_info("delete-self-handler: delete-self");
c->delete_self_handler_called = true;
} else if (ev->mask & IN_IGNORED) {
log_info("delete-self-handler: ignore");
} else
assert_not_reached("unexpected inotify event (delete-self)");
maybe_exit(s, c);
return 1;
}
static void test_inotify(unsigned n_create_events) {
_cleanup_(rm_rf_physical_and_freep) char *p = NULL;
sd_event_source *a = NULL, *b = NULL, *c = NULL, *d = NULL;
struct inotify_context context = {
.n_create_events = n_create_events,
};
sd_event *e = NULL;
const char *q;
unsigned i;
log_info("/* %s(%u) */", __func__, n_create_events);
assert_se(sd_event_default(&e) >= 0);
assert_se(mkdtemp_malloc("/tmp/test-inotify-XXXXXX", &p) >= 0);
assert_se(sd_event_add_inotify(e, &a, p, IN_CREATE|IN_ONLYDIR, inotify_handler, &context) >= 0);
assert_se(sd_event_add_inotify(e, &b, p, IN_CREATE|IN_DELETE|IN_DONT_FOLLOW, inotify_handler, &context) >= 0);
assert_se(sd_event_source_set_priority(b, SD_EVENT_PRIORITY_IDLE) >= 0);
assert_se(sd_event_source_set_priority(b, SD_EVENT_PRIORITY_NORMAL) >= 0);
assert_se(sd_event_add_inotify(e, &c, p, IN_CREATE|IN_DELETE|IN_EXCL_UNLINK, inotify_handler, &context) >= 0);
assert_se(sd_event_source_set_priority(c, SD_EVENT_PRIORITY_IDLE) >= 0);
assert_se(sd_event_source_set_description(a, "0") >= 0);
assert_se(sd_event_source_set_description(b, "1") >= 0);
assert_se(sd_event_source_set_description(c, "2") >= 0);
q = strjoina(p, "/sub");
assert_se(touch(q) >= 0);
assert_se(sd_event_add_inotify(e, &d, q, IN_DELETE_SELF, delete_self_handler, &context) >= 0);
for (i = 0; i < n_create_events; i++) {
char buf[DECIMAL_STR_MAX(unsigned)+1];
_cleanup_free_ char *z;
xsprintf(buf, "%u", i);
assert_se(z = path_join(p, buf));
assert_se(touch(z) >= 0);
}
assert_se(unlink(q) >= 0);
assert_se(sd_event_loop(e) >= 0);
sd_event_source_unref(a);
sd_event_source_unref(b);
sd_event_source_unref(c);
sd_event_source_unref(d);
sd_event_unref(e);
}
static int pidfd_handler(sd_event_source *s, const siginfo_t *si, void *userdata) {
assert_se(s);
assert_se(si);
assert_se(si->si_uid == getuid());
assert_se(si->si_signo == SIGCHLD);
assert_se(si->si_code == CLD_EXITED);
assert_se(si->si_status == 66);
log_info("got pidfd on %c", PTR_TO_INT(userdata));
assert_se(userdata == INT_TO_PTR('p'));
assert_se(sd_event_exit(sd_event_source_get_event(s), 0) >= 0);
sd_event_source_unref(s);
return 0;
}
static void test_pidfd(void) {
sd_event_source *s = NULL, *t = NULL;
sd_event *e = NULL;
int pidfd;
pid_t pid, pid2;
log_info("/* %s */", __func__);
assert_se(sigprocmask_many(SIG_BLOCK, NULL, SIGCHLD, -1) >= 0);
pid = fork();
if (pid == 0)
/* child */
_exit(66);
assert_se(pid > 1);
pidfd = pidfd_open(pid, 0);
if (pidfd < 0) {
/* No pidfd_open() supported or blocked? */
assert_se(ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno));
(void) wait_for_terminate(pid, NULL);
return;
}
pid2 = fork();
if (pid2 == 0)
freeze();
assert_se(pid > 2);
assert_se(sd_event_default(&e) >= 0);
assert_se(sd_event_add_child_pidfd(e, &s, pidfd, WEXITED, pidfd_handler, INT_TO_PTR('p')) >= 0);
assert_se(sd_event_source_set_child_pidfd_own(s, true) >= 0);
/* This one should never trigger, since our second child lives forever */
assert_se(sd_event_add_child(e, &t, pid2, WEXITED, pidfd_handler, INT_TO_PTR('q')) >= 0);
assert_se(sd_event_source_set_child_process_own(t, true) >= 0);
assert_se(sd_event_loop(e) >= 0);
/* Child should still be alive */
assert_se(kill(pid2, 0) >= 0);
t = sd_event_source_unref(t);
/* Child should now be dead, since we dropped the ref */
assert_se(kill(pid2, 0) < 0 && errno == ESRCH);
sd_event_unref(e);
}
static int ratelimit_io_handler(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
unsigned *c = (unsigned*) userdata;
*c += 1;
return 0;
}
static int ratelimit_time_handler(sd_event_source *s, uint64_t usec, void *userdata) {
int r;
r = sd_event_source_set_enabled(s, SD_EVENT_ON);
if (r < 0)
log_warning_errno(r, "Failed to turn on notify event source: %m");
r = sd_event_source_set_time(s, usec + 1000);
if (r < 0)
log_error_errno(r, "Failed to restart watchdog event source: %m");
unsigned *c = (unsigned*) userdata;
*c += 1;
return 0;
}
static void test_ratelimit(void) {
_cleanup_close_pair_ int p[2] = {-1, -1};
_cleanup_(sd_event_unrefp) sd_event *e = NULL;
_cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
uint64_t interval;
unsigned count, burst;
log_info("/* %s */", __func__);
assert_se(sd_event_default(&e) >= 0);
assert_se(pipe2(p, O_CLOEXEC|O_NONBLOCK) >= 0);
assert_se(sd_event_add_io(e, &s, p[0], EPOLLIN, ratelimit_io_handler, &count) >= 0);
assert_se(sd_event_source_set_description(s, "test-ratelimit-io") >= 0);
assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 5) >= 0);
assert_se(sd_event_source_get_ratelimit(s, &interval, &burst) >= 0);
assert_se(interval == 1 * USEC_PER_SEC && burst == 5);
assert_se(write(p[1], "1", 1) == 1);
count = 0;
for (unsigned i = 0; i < 10; i++) {
log_debug("slow loop iteration %u", i);
assert_se(sd_event_run(e, UINT64_MAX) >= 0);
assert_se(usleep(250 * USEC_PER_MSEC) >= 0);
}
assert_se(sd_event_source_is_ratelimited(s) == 0);
assert_se(count == 10);
log_info("ratelimit_io_handler: called %d times, event source not ratelimited", count);
assert_se(sd_event_source_set_ratelimit(s, 0, 0) >= 0);
assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 5) >= 0);
count = 0;
for (unsigned i = 0; i < 10; i++) {
log_debug("fast event loop iteration %u", i);
assert_se(sd_event_run(e, UINT64_MAX) >= 0);
assert_se(usleep(10) >= 0);
}
log_info("ratelimit_io_handler: called %d times, event source got ratelimited", count);
assert_se(count < 10);
s = sd_event_source_unref(s);
safe_close_pair(p);
count = 0;
assert_se(sd_event_add_time_relative(e, &s, CLOCK_MONOTONIC, 1000, 1, ratelimit_time_handler, &count) >= 0);
assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 10) == 0);
do {
assert_se(sd_event_run(e, UINT64_MAX) >= 0);
} while (!sd_event_source_is_ratelimited(s));
log_info("ratelimit_time_handler: called %d times, event source got ratelimited", count);
assert_se(count == 10);
/* In order to get rid of active rate limit client needs to disable it explicitly */
assert_se(sd_event_source_set_ratelimit(s, 0, 0) >= 0);
assert_se(!sd_event_source_is_ratelimited(s));
assert_se(sd_event_source_set_ratelimit(s, 1 * USEC_PER_SEC, 10) >= 0);
do {
assert_se(sd_event_run(e, UINT64_MAX) >= 0);
} while (!sd_event_source_is_ratelimited(s));
log_info("ratelimit_time_handler: called 10 more times, event source got ratelimited");
assert_se(count == 20);
}
static void test_simple_timeout(void) {
_cleanup_(sd_event_unrefp) sd_event *e = NULL;
usec_t f, t, some_time;
some_time = random_u64_range(2 * USEC_PER_SEC);
assert_se(sd_event_default(&e) >= 0);
assert_se(sd_event_prepare(e) == 0);
f = now(CLOCK_MONOTONIC);
assert_se(sd_event_wait(e, some_time) >= 0);
t = now(CLOCK_MONOTONIC);
/* The event loop may sleep longer than the specified time (timer accuracy, scheduling latencies, …),
* but never shorter. Let's check that. */
assert_se(t >= usec_add(f, some_time));
}
int main(int argc, char *argv[]) {
test_setup_logging(LOG_DEBUG);
test_simple_timeout();
test_basic(true); /* test with pidfd */
test_basic(false); /* test without pidfd */
test_sd_event_now();
test_rtqueue();
test_inotify(100); /* should work without overflow */
test_inotify(33000); /* should trigger a q overflow */
test_pidfd();
test_ratelimit();
return 0;
}