blob: c802db749b369744b45cd09526c73140d690ce5b [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "alloc-util.h"
#include "chase-symlinks.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "hexdecoct.h"
#include "log.h"
#include "macro.h"
#include "mkdir.h"
#include "nulstr-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "socket-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "sync-util.h"
#include "tmpfile-util.h"
/* The maximum size of the file we'll read in one go in read_full_file() (64M). */
#define READ_FULL_BYTES_MAX (64U*1024U*1024U - 1U)
/* The maximum size of virtual files (i.e. procfs, sysfs, and other virtual "API" files) we'll read in one go
* in read_virtual_file(). Note that this limit is different (and much lower) than the READ_FULL_BYTES_MAX
* limit. This reflects the fact that we use different strategies for reading virtual and regular files:
* virtual files we generally have to read in a single read() syscall since the kernel doesn't support
* continuation read()s for them. Thankfully they are somewhat size constrained. Thus we can allocate the
* full potential buffer in advance. Regular files OTOH can be much larger, and there we grow the allocations
* exponentially in a loop. We use a size limit of 4M-2 because 4M-1 is the maximum buffer that /proc/sys/
* allows us to read() (larger reads will fail with ENOMEM), and we want to read one extra byte so that we
* can detect EOFs. */
#define READ_VIRTUAL_BYTES_MAX (4U*1024U*1024U - 2U)
int fopen_unlocked_at(int dir_fd, const char *path, const char *options, int flags, FILE **ret) {
int r;
assert(ret);
r = xfopenat(dir_fd, path, options, flags, ret);
if (r < 0)
return r;
(void) __fsetlocking(*ret, FSETLOCKING_BYCALLER);
return 0;
}
int fdopen_unlocked(int fd, const char *options, FILE **ret) {
assert(ret);
FILE *f = fdopen(fd, options);
if (!f)
return -errno;
(void) __fsetlocking(f, FSETLOCKING_BYCALLER);
*ret = f;
return 0;
}
int take_fdopen_unlocked(int *fd, const char *options, FILE **ret) {
int r;
assert(fd);
r = fdopen_unlocked(*fd, options, ret);
if (r < 0)
return r;
*fd = -EBADF;
return 0;
}
FILE* take_fdopen(int *fd, const char *options) {
assert(fd);
FILE *f = fdopen(*fd, options);
if (!f)
return NULL;
*fd = -EBADF;
return f;
}
DIR* take_fdopendir(int *dfd) {
assert(dfd);
DIR *d = fdopendir(*dfd);
if (!d)
return NULL;
*dfd = -EBADF;
return d;
}
FILE* open_memstream_unlocked(char **ptr, size_t *sizeloc) {
FILE *f = open_memstream(ptr, sizeloc);
if (!f)
return NULL;
(void) __fsetlocking(f, FSETLOCKING_BYCALLER);
return f;
}
FILE* fmemopen_unlocked(void *buf, size_t size, const char *mode) {
FILE *f = fmemopen(buf, size, mode);
if (!f)
return NULL;
(void) __fsetlocking(f, FSETLOCKING_BYCALLER);
return f;
}
int write_string_stream_ts(
FILE *f,
const char *line,
WriteStringFileFlags flags,
const struct timespec *ts) {
bool needs_nl;
int r, fd = -EBADF;
assert(f);
assert(line);
if (ferror(f))
return -EIO;
if (ts) {
/* If we shall set the timestamp we need the fd. But fmemopen() streams generally don't have
* an fd. Let's fail early in that case. */
fd = fileno(f);
if (fd < 0)
return -EBADF;
}
if (flags & WRITE_STRING_FILE_SUPPRESS_REDUNDANT_VIRTUAL) {
_cleanup_free_ char *t = NULL;
/* If value to be written is same as that of the existing value, then suppress the write. */
if (fd < 0) {
fd = fileno(f);
if (fd < 0)
return -EBADF;
}
/* Read an additional byte to detect cases where the prefix matches but the rest
* doesn't. Also, 0 returned by read_virtual_file_fd() means the read was truncated and
* it won't be equal to the new value. */
if (read_virtual_file_fd(fd, strlen(line)+1, &t, NULL) > 0 &&
streq_skip_trailing_chars(line, t, NEWLINE)) {
log_debug("No change in value '%s', suppressing write", line);
return 0;
}
if (lseek(fd, 0, SEEK_SET) < 0)
return -errno;
}
needs_nl = !(flags & WRITE_STRING_FILE_AVOID_NEWLINE) && !endswith(line, "\n");
if (needs_nl && (flags & WRITE_STRING_FILE_DISABLE_BUFFER)) {
/* If STDIO buffering was disabled, then let's append the newline character to the string
* itself, so that the write goes out in one go, instead of two */
line = strjoina(line, "\n");
needs_nl = false;
}
if (fputs(line, f) == EOF)
return -errno;
if (needs_nl)
if (fputc('\n', f) == EOF)
return -errno;
if (flags & WRITE_STRING_FILE_SYNC)
r = fflush_sync_and_check(f);
else
r = fflush_and_check(f);
if (r < 0)
return r;
if (ts) {
const struct timespec twice[2] = {*ts, *ts};
assert(fd >= 0);
if (futimens(fd, twice) < 0)
return -errno;
}
return 0;
}
static int write_string_file_atomic_at(
int dir_fd,
const char *fn,
const char *line,
WriteStringFileFlags flags,
const struct timespec *ts) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_free_ char *p = NULL;
int r;
assert(fn);
assert(line);
/* Note that we'd really like to use O_TMPFILE here, but can't really, since we want replacement
* semantics here, and O_TMPFILE can't offer that. i.e. rename() replaces but linkat() doesn't. */
r = fopen_temporary_at(dir_fd, fn, &f, &p);
if (r < 0)
return r;
r = write_string_stream_ts(f, line, flags, ts);
if (r < 0)
goto fail;
r = fchmod_umask(fileno(f), FLAGS_SET(flags, WRITE_STRING_FILE_MODE_0600) ? 0600 : 0644);
if (r < 0)
goto fail;
if (renameat(dir_fd, p, dir_fd, fn) < 0) {
r = -errno;
goto fail;
}
if (FLAGS_SET(flags, WRITE_STRING_FILE_SYNC)) {
/* Sync the rename, too */
r = fsync_directory_of_file(fileno(f));
if (r < 0)
return r;
}
return 0;
fail:
(void) unlinkat(dir_fd, p, 0);
return r;
}
int write_string_file_ts_at(
int dir_fd,
const char *fn,
const char *line,
WriteStringFileFlags flags,
const struct timespec *ts) {
_cleanup_fclose_ FILE *f = NULL;
int q, r, fd;
assert(fn);
assert(line);
/* We don't know how to verify whether the file contents was already on-disk. */
assert(!((flags & WRITE_STRING_FILE_VERIFY_ON_FAILURE) && (flags & WRITE_STRING_FILE_SYNC)));
if (flags & WRITE_STRING_FILE_MKDIR_0755) {
r = mkdirat_parents(dir_fd, fn, 0755);
if (r < 0)
return r;
}
if (flags & WRITE_STRING_FILE_ATOMIC) {
assert(flags & WRITE_STRING_FILE_CREATE);
r = write_string_file_atomic_at(dir_fd, fn, line, flags, ts);
if (r < 0)
goto fail;
return r;
} else
assert(!ts);
/* We manually build our own version of fopen(..., "we") that works without O_CREAT and with O_NOFOLLOW if needed. */
fd = openat(dir_fd, fn, O_CLOEXEC|O_NOCTTY |
(FLAGS_SET(flags, WRITE_STRING_FILE_NOFOLLOW) ? O_NOFOLLOW : 0) |
(FLAGS_SET(flags, WRITE_STRING_FILE_CREATE) ? O_CREAT : 0) |
(FLAGS_SET(flags, WRITE_STRING_FILE_TRUNCATE) ? O_TRUNC : 0) |
(FLAGS_SET(flags, WRITE_STRING_FILE_SUPPRESS_REDUNDANT_VIRTUAL) ? O_RDWR : O_WRONLY),
(FLAGS_SET(flags, WRITE_STRING_FILE_MODE_0600) ? 0600 : 0666));
if (fd < 0) {
r = -errno;
goto fail;
}
r = fdopen_unlocked(fd, "w", &f);
if (r < 0) {
safe_close(fd);
goto fail;
}
if (flags & WRITE_STRING_FILE_DISABLE_BUFFER)
setvbuf(f, NULL, _IONBF, 0);
r = write_string_stream_ts(f, line, flags, ts);
if (r < 0)
goto fail;
return 0;
fail:
if (!(flags & WRITE_STRING_FILE_VERIFY_ON_FAILURE))
return r;
f = safe_fclose(f);
/* OK, the operation failed, but let's see if the right
* contents in place already. If so, eat up the error. */
q = verify_file(fn, line, !(flags & WRITE_STRING_FILE_AVOID_NEWLINE) || (flags & WRITE_STRING_FILE_VERIFY_IGNORE_NEWLINE));
if (q <= 0)
return r;
return 0;
}
int write_string_filef(
const char *fn,
WriteStringFileFlags flags,
const char *format, ...) {
_cleanup_free_ char *p = NULL;
va_list ap;
int r;
va_start(ap, format);
r = vasprintf(&p, format, ap);
va_end(ap);
if (r < 0)
return -ENOMEM;
return write_string_file(fn, p, flags);
}
int read_one_line_file(const char *fn, char **line) {
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(fn);
assert(line);
r = fopen_unlocked(fn, "re", &f);
if (r < 0)
return r;
return read_line(f, LONG_LINE_MAX, line);
}
int verify_file_at(int dir_fd, const char *fn, const char *blob, bool accept_extra_nl) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_free_ char *buf = NULL;
size_t l, k;
int r;
assert(fn);
assert(blob);
l = strlen(blob);
if (accept_extra_nl && endswith(blob, "\n"))
accept_extra_nl = false;
buf = malloc(l + accept_extra_nl + 1);
if (!buf)
return -ENOMEM;
r = fopen_unlocked_at(dir_fd, fn, "re", 0, &f);
if (r < 0)
return r;
/* We try to read one byte more than we need, so that we know whether we hit eof */
errno = 0;
k = fread(buf, 1, l + accept_extra_nl + 1, f);
if (ferror(f))
return errno_or_else(EIO);
if (k != l && k != l + accept_extra_nl)
return 0;
if (memcmp(buf, blob, l) != 0)
return 0;
if (k > l && buf[l] != '\n')
return 0;
return 1;
}
int read_virtual_file_fd(int fd, size_t max_size, char **ret_contents, size_t *ret_size) {
_cleanup_free_ char *buf = NULL;
size_t n, size;
int n_retries;
bool truncated = false;
/* Virtual filesystems such as sysfs or procfs use kernfs, and kernfs can work with two sorts of
* virtual files. One sort uses "seq_file", and the results of the first read are buffered for the
* second read. The other sort uses "raw" reads which always go direct to the device. In the latter
* case, the content of the virtual file must be retrieved with a single read otherwise a second read
* might get the new value instead of finding EOF immediately. That's the reason why the usage of
* fread(3) is prohibited in this case as it always performs a second call to read(2) looking for
* EOF. See issue #13585.
*
* max_size specifies a limit on the bytes read. If max_size is SIZE_MAX, the full file is read. If
* the full file is too large to read, an error is returned. For other values of max_size, *partial
* contents* may be returned. (Though the read is still done using one syscall.) Returns 0 on
* partial success, 1 if untruncated contents were read. */
assert(fd >= 0);
assert(max_size <= READ_VIRTUAL_BYTES_MAX || max_size == SIZE_MAX);
/* Limit the number of attempts to read the number of bytes returned by fstat(). */
n_retries = 3;
for (;;) {
struct stat st;
if (fstat(fd, &st) < 0)
return -errno;
if (!S_ISREG(st.st_mode))
return -EBADF;
/* Be prepared for files from /proc which generally report a file size of 0. */
assert_cc(READ_VIRTUAL_BYTES_MAX < SSIZE_MAX);
if (st.st_size > 0 && n_retries > 1) {
/* Let's use the file size if we have more than 1 attempt left. On the last attempt
* we'll ignore the file size */
if (st.st_size > SSIZE_MAX) { /* Avoid overflow with 32-bit size_t and 64-bit off_t. */
if (max_size == SIZE_MAX)
return -EFBIG;
size = max_size;
} else {
size = MIN((size_t) st.st_size, max_size);
if (size > READ_VIRTUAL_BYTES_MAX)
return -EFBIG;
}
n_retries--;
} else if (n_retries > 1) {
/* Files in /proc are generally smaller than the page size so let's start with
* a page size buffer from malloc and only use the max buffer on the final try. */
size = MIN3(page_size() - 1, READ_VIRTUAL_BYTES_MAX, max_size);
n_retries = 1;
} else {
size = MIN(READ_VIRTUAL_BYTES_MAX, max_size);
n_retries = 0;
}
buf = malloc(size + 1);
if (!buf)
return -ENOMEM;
/* Use a bigger allocation if we got it anyway, but not more than the limit. */
size = MIN3(MALLOC_SIZEOF_SAFE(buf) - 1, max_size, READ_VIRTUAL_BYTES_MAX);
for (;;) {
ssize_t k;
/* Read one more byte so we can detect whether the content of the
* file has already changed or the guessed size for files from /proc
* wasn't large enough . */
k = read(fd, buf, size + 1);
if (k >= 0) {
n = k;
break;
}
if (errno != EINTR)
return -errno;
}
/* Consider a short read as EOF */
if (n <= size)
break;
/* If a maximum size is specified and we already read more we know the file is larger, and
* can handle this as truncation case. Note that if the size of what we read equals the
* maximum size then this doesn't mean truncation, the file might or might not end on that
* byte. We need to rerun the loop in that case, with a larger buffer size, so that we read
* at least one more byte to be able to distinguish EOF from truncation. */
if (max_size != SIZE_MAX && n > max_size) {
n = size; /* Make sure we never use more than what we sized the buffer for (so that
* we have one free byte in it for the trailing NUL we add below). */
truncated = true;
break;
}
/* We have no further attempts left? Then the file is apparently larger than our limits. Give up. */
if (n_retries <= 0)
return -EFBIG;
/* Hmm... either we read too few bytes from /proc or less likely the content of the file
* might have been changed (and is now bigger) while we were processing, let's try again
* either with the new file size. */
if (lseek(fd, 0, SEEK_SET) < 0)
return -errno;
buf = mfree(buf);
}
if (ret_contents) {
/* Safety check: if the caller doesn't want to know the size of what we just read it will
* rely on the trailing NUL byte. But if there's an embedded NUL byte, then we should refuse
* operation as otherwise there'd be ambiguity about what we just read. */
if (!ret_size && memchr(buf, 0, n))
return -EBADMSG;
if (n < size) {
char *p;
/* Return rest of the buffer to libc */
p = realloc(buf, n + 1);
if (!p)
return -ENOMEM;
buf = p;
}
buf[n] = 0;
*ret_contents = TAKE_PTR(buf);
}
if (ret_size)
*ret_size = n;
return !truncated;
}
int read_virtual_file_at(
int dir_fd,
const char *filename,
size_t max_size,
char **ret_contents,
size_t *ret_size) {
_cleanup_close_ int fd = -EBADF;
assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
if (!filename) {
if (dir_fd == AT_FDCWD)
return -EBADF;
return read_virtual_file_fd(dir_fd, max_size, ret_contents, ret_size);
}
fd = openat(dir_fd, filename, O_RDONLY | O_NOCTTY | O_CLOEXEC);
if (fd < 0)
return -errno;
return read_virtual_file_fd(fd, max_size, ret_contents, ret_size);
}
int read_full_stream_full(
FILE *f,
const char *filename,
uint64_t offset,
size_t size,
ReadFullFileFlags flags,
char **ret_contents,
size_t *ret_size) {
_cleanup_free_ char *buf = NULL;
size_t n, n_next = 0, l;
int fd, r;
assert(f);
assert(ret_contents);
assert(!FLAGS_SET(flags, READ_FULL_FILE_UNBASE64 | READ_FULL_FILE_UNHEX));
assert(size != SIZE_MAX || !FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER));
if (offset != UINT64_MAX && offset > LONG_MAX) /* fseek() can only deal with "long" offsets */
return -ERANGE;
fd = fileno(f);
if (fd >= 0) { /* If the FILE* object is backed by an fd (as opposed to memory or such, see
* fmemopen()), let's optimize our buffering */
struct stat st;
if (fstat(fd, &st) < 0)
return -errno;
if (S_ISREG(st.st_mode)) {
/* Try to start with the right file size if we shall read the file in full. Note
* that we increase the size to read here by one, so that the first read attempt
* already makes us notice the EOF. If the reported size of the file is zero, we
* avoid this logic however, since quite likely it might be a virtual file in procfs
* that all report a zero file size. */
if (st.st_size > 0 &&
(size == SIZE_MAX || FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER))) {
uint64_t rsize =
LESS_BY((uint64_t) st.st_size, offset == UINT64_MAX ? 0 : offset);
if (rsize < SIZE_MAX) /* overflow check */
n_next = rsize + 1;
}
if (flags & READ_FULL_FILE_WARN_WORLD_READABLE)
(void) warn_file_is_world_accessible(filename, &st, NULL, 0);
}
}
/* If we don't know how much to read, figure it out now. If we shall read a part of the file, then
* allocate the requested size. If we shall load the full file start with LINE_MAX. Note that if
* READ_FULL_FILE_FAIL_WHEN_LARGER we consider the specified size a safety limit, and thus also start
* with LINE_MAX, under assumption the file is most likely much shorter. */
if (n_next == 0)
n_next = size != SIZE_MAX && !FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER) ? size : LINE_MAX;
/* Never read more than we need to determine that our own limit is hit */
if (n_next > READ_FULL_BYTES_MAX)
n_next = READ_FULL_BYTES_MAX + 1;
if (offset != UINT64_MAX && fseek(f, offset, SEEK_SET) < 0)
return -errno;
n = l = 0;
for (;;) {
char *t;
size_t k;
/* If we shall fail when reading overly large data, then read exactly one byte more than the
* specified size at max, since that'll tell us if there's anymore data beyond the limit*/
if (FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER) && n_next > size)
n_next = size + 1;
if (flags & READ_FULL_FILE_SECURE) {
t = malloc(n_next + 1);
if (!t) {
r = -ENOMEM;
goto finalize;
}
memcpy_safe(t, buf, n);
explicit_bzero_safe(buf, n);
free(buf);
} else {
t = realloc(buf, n_next + 1);
if (!t)
return -ENOMEM;
}
buf = t;
/* Unless a size has been explicitly specified, try to read as much as fits into the memory
* we allocated (minus 1, to leave one byte for the safety NUL byte) */
n = size == SIZE_MAX ? MALLOC_SIZEOF_SAFE(buf) - 1 : n_next;
errno = 0;
k = fread(buf + l, 1, n - l, f);
assert(k <= n - l);
l += k;
if (ferror(f)) {
r = errno_or_else(EIO);
goto finalize;
}
if (feof(f))
break;
if (size != SIZE_MAX && !FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER)) { /* If we got asked to read some specific size, we already sized the buffer right, hence leave */
assert(l == size);
break;
}
assert(k > 0); /* we can't have read zero bytes because that would have been EOF */
if (FLAGS_SET(flags, READ_FULL_FILE_FAIL_WHEN_LARGER) && l > size) {
r = -E2BIG;
goto finalize;
}
if (n >= READ_FULL_BYTES_MAX) {
r = -E2BIG;
goto finalize;
}
n_next = MIN(n * 2, READ_FULL_BYTES_MAX);
}
if (flags & (READ_FULL_FILE_UNBASE64 | READ_FULL_FILE_UNHEX)) {
_cleanup_free_ void *decoded = NULL;
size_t decoded_size;
buf[l++] = 0;
if (flags & READ_FULL_FILE_UNBASE64)
r = unbase64mem_full(buf, l, flags & READ_FULL_FILE_SECURE, &decoded, &decoded_size);
else
r = unhexmem_full(buf, l, flags & READ_FULL_FILE_SECURE, &decoded, &decoded_size);
if (r < 0)
goto finalize;
if (flags & READ_FULL_FILE_SECURE)
explicit_bzero_safe(buf, n);
free_and_replace(buf, decoded);
n = l = decoded_size;
}
if (!ret_size) {
/* Safety check: if the caller doesn't want to know the size of what we just read it will rely on the
* trailing NUL byte. But if there's an embedded NUL byte, then we should refuse operation as otherwise
* there'd be ambiguity about what we just read. */
if (memchr(buf, 0, l)) {
r = -EBADMSG;
goto finalize;
}
}
buf[l] = 0;
*ret_contents = TAKE_PTR(buf);
if (ret_size)
*ret_size = l;
return 0;
finalize:
if (flags & READ_FULL_FILE_SECURE)
explicit_bzero_safe(buf, n);
return r;
}
int read_full_file_full(
int dir_fd,
const char *filename,
uint64_t offset,
size_t size,
ReadFullFileFlags flags,
const char *bind_name,
char **ret_contents,
size_t *ret_size) {
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(filename);
assert(ret_contents);
r = xfopenat(dir_fd, filename, "re", 0, &f);
if (r < 0) {
_cleanup_close_ int sk = -EBADF;
/* ENXIO is what Linux returns if we open a node that is an AF_UNIX socket */
if (r != -ENXIO)
return r;
/* If this is enabled, let's try to connect to it */
if (!FLAGS_SET(flags, READ_FULL_FILE_CONNECT_SOCKET))
return -ENXIO;
/* Seeking is not supported on AF_UNIX sockets */
if (offset != UINT64_MAX)
return -ENXIO;
sk = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC, 0);
if (sk < 0)
return -errno;
if (bind_name) {
/* If the caller specified a socket name to bind to, do so before connecting. This is
* useful to communicate some minor, short meta-information token from the client to
* the server. */
union sockaddr_union bsa;
r = sockaddr_un_set_path(&bsa.un, bind_name);
if (r < 0)
return r;
if (bind(sk, &bsa.sa, r) < 0)
return -errno;
}
r = connect_unix_path(sk, dir_fd, filename);
if (IN_SET(r, -ENOTSOCK, -EINVAL)) /* propagate original error if this is not a socket after all */
return -ENXIO;
if (r < 0)
return r;
if (shutdown(sk, SHUT_WR) < 0)
return -errno;
f = fdopen(sk, "r");
if (!f)
return -errno;
TAKE_FD(sk);
}
(void) __fsetlocking(f, FSETLOCKING_BYCALLER);
return read_full_stream_full(f, filename, offset, size, flags, ret_contents, ret_size);
}
int executable_is_script(const char *path, char **interpreter) {
_cleanup_free_ char *line = NULL;
size_t len;
char *ans;
int r;
assert(path);
r = read_one_line_file(path, &line);
if (r == -ENOBUFS) /* First line overly long? if so, then it's not a script */
return 0;
if (r < 0)
return r;
if (!startswith(line, "#!"))
return 0;
ans = strstrip(line + 2);
len = strcspn(ans, " \t");
if (len == 0)
return 0;
ans = strndup(ans, len);
if (!ans)
return -ENOMEM;
*interpreter = ans;
return 1;
}
/**
* Retrieve one field from a file like /proc/self/status. pattern
* should not include whitespace or the delimiter (':'). pattern matches only
* the beginning of a line. Whitespace before ':' is skipped. Whitespace and
* zeros after the ':' will be skipped. field must be freed afterwards.
* terminator specifies the terminating characters of the field value (not
* included in the value).
*/
int get_proc_field(const char *filename, const char *pattern, const char *terminator, char **field) {
_cleanup_free_ char *status = NULL;
char *t, *f;
int r;
assert(terminator);
assert(filename);
assert(pattern);
assert(field);
r = read_full_virtual_file(filename, &status, NULL);
if (r < 0)
return r;
t = status;
do {
bool pattern_ok;
do {
t = strstr(t, pattern);
if (!t)
return -ENOENT;
/* Check that pattern occurs in beginning of line. */
pattern_ok = (t == status || t[-1] == '\n');
t += strlen(pattern);
} while (!pattern_ok);
t += strspn(t, " \t");
if (!*t)
return -ENOENT;
} while (*t != ':');
t++;
if (*t) {
t += strspn(t, " \t");
/* Also skip zeros, because when this is used for
* capabilities, we don't want the zeros. This way the
* same capability set always maps to the same string,
* irrespective of the total capability set size. For
* other numbers it shouldn't matter. */
t += strspn(t, "0");
/* Back off one char if there's nothing but whitespace
and zeros */
if (!*t || isspace(*t))
t--;
}
f = strdupcspn(t, terminator);
if (!f)
return -ENOMEM;
*field = f;
return 0;
}
DIR *xopendirat(int fd, const char *name, int flags) {
int nfd;
DIR *d;
assert(!(flags & O_CREAT));
if (fd == AT_FDCWD && flags == 0)
return opendir(name);
nfd = openat(fd, name, O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC|flags, 0);
if (nfd < 0)
return NULL;
d = fdopendir(nfd);
if (!d) {
safe_close(nfd);
return NULL;
}
return d;
}
int fopen_mode_to_flags(const char *mode) {
const char *p;
int flags;
assert(mode);
if ((p = startswith(mode, "r+")))
flags = O_RDWR;
else if ((p = startswith(mode, "r")))
flags = O_RDONLY;
else if ((p = startswith(mode, "w+")))
flags = O_RDWR|O_CREAT|O_TRUNC;
else if ((p = startswith(mode, "w")))
flags = O_WRONLY|O_CREAT|O_TRUNC;
else if ((p = startswith(mode, "a+")))
flags = O_RDWR|O_CREAT|O_APPEND;
else if ((p = startswith(mode, "a")))
flags = O_WRONLY|O_CREAT|O_APPEND;
else
return -EINVAL;
for (; *p != 0; p++) {
switch (*p) {
case 'e':
flags |= O_CLOEXEC;
break;
case 'x':
flags |= O_EXCL;
break;
case 'm':
/* ignore this here, fdopen() might care later though */
break;
case 'c': /* not sure what to do about this one */
default:
return -EINVAL;
}
}
return flags;
}
int xfopenat(int dir_fd, const char *path, const char *mode, int flags, FILE **ret) {
FILE *f;
/* A combination of fopen() with openat() */
if (dir_fd == AT_FDCWD && flags == 0) {
f = fopen(path, mode);
if (!f)
return -errno;
} else {
int fd, mode_flags;
mode_flags = fopen_mode_to_flags(mode);
if (mode_flags < 0)
return mode_flags;
fd = openat(dir_fd, path, mode_flags | flags);
if (fd < 0)
return -errno;
f = fdopen(fd, mode);
if (!f) {
safe_close(fd);
return -errno;
}
}
*ret = f;
return 0;
}
static int search_and_fopen_internal(
const char *path,
const char *mode,
const char *root,
char **search,
FILE **ret,
char **ret_path) {
assert(path);
assert(mode);
assert(ret);
if (!path_strv_resolve_uniq(search, root))
return -ENOMEM;
STRV_FOREACH(i, search) {
_cleanup_free_ char *p = NULL;
FILE *f;
p = path_join(root, *i, path);
if (!p)
return -ENOMEM;
f = fopen(p, mode);
if (f) {
if (ret_path)
*ret_path = path_simplify(TAKE_PTR(p));
*ret = f;
return 0;
}
if (errno != ENOENT)
return -errno;
}
return -ENOENT;
}
int search_and_fopen(
const char *filename,
const char *mode,
const char *root,
const char **search,
FILE **ret,
char **ret_path) {
_cleanup_strv_free_ char **copy = NULL;
assert(filename);
assert(mode);
assert(ret);
if (path_is_absolute(filename)) {
_cleanup_fclose_ FILE *f = NULL;
f = fopen(filename, mode);
if (!f)
return -errno;
if (ret_path) {
char *p;
p = strdup(filename);
if (!p)
return -ENOMEM;
*ret_path = path_simplify(p);
}
*ret = TAKE_PTR(f);
return 0;
}
copy = strv_copy((char**) search);
if (!copy)
return -ENOMEM;
return search_and_fopen_internal(filename, mode, root, copy, ret, ret_path);
}
int search_and_fopen_nulstr(
const char *filename,
const char *mode,
const char *root,
const char *search,
FILE **ret,
char **ret_path) {
_cleanup_strv_free_ char **s = NULL;
if (path_is_absolute(filename)) {
_cleanup_fclose_ FILE *f = NULL;
f = fopen(filename, mode);
if (!f)
return -errno;
if (ret_path) {
char *p;
p = strdup(filename);
if (!p)
return -ENOMEM;
*ret_path = path_simplify(p);
}
*ret = TAKE_PTR(f);
return 0;
}
s = strv_split_nulstr(search);
if (!s)
return -ENOMEM;
return search_and_fopen_internal(filename, mode, root, s, ret, ret_path);
}
int fflush_and_check(FILE *f) {
assert(f);
errno = 0;
fflush(f);
if (ferror(f))
return errno_or_else(EIO);
return 0;
}
int fflush_sync_and_check(FILE *f) {
int r, fd;
assert(f);
r = fflush_and_check(f);
if (r < 0)
return r;
/* Not all file streams have an fd associated (think: fmemopen()), let's handle this gracefully and
* assume that in that case we need no explicit syncing */
fd = fileno(f);
if (fd < 0)
return 0;
r = fsync_full(fd);
if (r < 0)
return r;
return 0;
}
int write_timestamp_file_atomic(const char *fn, usec_t n) {
char ln[DECIMAL_STR_MAX(n)+2];
/* Creates a "timestamp" file, that contains nothing but a
* usec_t timestamp, formatted in ASCII. */
if (!timestamp_is_set(n))
return -ERANGE;
xsprintf(ln, USEC_FMT "\n", n);
return write_string_file(fn, ln, WRITE_STRING_FILE_CREATE|WRITE_STRING_FILE_ATOMIC);
}
int read_timestamp_file(const char *fn, usec_t *ret) {
_cleanup_free_ char *ln = NULL;
uint64_t t;
int r;
r = read_one_line_file(fn, &ln);
if (r < 0)
return r;
r = safe_atou64(ln, &t);
if (r < 0)
return r;
if (!timestamp_is_set(t))
return -ERANGE;
*ret = (usec_t) t;
return 0;
}
int fputs_with_space(FILE *f, const char *s, const char *separator, bool *space) {
int r;
assert(s);
/* Outputs the specified string with fputs(), but optionally prefixes it with a separator. The *space parameter
* when specified shall initially point to a boolean variable initialized to false. It is set to true after the
* first invocation. This call is supposed to be use in loops, where a separator shall be inserted between each
* element, but not before the first one. */
if (!f)
f = stdout;
if (space) {
if (!separator)
separator = " ";
if (*space) {
r = fputs(separator, f);
if (r < 0)
return r;
}
*space = true;
}
return fputs(s, f);
}
/* A bitmask of the EOL markers we know */
typedef enum EndOfLineMarker {
EOL_NONE = 0,
EOL_ZERO = 1 << 0, /* \0 (aka NUL) */
EOL_TEN = 1 << 1, /* \n (aka NL, aka LF) */
EOL_THIRTEEN = 1 << 2, /* \r (aka CR) */
} EndOfLineMarker;
static EndOfLineMarker categorize_eol(char c, ReadLineFlags flags) {
if (!FLAGS_SET(flags, READ_LINE_ONLY_NUL)) {
if (c == '\n')
return EOL_TEN;
if (c == '\r')
return EOL_THIRTEEN;
}
if (c == '\0')
return EOL_ZERO;
return EOL_NONE;
}
DEFINE_TRIVIAL_CLEANUP_FUNC_FULL(FILE*, funlockfile, NULL);
int read_line_full(FILE *f, size_t limit, ReadLineFlags flags, char **ret) {
_cleanup_free_ char *buffer = NULL;
size_t n = 0, count = 0;
int r;
assert(f);
/* Something like a bounded version of getline().
*
* Considers EOF, \n, \r and \0 end of line delimiters (or combinations of these), and does not include these
* delimiters in the string returned. Specifically, recognizes the following combinations of markers as line
* endings:
*
* • \n (UNIX)
* • \r (old MacOS)
* • \0 (C strings)
* • \n\0
* • \r\0
* • \r\n (Windows)
* • \n\r
* • \r\n\0
* • \n\r\0
*
* Returns the number of bytes read from the files (i.e. including delimiters — this hence usually differs from
* the number of characters in the returned string). When EOF is hit, 0 is returned.
*
* The input parameter limit is the maximum numbers of characters in the returned string, i.e. excluding
* delimiters. If the limit is hit we fail and return -ENOBUFS.
*
* If a line shall be skipped ret may be initialized as NULL. */
if (ret) {
if (!GREEDY_REALLOC(buffer, 1))
return -ENOMEM;
}
{
_unused_ _cleanup_(funlockfilep) FILE *flocked = f;
EndOfLineMarker previous_eol = EOL_NONE;
flockfile(f);
for (;;) {
EndOfLineMarker eol;
char c;
if (n >= limit)
return -ENOBUFS;
if (count >= INT_MAX) /* We couldn't return the counter anymore as "int", hence refuse this */
return -ENOBUFS;
r = safe_fgetc(f, &c);
if (r < 0)
return r;
if (r == 0) /* EOF is definitely EOL */
break;
eol = categorize_eol(c, flags);
if (FLAGS_SET(previous_eol, EOL_ZERO) ||
(eol == EOL_NONE && previous_eol != EOL_NONE) ||
(eol != EOL_NONE && (previous_eol & eol) != 0)) {
/* Previous char was a NUL? This is not an EOL, but the previous char was? This type of
* EOL marker has been seen right before? In either of these three cases we are
* done. But first, let's put this character back in the queue. (Note that we have to
* cast this to (unsigned char) here as ungetc() expects a positive 'int', and if we
* are on an architecture where 'char' equals 'signed char' we need to ensure we don't
* pass a negative value here. That said, to complicate things further ungetc() is
* actually happy with most negative characters and implicitly casts them back to
* positive ones as needed, except for \xff (aka -1, aka EOF), which it refuses. What a
* godawful API!) */
assert_se(ungetc((unsigned char) c, f) != EOF);
break;
}
count++;
if (eol != EOL_NONE) {
/* If we are on a tty, we can't shouldn't wait for more input, because that
* generally means waiting for the user, interactively. In the case of a TTY
* we expect only \n as the single EOL marker, so we are in the lucky
* position that there is no need to wait. We check this condition last, to
* avoid isatty() check if not necessary. */
if ((flags & (READ_LINE_IS_A_TTY|READ_LINE_NOT_A_TTY)) == 0) {
int fd;
fd = fileno(f);
if (fd < 0) /* Maybe an fmemopen() stream? Handle this gracefully,
* and don't call isatty() on an invalid fd */
flags |= READ_LINE_NOT_A_TTY;
else
flags |= isatty(fd) ? READ_LINE_IS_A_TTY : READ_LINE_NOT_A_TTY;
}
if (FLAGS_SET(flags, READ_LINE_IS_A_TTY))
break;
}
if (eol != EOL_NONE) {
previous_eol |= eol;
continue;
}
if (ret) {
if (!GREEDY_REALLOC(buffer, n + 2))
return -ENOMEM;
buffer[n] = c;
}
n++;
}
}
if (ret) {
buffer[n] = 0;
*ret = TAKE_PTR(buffer);
}
return (int) count;
}
int safe_fgetc(FILE *f, char *ret) {
int k;
assert(f);
/* A safer version of plain fgetc(): let's propagate the error that happened while reading as such, and
* separate the EOF condition from the byte read, to avoid those confusion signed/unsigned issues fgetc()
* has. */
errno = 0;
k = fgetc(f);
if (k == EOF) {
if (ferror(f))
return errno_or_else(EIO);
if (ret)
*ret = 0;
return 0;
}
if (ret)
*ret = k;
return 1;
}
int warn_file_is_world_accessible(const char *filename, struct stat *st, const char *unit, unsigned line) {
struct stat _st;
if (!filename)
return 0;
if (!st) {
if (stat(filename, &_st) < 0)
return -errno;
st = &_st;
}
if ((st->st_mode & S_IRWXO) == 0)
return 0;
if (unit)
log_syntax(unit, LOG_WARNING, filename, line, 0,
"%s has %04o mode that is too permissive, please adjust the ownership and access mode.",
filename, st->st_mode & 07777);
else
log_warning("%s has %04o mode that is too permissive, please adjust the ownership and access mode.",
filename, st->st_mode & 07777);
return 0;
}