blob: 700e28f2c2d30ef07aeef9b5341422ab5897d5d6 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <errno.h>
#include <fcntl.h>
#include <sched.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>
#include "alloc-util.h"
#include "chase-symlinks.h"
#include "dirent-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "filesystems.h"
#include "fs-util.h"
#include "hash-funcs.h"
#include "macro.h"
#include "missing_fs.h"
#include "missing_magic.h"
#include "missing_syscall.h"
#include "nulstr-util.h"
#include "parse-util.h"
#include "stat-util.h"
#include "string-util.h"
int is_symlink(const char *path) {
struct stat info;
assert(path);
if (lstat(path, &info) < 0)
return -errno;
return !!S_ISLNK(info.st_mode);
}
int is_dir_full(int atfd, const char* path, bool follow) {
struct stat st;
int r;
assert(atfd >= 0 || atfd == AT_FDCWD);
assert(atfd >= 0 || path);
if (path)
r = fstatat(atfd, path, &st, follow ? 0 : AT_SYMLINK_NOFOLLOW);
else
r = fstat(atfd, &st);
if (r < 0)
return -errno;
return !!S_ISDIR(st.st_mode);
}
int is_device_node(const char *path) {
struct stat info;
assert(path);
if (lstat(path, &info) < 0)
return -errno;
return !!(S_ISBLK(info.st_mode) || S_ISCHR(info.st_mode));
}
int dir_is_empty_at(int dir_fd, const char *path, bool ignore_hidden_or_backup) {
_cleanup_close_ int fd = -EBADF;
struct dirent *buf;
size_t m;
if (path) {
assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
fd = openat(dir_fd, path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
if (fd < 0)
return -errno;
} else if (dir_fd == AT_FDCWD) {
fd = open(".", O_RDONLY|O_DIRECTORY|O_CLOEXEC);
if (fd < 0)
return -errno;
} else {
/* Note that DUPing is not enough, as the internal pointer would still be shared and moved
* getedents64(). */
assert(dir_fd >= 0);
fd = fd_reopen(dir_fd, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
if (fd < 0)
return fd;
}
/* Allocate space for at least 3 full dirents, since every dir has at least two entries ("." +
* ".."), and only once we have seen if there's a third we know whether the dir is empty or not. If
* 'ignore_hidden_or_backup' is true we'll allocate a bit more, since we might skip over a bunch of
* entries that we end up ignoring. */
m = (ignore_hidden_or_backup ? 16 : 3) * DIRENT_SIZE_MAX;
buf = alloca(m);
for (;;) {
struct dirent *de;
ssize_t n;
n = getdents64(fd, buf, m);
if (n < 0)
return -errno;
if (n == 0)
break;
assert((size_t) n <= m);
msan_unpoison(buf, n);
FOREACH_DIRENT_IN_BUFFER(de, buf, n)
if (!(ignore_hidden_or_backup ? hidden_or_backup_file(de->d_name) : dot_or_dot_dot(de->d_name)))
return 0;
}
return 1;
}
bool null_or_empty(struct stat *st) {
assert(st);
if (S_ISREG(st->st_mode) && st->st_size <= 0)
return true;
/* We don't want to hardcode the major/minor of /dev/null, hence we do a simpler "is this a character
* device node?" check. */
if (S_ISCHR(st->st_mode))
return true;
return false;
}
int null_or_empty_path_with_root(const char *fn, const char *root) {
struct stat st;
int r;
assert(fn);
/* A symlink to /dev/null or an empty file?
* When looking under root_dir, we can't expect /dev/ to be mounted,
* so let's see if the path is a (possibly dangling) symlink to /dev/null. */
if (path_equal_ptr(path_startswith(fn, root ?: "/"), "dev/null"))
return true;
r = chase_symlinks_and_stat(fn, root, CHASE_PREFIX_ROOT, NULL, &st, NULL);
if (r < 0)
return r;
return null_or_empty(&st);
}
int null_or_empty_fd(int fd) {
struct stat st;
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return -errno;
return null_or_empty(&st);
}
static int fd_is_read_only_fs(int fd) {
struct statvfs st;
assert(fd >= 0);
if (fstatvfs(fd, &st) < 0)
return -errno;
if (st.f_flag & ST_RDONLY)
return true;
/* On NFS, fstatvfs() might not reflect whether we can actually write to the remote share. Let's try
* again with access(W_OK) which is more reliable, at least sometimes. */
if (access_fd(fd, W_OK) == -EROFS)
return true;
return false;
}
int path_is_read_only_fs(const char *path) {
_cleanup_close_ int fd = -EBADF;
assert(path);
fd = open(path, O_CLOEXEC | O_PATH);
if (fd < 0)
return -errno;
return fd_is_read_only_fs(fd);
}
int files_same(const char *filea, const char *fileb, int flags) {
struct stat a, b;
assert(filea);
assert(fileb);
if (fstatat(AT_FDCWD, filea, &a, flags) < 0)
return -errno;
if (fstatat(AT_FDCWD, fileb, &b, flags) < 0)
return -errno;
return stat_inode_same(&a, &b);
}
bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) {
assert(s);
assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type));
return F_TYPE_EQUAL(s->f_type, magic_value);
}
int fd_is_fs_type(int fd, statfs_f_type_t magic_value) {
struct statfs s;
if (fstatfs(fd, &s) < 0)
return -errno;
return is_fs_type(&s, magic_value);
}
int path_is_fs_type(const char *path, statfs_f_type_t magic_value) {
struct statfs s;
if (statfs(path, &s) < 0)
return -errno;
return is_fs_type(&s, magic_value);
}
bool is_temporary_fs(const struct statfs *s) {
return fs_in_group(s, FILESYSTEM_SET_TEMPORARY);
}
bool is_network_fs(const struct statfs *s) {
return fs_in_group(s, FILESYSTEM_SET_NETWORK);
}
int fd_is_temporary_fs(int fd) {
struct statfs s;
if (fstatfs(fd, &s) < 0)
return -errno;
return is_temporary_fs(&s);
}
int fd_is_network_fs(int fd) {
struct statfs s;
if (fstatfs(fd, &s) < 0)
return -errno;
return is_network_fs(&s);
}
int path_is_temporary_fs(const char *path) {
struct statfs s;
if (statfs(path, &s) < 0)
return -errno;
return is_temporary_fs(&s);
}
int path_is_network_fs(const char *path) {
struct statfs s;
if (statfs(path, &s) < 0)
return -errno;
return is_network_fs(&s);
}
int stat_verify_regular(const struct stat *st) {
assert(st);
/* Checks whether the specified stat() structure refers to a regular file. If not returns an appropriate error
* code. */
if (S_ISDIR(st->st_mode))
return -EISDIR;
if (S_ISLNK(st->st_mode))
return -ELOOP;
if (!S_ISREG(st->st_mode))
return -EBADFD;
return 0;
}
int fd_verify_regular(int fd) {
struct stat st;
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return -errno;
return stat_verify_regular(&st);
}
int stat_verify_directory(const struct stat *st) {
assert(st);
if (S_ISLNK(st->st_mode))
return -ELOOP;
if (!S_ISDIR(st->st_mode))
return -ENOTDIR;
return 0;
}
int fd_verify_directory(int fd) {
struct stat st;
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return -errno;
return stat_verify_directory(&st);
}
int proc_mounted(void) {
int r;
/* A quick check of procfs is properly mounted */
r = path_is_fs_type("/proc/", PROC_SUPER_MAGIC);
if (r == -ENOENT) /* not mounted at all */
return false;
return r;
}
bool stat_inode_same(const struct stat *a, const struct stat *b) {
/* Returns if the specified stat structure references the same (though possibly modified) inode. Does
* a thorough check, comparing inode nr, backing device and if the inode is still of the same type. */
return a && b &&
(a->st_mode & S_IFMT) != 0 && /* We use the check for .st_mode if the structure was ever initialized */
((a->st_mode ^ b->st_mode) & S_IFMT) == 0 && /* same inode type */
a->st_dev == b->st_dev &&
a->st_ino == b->st_ino;
}
bool stat_inode_unmodified(const struct stat *a, const struct stat *b) {
/* Returns if the specified stat structures reference the same, unmodified inode. This check tries to
* be reasonably careful when detecting changes: we check both inode and mtime, to cater for file
* systems where mtimes are fixed to 0 (think: ostree/nixos type installations). We also check file
* size, backing device, inode type and if this refers to a device not the major/minor.
*
* Note that we don't care if file attributes such as ownership or access mode change, this here is
* about contents of the file. The purpose here is to detect file contents changes, and nothing
* else. */
return stat_inode_same(a, b) &&
a->st_mtim.tv_sec == b->st_mtim.tv_sec &&
a->st_mtim.tv_nsec == b->st_mtim.tv_nsec &&
(!S_ISREG(a->st_mode) || a->st_size == b->st_size) && /* if regular file, compare file size */
(!(S_ISCHR(a->st_mode) || S_ISBLK(a->st_mode)) || a->st_rdev == b->st_rdev); /* if device node, also compare major/minor, because we can */
}
bool statx_inode_same(const struct statx *a, const struct statx *b) {
/* Same as stat_inode_same() but for struct statx */
return a && b &&
FLAGS_SET(a->stx_mask, STATX_TYPE|STATX_INO) && FLAGS_SET(b->stx_mask, STATX_TYPE|STATX_INO) &&
(a->stx_mode & S_IFMT) != 0 &&
((a->stx_mode ^ b->stx_mode) & S_IFMT) == 0 &&
a->stx_dev_major == b->stx_dev_major &&
a->stx_dev_minor == b->stx_dev_minor &&
a->stx_ino == b->stx_ino;
}
bool statx_mount_same(const struct new_statx *a, const struct new_statx *b) {
if (!a || !b)
return false;
/* if we have the mount ID, that's all we need */
if (FLAGS_SET(a->stx_mask, STATX_MNT_ID) && FLAGS_SET(b->stx_mask, STATX_MNT_ID))
return a->stx_mnt_id == b->stx_mnt_id;
/* Otherwise, major/minor of backing device must match */
return a->stx_dev_major == b->stx_dev_major &&
a->stx_dev_minor == b->stx_dev_minor;
}
int statx_fallback(int dfd, const char *path, int flags, unsigned mask, struct statx *sx) {
static bool avoid_statx = false;
struct stat st;
if (!avoid_statx) {
if (statx(dfd, path, flags, mask, sx) < 0) {
if (!ERRNO_IS_NOT_SUPPORTED(errno) && errno != EPERM)
return -errno;
/* If statx() is not supported or if we see EPERM (which might indicate seccomp
* filtering or so), let's do a fallback. Not that on EACCES we'll not fall back,
* since that is likely an indication of fs access issues, which we should
* propagate */
} else
return 0;
avoid_statx = true;
}
/* Only do fallback if fstatat() supports the flag too, or if it's one of the sync flags, which are
* OK to ignore */
if ((flags & ~(AT_EMPTY_PATH|AT_NO_AUTOMOUNT|AT_SYMLINK_NOFOLLOW|
AT_STATX_SYNC_AS_STAT|AT_STATX_FORCE_SYNC|AT_STATX_DONT_SYNC)) != 0)
return -EOPNOTSUPP;
if (fstatat(dfd, path, &st, flags & (AT_EMPTY_PATH|AT_NO_AUTOMOUNT|AT_SYMLINK_NOFOLLOW)) < 0)
return -errno;
*sx = (struct statx) {
.stx_mask = STATX_TYPE|STATX_MODE|
STATX_NLINK|STATX_UID|STATX_GID|
STATX_ATIME|STATX_MTIME|STATX_CTIME|
STATX_INO|STATX_SIZE|STATX_BLOCKS,
.stx_blksize = st.st_blksize,
.stx_nlink = st.st_nlink,
.stx_uid = st.st_uid,
.stx_gid = st.st_gid,
.stx_mode = st.st_mode,
.stx_ino = st.st_ino,
.stx_size = st.st_size,
.stx_blocks = st.st_blocks,
.stx_rdev_major = major(st.st_rdev),
.stx_rdev_minor = minor(st.st_rdev),
.stx_dev_major = major(st.st_dev),
.stx_dev_minor = minor(st.st_dev),
.stx_atime.tv_sec = st.st_atim.tv_sec,
.stx_atime.tv_nsec = st.st_atim.tv_nsec,
.stx_mtime.tv_sec = st.st_mtim.tv_sec,
.stx_mtime.tv_nsec = st.st_mtim.tv_nsec,
.stx_ctime.tv_sec = st.st_ctim.tv_sec,
.stx_ctime.tv_nsec = st.st_ctim.tv_nsec,
};
return 0;
}
void inode_hash_func(const struct stat *q, struct siphash *state) {
siphash24_compress(&q->st_dev, sizeof(q->st_dev), state);
siphash24_compress(&q->st_ino, sizeof(q->st_ino), state);
}
int inode_compare_func(const struct stat *a, const struct stat *b) {
int r;
r = CMP(a->st_dev, b->st_dev);
if (r != 0)
return r;
return CMP(a->st_ino, b->st_ino);
}
DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(inode_hash_ops, struct stat, inode_hash_func, inode_compare_func, free);