blob: c4ad957588881489e88a72bf11309e37731371db [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#pragma once
#if !SD_BOOT
# include <assert.h>
#endif
#include <limits.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define _align_(x) __attribute__((__aligned__(x)))
#define _alignas_(x) __attribute__((__aligned__(__alignof__(x))))
#define _alignptr_ __attribute__((__aligned__(sizeof(void *))))
#define _cleanup_(x) __attribute__((__cleanup__(x)))
#define _const_ __attribute__((__const__))
#define _deprecated_ __attribute__((__deprecated__))
#define _destructor_ __attribute__((__destructor__))
#define _hidden_ __attribute__((__visibility__("hidden")))
#define _likely_(x) (__builtin_expect(!!(x), 1))
#define _malloc_ __attribute__((__malloc__))
#define _noinline_ __attribute__((noinline))
#define _noreturn_ _Noreturn
#define _packed_ __attribute__((__packed__))
#define _printf_(a, b) __attribute__((__format__(printf, a, b)))
#define _public_ __attribute__((__visibility__("default")))
#define _pure_ __attribute__((__pure__))
#define _retain_ __attribute__((__retain__))
#define _returns_nonnull_ __attribute__((__returns_nonnull__))
#define _section_(x) __attribute__((__section__(x)))
#define _sentinel_ __attribute__((__sentinel__))
#define _unlikely_(x) (__builtin_expect(!!(x), 0))
#define _unused_ __attribute__((__unused__))
#define _used_ __attribute__((__used__))
#define _warn_unused_result_ __attribute__((__warn_unused_result__))
#define _weak_ __attribute__((__weak__))
#define _weakref_(x) __attribute__((__weakref__(#x)))
#ifdef __clang__
# define _alloc_(...)
#else
# define _alloc_(...) __attribute__((__alloc_size__(__VA_ARGS__)))
#endif
#if __GNUC__ >= 7 || (defined(__clang__) && __clang_major__ >= 10)
# define _fallthrough_ __attribute__((__fallthrough__))
#else
# define _fallthrough_
#endif
#define XSTRINGIFY(x) #x
#define STRINGIFY(x) XSTRINGIFY(x)
#ifndef __COVERITY__
# define VOID_0 ((void)0)
#else
# define VOID_0 ((void*)0)
#endif
#define ELEMENTSOF(x) \
(__builtin_choose_expr( \
!__builtin_types_compatible_p(typeof(x), typeof(&*(x))), \
sizeof(x)/sizeof((x)[0]), \
VOID_0))
#define XCONCATENATE(x, y) x ## y
#define CONCATENATE(x, y) XCONCATENATE(x, y)
#if SD_BOOT
_noreturn_ void efi_assert(const char *expr, const char *file, unsigned line, const char *function);
#ifdef NDEBUG
#define assert(expr)
#define assert_not_reached() __builtin_unreachable()
#else
#define assert(expr) ({ _likely_(expr) ? VOID_0 : efi_assert(#expr, __FILE__, __LINE__, __func__); })
#define assert_not_reached() efi_assert("Code should not be reached", __FILE__, __LINE__, __func__)
#endif
#define static_assert _Static_assert
#define assert_se(expr) ({ _likely_(expr) ? VOID_0 : efi_assert(#expr, __FILE__, __LINE__, __func__); })
#endif
/* This passes the argument through after (if asserts are enabled) checking that it is not null. */
#define ASSERT_PTR(expr) _ASSERT_PTR(expr, UNIQ_T(_expr_, UNIQ), assert)
#define ASSERT_SE_PTR(expr) _ASSERT_PTR(expr, UNIQ_T(_expr_, UNIQ), assert_se)
#define _ASSERT_PTR(expr, var, check) \
({ \
typeof(expr) var = (expr); \
check(var); \
var; \
})
#define ASSERT_NONNEG(expr) \
({ \
typeof(expr) _expr_ = (expr), _zero = 0; \
assert(_expr_ >= _zero); \
_expr_; \
})
#define ASSERT_SE_NONNEG(expr) \
({ \
typeof(expr) _expr_ = (expr), _zero = 0; \
assert_se(_expr_ >= _zero); \
_expr_; \
})
#define assert_cc(expr) static_assert(expr, #expr)
#define UNIQ_T(x, uniq) CONCATENATE(__unique_prefix_, CONCATENATE(x, uniq))
#define UNIQ __COUNTER__
/* Note that this works differently from pthread_once(): this macro does
* not synchronize code execution, i.e. code that is run conditionalized
* on this macro will run concurrently to all other code conditionalized
* the same way, there's no ordering or completion enforced. */
#define ONCE __ONCE(UNIQ_T(_once_, UNIQ))
#define __ONCE(o) \
({ \
static bool (o) = false; \
__atomic_exchange_n(&(o), true, __ATOMIC_SEQ_CST); \
})
#undef MAX
#define MAX(a, b) __MAX(UNIQ, (a), UNIQ, (b))
#define __MAX(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \
})
#define IS_UNSIGNED_INTEGER_TYPE(type) \
(__builtin_types_compatible_p(typeof(type), unsigned char) || \
__builtin_types_compatible_p(typeof(type), unsigned short) || \
__builtin_types_compatible_p(typeof(type), unsigned) || \
__builtin_types_compatible_p(typeof(type), unsigned long) || \
__builtin_types_compatible_p(typeof(type), unsigned long long))
#define IS_SIGNED_INTEGER_TYPE(type) \
(__builtin_types_compatible_p(typeof(type), signed char) || \
__builtin_types_compatible_p(typeof(type), signed short) || \
__builtin_types_compatible_p(typeof(type), signed) || \
__builtin_types_compatible_p(typeof(type), signed long) || \
__builtin_types_compatible_p(typeof(type), signed long long))
/* Evaluates to (void) if _A or _B are not constant or of different types (being integers of different sizes
* is also OK as long as the signedness matches) */
#define CONST_MAX(_A, _B) \
(__builtin_choose_expr( \
__builtin_constant_p(_A) && \
__builtin_constant_p(_B) && \
(__builtin_types_compatible_p(typeof(_A), typeof(_B)) || \
(IS_UNSIGNED_INTEGER_TYPE(_A) && IS_UNSIGNED_INTEGER_TYPE(_B)) || \
(IS_SIGNED_INTEGER_TYPE(_A) && IS_SIGNED_INTEGER_TYPE(_B))), \
((_A) > (_B)) ? (_A) : (_B), \
VOID_0))
/* takes two types and returns the size of the larger one */
#define MAXSIZE(A, B) (sizeof(union _packed_ { typeof(A) a; typeof(B) b; }))
#define MAX3(x, y, z) \
({ \
const typeof(x) _c = MAX(x, y); \
MAX(_c, z); \
})
#define MAX4(x, y, z, a) \
({ \
const typeof(x) _d = MAX3(x, y, z); \
MAX(_d, a); \
})
#undef MIN
#define MIN(a, b) __MIN(UNIQ, (a), UNIQ, (b))
#define __MIN(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) < UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \
})
/* evaluates to (void) if _A or _B are not constant or of different types */
#define CONST_MIN(_A, _B) \
(__builtin_choose_expr( \
__builtin_constant_p(_A) && \
__builtin_constant_p(_B) && \
__builtin_types_compatible_p(typeof(_A), typeof(_B)), \
((_A) < (_B)) ? (_A) : (_B), \
VOID_0))
#define MIN3(x, y, z) \
({ \
const typeof(x) _c = MIN(x, y); \
MIN(_c, z); \
})
/* Returns true if the passed integer is a positive power of two */
#define CONST_ISPOWEROF2(x) \
((x) > 0 && ((x) & ((x) - 1)) == 0)
#define ISPOWEROF2(x) \
__builtin_choose_expr( \
__builtin_constant_p(x), \
CONST_ISPOWEROF2(x), \
({ \
const typeof(x) _x = (x); \
CONST_ISPOWEROF2(_x); \
}))
#define LESS_BY(a, b) __LESS_BY(UNIQ, (a), UNIQ, (b))
#define __LESS_BY(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) - UNIQ_T(B, bq) : 0; \
})
#define CMP(a, b) __CMP(UNIQ, (a), UNIQ, (b))
#define __CMP(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) < UNIQ_T(B, bq) ? -1 : \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? 1 : 0; \
})
#undef CLAMP
#define CLAMP(x, low, high) __CLAMP(UNIQ, (x), UNIQ, (low), UNIQ, (high))
#define __CLAMP(xq, x, lowq, low, highq, high) \
({ \
const typeof(x) UNIQ_T(X, xq) = (x); \
const typeof(low) UNIQ_T(LOW, lowq) = (low); \
const typeof(high) UNIQ_T(HIGH, highq) = (high); \
UNIQ_T(X, xq) > UNIQ_T(HIGH, highq) ? \
UNIQ_T(HIGH, highq) : \
UNIQ_T(X, xq) < UNIQ_T(LOW, lowq) ? \
UNIQ_T(LOW, lowq) : \
UNIQ_T(X, xq); \
})
/* [(x + y - 1) / y] suffers from an integer overflow, even though the
* computation should be possible in the given type. Therefore, we use
* [x / y + !!(x % y)]. Note that on "Real CPUs" a division returns both the
* quotient and the remainder, so both should be equally fast. */
#define DIV_ROUND_UP(x, y) __DIV_ROUND_UP(UNIQ, (x), UNIQ, (y))
#define __DIV_ROUND_UP(xq, x, yq, y) \
({ \
const typeof(x) UNIQ_T(X, xq) = (x); \
const typeof(y) UNIQ_T(Y, yq) = (y); \
(UNIQ_T(X, xq) / UNIQ_T(Y, yq) + !!(UNIQ_T(X, xq) % UNIQ_T(Y, yq))); \
})
#define CASE_F_1(X) case X:
#define CASE_F_2(X, ...) case X: CASE_F_1( __VA_ARGS__)
#define CASE_F_3(X, ...) case X: CASE_F_2( __VA_ARGS__)
#define CASE_F_4(X, ...) case X: CASE_F_3( __VA_ARGS__)
#define CASE_F_5(X, ...) case X: CASE_F_4( __VA_ARGS__)
#define CASE_F_6(X, ...) case X: CASE_F_5( __VA_ARGS__)
#define CASE_F_7(X, ...) case X: CASE_F_6( __VA_ARGS__)
#define CASE_F_8(X, ...) case X: CASE_F_7( __VA_ARGS__)
#define CASE_F_9(X, ...) case X: CASE_F_8( __VA_ARGS__)
#define CASE_F_10(X, ...) case X: CASE_F_9( __VA_ARGS__)
#define CASE_F_11(X, ...) case X: CASE_F_10( __VA_ARGS__)
#define CASE_F_12(X, ...) case X: CASE_F_11( __VA_ARGS__)
#define CASE_F_13(X, ...) case X: CASE_F_12( __VA_ARGS__)
#define CASE_F_14(X, ...) case X: CASE_F_13( __VA_ARGS__)
#define CASE_F_15(X, ...) case X: CASE_F_14( __VA_ARGS__)
#define CASE_F_16(X, ...) case X: CASE_F_15( __VA_ARGS__)
#define CASE_F_17(X, ...) case X: CASE_F_16( __VA_ARGS__)
#define CASE_F_18(X, ...) case X: CASE_F_17( __VA_ARGS__)
#define CASE_F_19(X, ...) case X: CASE_F_18( __VA_ARGS__)
#define CASE_F_20(X, ...) case X: CASE_F_19( __VA_ARGS__)
#define GET_CASE_F(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,NAME,...) NAME
#define FOR_EACH_MAKE_CASE(...) \
GET_CASE_F(__VA_ARGS__,CASE_F_20,CASE_F_19,CASE_F_18,CASE_F_17,CASE_F_16,CASE_F_15,CASE_F_14,CASE_F_13,CASE_F_12,CASE_F_11, \
CASE_F_10,CASE_F_9,CASE_F_8,CASE_F_7,CASE_F_6,CASE_F_5,CASE_F_4,CASE_F_3,CASE_F_2,CASE_F_1) \
(__VA_ARGS__)
#define IN_SET(x, first, ...) \
({ \
bool _found = false; \
/* If the build breaks in the line below, you need to extend the case macros. We use typeof(+x) \
* here to widen the type of x if it is a bit-field as this would otherwise be illegal. */ \
static const typeof(+x) __assert_in_set[] _unused_ = { first, __VA_ARGS__ }; \
assert_cc(ELEMENTSOF(__assert_in_set) <= 20); \
switch (x) { \
FOR_EACH_MAKE_CASE(first, __VA_ARGS__) \
_found = true; \
break; \
default: \
break; \
} \
_found; \
})
/* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time
* resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */
#define TAKE_GENERIC(var, type, nullvalue) \
({ \
type *_pvar_ = &(var); \
type _var_ = *_pvar_; \
type _nullvalue_ = nullvalue; \
*_pvar_ = _nullvalue_; \
_var_; \
})
#define TAKE_PTR_TYPE(ptr, type) TAKE_GENERIC(ptr, type, NULL)
#define TAKE_PTR(ptr) TAKE_PTR_TYPE(ptr, typeof(ptr))
#define TAKE_STRUCT_TYPE(s, type) TAKE_GENERIC(s, type, {})
#define TAKE_STRUCT(s) TAKE_STRUCT_TYPE(s, typeof(s))
/*
* STRLEN - return the length of a string literal, minus the trailing NUL byte.
* Contrary to strlen(), this is a constant expression.
* @x: a string literal.
*/
#define STRLEN(x) (sizeof(""x"") - sizeof(typeof(x[0])))
#define mfree(memory) \
({ \
free(memory); \
(typeof(memory)) NULL; \
})
static inline size_t ALIGN_TO(size_t l, size_t ali) {
assert(ISPOWEROF2(ali));
if (l > SIZE_MAX - (ali - 1))
return SIZE_MAX; /* indicate overflow */
return ((l + ali - 1) & ~(ali - 1));
}
#define ALIGN2(l) ALIGN_TO(l, 2)
#define ALIGN4(l) ALIGN_TO(l, 4)
#define ALIGN8(l) ALIGN_TO(l, 8)
#define ALIGN2_PTR(p) ((void*) ALIGN2((uintptr_t) p))
#define ALIGN4_PTR(p) ((void*) ALIGN4((uintptr_t) p))
#define ALIGN8_PTR(p) ((void*) ALIGN8((uintptr_t) p))
#if !SD_BOOT
/* libefi also provides ALIGN, and we do not use them in sd-boot explicitly. */
#define ALIGN(l) ALIGN_TO(l, sizeof(void*))
#define ALIGN_PTR(p) ((void*) ALIGN((uintptr_t) (p)))
#endif
/* Checks if the specified pointer is aligned as appropriate for the specific type */
#define IS_ALIGNED16(p) (((uintptr_t) p) % __alignof__(uint16_t) == 0)
#define IS_ALIGNED32(p) (((uintptr_t) p) % __alignof__(uint32_t) == 0)
#define IS_ALIGNED64(p) (((uintptr_t) p) % __alignof__(uint64_t) == 0)
/* Same as ALIGN_TO but callable in constant contexts. */
#define CONST_ALIGN_TO(l, ali) \
__builtin_choose_expr( \
__builtin_constant_p(l) && \
__builtin_constant_p(ali) && \
CONST_ISPOWEROF2(ali) && \
(l <= SIZE_MAX - (ali - 1)), /* overflow? */ \
((l) + (ali) - 1) & ~((ali) - 1), \
VOID_0)
/* Similar to ((t *) (void *) (p)) to cast a pointer. The macro asserts that the pointer has a suitable
* alignment for type "t". This exists for places where otherwise "-Wcast-align=strict" would issue a
* warning or if you want to assert that the cast gives a pointer of suitable alignment. */
#define CAST_ALIGN_PTR(t, p) \
({ \
const void *_p = (p); \
assert(((uintptr_t) _p) % __alignof__(t) == 0); \
(t *) _p; \
})
#define UPDATE_FLAG(orig, flag, b) \
((b) ? ((orig) | (flag)) : ((orig) & ~(flag)))
#define SET_FLAG(v, flag, b) \
(v) = UPDATE_FLAG(v, flag, b)
#define FLAGS_SET(v, flags) \
((~(v) & (flags)) == 0)
/* Declare a flexible array usable in a union.
* This is essentially a work-around for a pointless constraint in C99
* and might go away in some future version of the standard.
*
* See https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=3080ea5553cc909b000d1f1d964a9041962f2c5b
*/
#define DECLARE_FLEX_ARRAY(type, name) \
struct { \
dummy_t __empty__ ## name; \
type name[]; \
}