blob: d5fdbbf9e07d5c57916112ed21b79388a0059245 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <fnmatch.h>
#include <limits.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <time.h>
#include <unistd.h>
#include "sd-id128.h"
#include "alloc-util.h"
#include "apparmor-util.h"
#include "architecture.h"
#include "audit-util.h"
#include "blockdev-util.h"
#include "cap-list.h"
#include "cgroup-util.h"
#include "compare-operator.h"
#include "condition.h"
#include "cpu-set-util.h"
#include "creds-util.h"
#include "efi-api.h"
#include "env-file.h"
#include "env-util.h"
#include "extract-word.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "glob-util.h"
#include "hostname-util.h"
#include "ima-util.h"
#include "initrd-util.h"
#include "limits-util.h"
#include "list.h"
#include "macro.h"
#include "mountpoint-util.h"
#include "nulstr-util.h"
#include "os-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "percent-util.h"
#include "proc-cmdline.h"
#include "process-util.h"
#include "psi-util.h"
#include "selinux-util.h"
#include "smack-util.h"
#include "special.h"
#include "stat-util.h"
#include "string-table.h"
#include "string-util.h"
#include "tomoyo-util.h"
#include "tpm2-util.h"
#include "udev-util.h"
#include "uid-alloc-range.h"
#include "user-util.h"
#include "virt.h"
Condition* condition_new(ConditionType type, const char *parameter, bool trigger, bool negate) {
Condition *c;
assert(type >= 0);
assert(type < _CONDITION_TYPE_MAX);
assert(parameter);
c = new(Condition, 1);
if (!c)
return NULL;
*c = (Condition) {
.type = type,
.trigger = trigger,
.negate = negate,
};
if (parameter) {
c->parameter = strdup(parameter);
if (!c->parameter)
return mfree(c);
}
return c;
}
Condition* condition_free(Condition *c) {
assert(c);
free(c->parameter);
return mfree(c);
}
Condition* condition_free_list_type(Condition *head, ConditionType type) {
LIST_FOREACH(conditions, c, head)
if (type < 0 || c->type == type) {
LIST_REMOVE(conditions, head, c);
condition_free(c);
}
assert(type >= 0 || !head);
return head;
}
static int condition_test_kernel_command_line(Condition *c, char **env) {
_cleanup_free_ char *line = NULL;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_KERNEL_COMMAND_LINE);
r = proc_cmdline(&line);
if (r < 0)
return r;
bool equal = strchr(c->parameter, '=');
for (const char *p = line;;) {
_cleanup_free_ char *word = NULL;
bool found;
r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE|EXTRACT_RELAX);
if (r < 0)
return r;
if (r == 0)
break;
if (equal)
found = streq(word, c->parameter);
else {
const char *f;
f = startswith(word, c->parameter);
found = f && IN_SET(*f, 0, '=');
}
if (found)
return true;
}
return false;
}
static int condition_test_credential(Condition *c, char **env) {
int (*gd)(const char **ret);
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_CREDENTIAL);
/* For now we'll do a very simple existence check and are happy with either a regular or an encrypted
* credential. Given that we check the syntax of the argument we have the option to later maybe allow
* contents checks too without breaking compatibility, but for now let's be minimalistic. */
if (!credential_name_valid(c->parameter)) /* credentials with invalid names do not exist */
return false;
FOREACH_POINTER(gd, get_credentials_dir, get_encrypted_credentials_dir) {
_cleanup_free_ char *j = NULL;
const char *cd;
r = gd(&cd);
if (r == -ENXIO) /* no env var set */
continue;
if (r < 0)
return r;
j = path_join(cd, c->parameter);
if (!j)
return -ENOMEM;
if (laccess(j, F_OK) >= 0)
return true; /* yay! */
if (errno != ENOENT)
return -errno;
/* not found in this dir */
}
return false;
}
static int condition_test_kernel_version(Condition *c, char **env) {
CompareOperator operator;
struct utsname u;
bool first = true;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_KERNEL_VERSION);
assert_se(uname(&u) >= 0);
for (const char *p = c->parameter;;) {
_cleanup_free_ char *word = NULL;
const char *s;
int r;
r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE);
if (r < 0)
return log_debug_errno(r, "Failed to parse condition string \"%s\": %m", p);
if (r == 0)
break;
s = strstrip(word);
operator = parse_compare_operator(&s, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING);
if (operator < 0) /* No prefix? Then treat as glob string */
operator = COMPARE_FNMATCH_EQUAL;
s += strspn(s, WHITESPACE);
if (isempty(s)) {
if (first) {
/* For backwards compatibility, allow whitespace between the operator and
* value, without quoting, but only in the first expression. */
word = mfree(word);
r = extract_first_word(&p, &word, NULL, 0);
if (r < 0)
return log_debug_errno(r, "Failed to parse condition string \"%s\": %m", p);
if (r == 0)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Unexpected end of expression: %s", p);
s = word;
} else
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Unexpected end of expression: %s", p);
}
r = version_or_fnmatch_compare(operator, u.release, s);
if (r < 0)
return r;
if (!r)
return false;
first = false;
}
return true;
}
static int condition_test_osrelease(Condition *c, char **env) {
int r;
assert(c);
assert(c->type == CONDITION_OS_RELEASE);
for (const char *parameter = ASSERT_PTR(c->parameter);;) {
_cleanup_free_ char *key = NULL, *condition = NULL, *actual_value = NULL;
CompareOperator operator;
const char *word;
r = extract_first_word(&parameter, &condition, NULL, EXTRACT_UNQUOTE);
if (r < 0)
return log_debug_errno(r, "Failed to parse parameter: %m");
if (r == 0)
break;
/* parse_compare_operator() needs the string to start with the comparators */
word = condition;
r = extract_first_word(&word, &key, COMPARE_OPERATOR_WITH_FNMATCH_CHARS, EXTRACT_RETAIN_SEPARATORS);
if (r < 0)
return log_debug_errno(r, "Failed to parse parameter: %m");
/* The os-release spec mandates env-var-like key names */
if (r == 0 || isempty(word) || !env_name_is_valid(key))
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL),
"Failed to parse parameter, key/value format expected: %m");
/* Do not allow whitespace after the separator, as that's not a valid os-release format */
operator = parse_compare_operator(&word, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING);
if (operator < 0 || isempty(word) || strchr(WHITESPACE, *word) != NULL)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL),
"Failed to parse parameter, key/value format expected: %m");
r = parse_os_release(NULL, key, &actual_value);
if (r < 0)
return log_debug_errno(r, "Failed to parse os-release: %m");
r = version_or_fnmatch_compare(operator, actual_value, word);
if (r < 0)
return r;
if (!r)
return false;
}
return true;
}
static int condition_test_memory(Condition *c, char **env) {
CompareOperator operator;
uint64_t m, k;
const char *p;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_MEMORY);
m = physical_memory();
p = c->parameter;
operator = parse_compare_operator(&p, 0);
if (operator < 0)
operator = COMPARE_GREATER_OR_EQUAL; /* default to >= check, if nothing is specified. */
r = parse_size(p, 1024, &k);
if (r < 0)
return log_debug_errno(r, "Failed to parse size '%s': %m", p);
return test_order(CMP(m, k), operator);
}
static int condition_test_cpus(Condition *c, char **env) {
CompareOperator operator;
const char *p;
unsigned k;
int r, n;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_CPUS);
n = cpus_in_affinity_mask();
if (n < 0)
return log_debug_errno(n, "Failed to determine CPUs in affinity mask: %m");
p = c->parameter;
operator = parse_compare_operator(&p, 0);
if (operator < 0)
operator = COMPARE_GREATER_OR_EQUAL; /* default to >= check, if nothing is specified. */
r = safe_atou(p, &k);
if (r < 0)
return log_debug_errno(r, "Failed to parse number of CPUs: %m");
return test_order(CMP((unsigned) n, k), operator);
}
static int condition_test_user(Condition *c, char **env) {
uid_t id;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_USER);
/* Do the quick&easy comparisons first, and only parse the UID later. */
if (streq(c->parameter, "root"))
return getuid() == 0 || geteuid() == 0;
if (streq(c->parameter, NOBODY_USER_NAME))
return getuid() == UID_NOBODY || geteuid() == UID_NOBODY;
if (streq(c->parameter, "@system"))
return uid_is_system(getuid()) || uid_is_system(geteuid());
r = parse_uid(c->parameter, &id);
if (r >= 0)
return id == getuid() || id == geteuid();
if (getpid_cached() == 1) /* We already checked for "root" above, and we know that
* PID 1 is running as root, hence we know it cannot match. */
return false;
/* getusername_malloc() may do an nss lookup, which is not allowed in PID 1. */
_cleanup_free_ char *username = getusername_malloc();
if (!username)
return -ENOMEM;
if (streq(username, c->parameter))
return 1;
const char *u = c->parameter;
r = get_user_creds(&u, &id, NULL, NULL, NULL, USER_CREDS_ALLOW_MISSING);
if (r < 0)
return 0;
return id == getuid() || id == geteuid();
}
static int condition_test_control_group_controller(Condition *c, char **env) {
int r;
CGroupMask system_mask, wanted_mask = 0;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_CONTROL_GROUP_CONTROLLER);
if (streq(c->parameter, "v2"))
return cg_all_unified();
if (streq(c->parameter, "v1")) {
r = cg_all_unified();
if (r < 0)
return r;
return !r;
}
r = cg_mask_supported(&system_mask);
if (r < 0)
return log_debug_errno(r, "Failed to determine supported controllers: %m");
r = cg_mask_from_string(c->parameter, &wanted_mask);
if (r < 0 || wanted_mask <= 0) {
/* This won't catch the case that we have an unknown controller
* mixed in with valid ones -- these are only assessed on the
* validity of the valid controllers found. */
log_debug("Failed to parse cgroup string: %s", c->parameter);
return 1;
}
return FLAGS_SET(system_mask, wanted_mask);
}
static int condition_test_group(Condition *c, char **env) {
gid_t id;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_GROUP);
r = parse_gid(c->parameter, &id);
if (r >= 0)
return in_gid(id);
/* Avoid any NSS lookups if we are PID1 */
if (getpid_cached() == 1)
return streq(c->parameter, "root");
return in_group(c->parameter) > 0;
}
static int condition_test_virtualization(Condition *c, char **env) {
Virtualization v;
int b;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_VIRTUALIZATION);
if (streq(c->parameter, "private-users"))
return running_in_userns();
v = detect_virtualization();
if (v < 0)
return v;
/* First, compare with yes/no */
b = parse_boolean(c->parameter);
if (b >= 0)
return b == (v != VIRTUALIZATION_NONE);
/* Then, compare categorization */
if (streq(c->parameter, "vm"))
return VIRTUALIZATION_IS_VM(v);
if (streq(c->parameter, "container"))
return VIRTUALIZATION_IS_CONTAINER(v);
/* Finally compare id */
return v != VIRTUALIZATION_NONE && streq(c->parameter, virtualization_to_string(v));
}
static int condition_test_architecture(Condition *c, char **env) {
Architecture a, b;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_ARCHITECTURE);
a = uname_architecture();
if (a < 0)
return a;
if (streq(c->parameter, "native"))
b = native_architecture();
else {
b = architecture_from_string(c->parameter);
if (b < 0) /* unknown architecture? Then it's definitely not ours */
return false;
}
return a == b;
}
#define DTCOMPAT_FILE "/proc/device-tree/compatible"
static int condition_test_firmware_devicetree_compatible(const char *dtcarg) {
int r;
_cleanup_free_ char *dtcompat = NULL;
_cleanup_strv_free_ char **dtcompatlist = NULL;
size_t size;
r = read_full_virtual_file(DTCOMPAT_FILE, &dtcompat, &size);
if (r < 0) {
/* if the path doesn't exist it is incompatible */
if (r != -ENOENT)
log_debug_errno(r, "Failed to open() '%s', assuming machine is incompatible: %m", DTCOMPAT_FILE);
return false;
}
/* Not sure this can happen, but play safe. */
if (size == 0) {
log_debug("%s has zero length, assuming machine is incompatible", DTCOMPAT_FILE);
return false;
}
/* /proc/device-tree/compatible consists of one or more strings, each ending in '\0'.
* So the last character in dtcompat must be a '\0'. */
if (dtcompat[size - 1] != '\0') {
log_debug("%s is in an unknown format, assuming machine is incompatible", DTCOMPAT_FILE);
return false;
}
dtcompatlist = strv_parse_nulstr(dtcompat, size);
if (!dtcompatlist)
return -ENOMEM;
return strv_contains(dtcompatlist, dtcarg);
}
static int condition_test_firmware_smbios_field(const char *expression) {
_cleanup_free_ char *field = NULL, *expected_value = NULL, *actual_value = NULL;
CompareOperator operator;
int r;
assert(expression);
/* Parse SMBIOS field */
r = extract_first_word(&expression, &field, COMPARE_OPERATOR_WITH_FNMATCH_CHARS, EXTRACT_RETAIN_SEPARATORS);
if (r < 0)
return r;
if (r == 0 || isempty(expression))
return -EINVAL;
/* Remove trailing spaces from SMBIOS field */
delete_trailing_chars(field, WHITESPACE);
/* Parse operator */
operator = parse_compare_operator(&expression, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING);
if (operator < 0)
return operator;
/* Parse expected value */
r = extract_first_word(&expression, &expected_value, NULL, EXTRACT_UNQUOTE);
if (r < 0)
return r;
if (r == 0 || !isempty(expression))
return -EINVAL;
/* Read actual value from sysfs */
if (!filename_is_valid(field))
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid SMBIOS field name");
const char *p = strjoina("/sys/class/dmi/id/", field);
r = read_virtual_file(p, SIZE_MAX, &actual_value, NULL);
if (r < 0) {
log_debug_errno(r, "Failed to read %s: %m", p);
if (r == -ENOENT)
return false;
return r;
}
/* Remove trailing newline */
delete_trailing_chars(actual_value, WHITESPACE);
/* Finally compare actual and expected value */
return version_or_fnmatch_compare(operator, actual_value, expected_value);
}
static int condition_test_firmware(Condition *c, char **env) {
sd_char *arg;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_FIRMWARE);
if (streq(c->parameter, "device-tree")) {
if (access("/sys/firmware/devicetree/", F_OK) < 0) {
if (errno != ENOENT)
log_debug_errno(errno, "Unexpected error when checking for /sys/firmware/devicetree/: %m");
return false;
} else
return true;
} else if ((arg = startswith(c->parameter, "device-tree-compatible("))) {
_cleanup_free_ char *dtc_arg = NULL;
char *end;
end = strrchr(arg, ')');
if (!end || *(end + 1) != '\0') {
log_debug("Malformed ConditionFirmware=%s", c->parameter);
return false;
}
dtc_arg = strndup(arg, end - arg);
if (!dtc_arg)
return -ENOMEM;
return condition_test_firmware_devicetree_compatible(dtc_arg);
} else if (streq(c->parameter, "uefi"))
return is_efi_boot();
else if ((arg = startswith(c->parameter, "smbios-field("))) {
_cleanup_free_ char *smbios_arg = NULL;
char *end;
end = strrchr(arg, ')');
if (!end || *(end + 1) != '\0')
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Malformed ConditionFirmware=%s: %m", c->parameter);
smbios_arg = strndup(arg, end - arg);
if (!smbios_arg)
return log_oom_debug();
r = condition_test_firmware_smbios_field(smbios_arg);
if (r < 0)
return log_debug_errno(r, "Malformed ConditionFirmware=%s: %m", c->parameter);
return r;
} else {
log_debug("Unsupported Firmware condition \"%s\"", c->parameter);
return false;
}
}
static int condition_test_host(Condition *c, char **env) {
_cleanup_free_ char *h = NULL;
sd_id128_t x, y;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_HOST);
if (sd_id128_from_string(c->parameter, &x) >= 0) {
r = sd_id128_get_machine(&y);
if (r < 0)
return r;
return sd_id128_equal(x, y);
}
h = gethostname_malloc();
if (!h)
return -ENOMEM;
r = fnmatch(c->parameter, h, FNM_CASEFOLD);
if (r == FNM_NOMATCH)
return false;
if (r != 0)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "fnmatch() failed.");
return true;
}
static int condition_test_ac_power(Condition *c, char **env) {
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_AC_POWER);
r = parse_boolean(c->parameter);
if (r < 0)
return r;
return (on_ac_power() != 0) == !!r;
}
static int has_tpm2(void) {
/* Checks whether the kernel has the TPM subsystem enabled and the firmware reports support. Note
* we don't check for actual TPM devices, since we might not have loaded the driver for it yet, i.e.
* during early boot where we very likely want to use this condition check).
*
* Note that we don't check if we ourselves are built with TPM2 support here! */
return FLAGS_SET(tpm2_support(), TPM2_SUPPORT_SUBSYSTEM|TPM2_SUPPORT_FIRMWARE);
}
static int condition_test_security(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_SECURITY);
if (streq(c->parameter, "selinux"))
return mac_selinux_use();
if (streq(c->parameter, "smack"))
return mac_smack_use();
if (streq(c->parameter, "apparmor"))
return mac_apparmor_use();
if (streq(c->parameter, "audit"))
return use_audit();
if (streq(c->parameter, "ima"))
return use_ima();
if (streq(c->parameter, "tomoyo"))
return mac_tomoyo_use();
if (streq(c->parameter, "uefi-secureboot"))
return is_efi_secure_boot();
if (streq(c->parameter, "tpm2"))
return has_tpm2();
return false;
}
static int condition_test_capability(Condition *c, char **env) {
unsigned long long capabilities = (unsigned long long) -1;
_cleanup_fclose_ FILE *f = NULL;
int value, r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_CAPABILITY);
/* If it's an invalid capability, we don't have it */
value = capability_from_name(c->parameter);
if (value < 0)
return -EINVAL;
/* If it's a valid capability we default to assume
* that we have it */
f = fopen("/proc/self/status", "re");
if (!f)
return -errno;
for (;;) {
_cleanup_free_ char *line = NULL;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return r;
if (r == 0)
break;
const char *p = startswith(line, "CapBnd:");
if (p) {
if (sscanf(p, "%llx", &capabilities) != 1)
return -EIO;
break;
}
}
return !!(capabilities & (1ULL << value));
}
static int condition_test_needs_update(Condition *c, char **env) {
struct stat usr, other;
const char *p;
bool b;
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_NEEDS_UPDATE);
r = proc_cmdline_get_bool("systemd.condition-needs-update", &b);
if (r < 0)
log_debug_errno(r, "Failed to parse systemd.condition-needs-update= kernel command line argument, ignoring: %m");
if (r > 0)
return b;
if (in_initrd()) {
log_debug("We are in an initrd, not doing any updates.");
return false;
}
if (!path_is_absolute(c->parameter)) {
log_debug("Specified condition parameter '%s' is not absolute, assuming an update is needed.", c->parameter);
return true;
}
/* If the file system is read-only we shouldn't suggest an update */
r = path_is_read_only_fs(c->parameter);
if (r < 0)
log_debug_errno(r, "Failed to determine if '%s' is read-only, ignoring: %m", c->parameter);
if (r > 0)
return false;
/* Any other failure means we should allow the condition to be true, so that we rather invoke too
* many update tools than too few. */
p = strjoina(c->parameter, "/.updated");
if (lstat(p, &other) < 0) {
if (errno != ENOENT)
log_debug_errno(errno, "Failed to stat() '%s', assuming an update is needed: %m", p);
return true;
}
if (lstat("/usr/", &usr) < 0) {
log_debug_errno(errno, "Failed to stat() /usr/, assuming an update is needed: %m");
return true;
}
/*
* First, compare seconds as they are always accurate...
*/
if (usr.st_mtim.tv_sec != other.st_mtim.tv_sec)
return usr.st_mtim.tv_sec > other.st_mtim.tv_sec;
/*
* ...then compare nanoseconds.
*
* A false positive is only possible when /usr's nanoseconds > 0
* (otherwise /usr cannot be strictly newer than the target file)
* AND the target file's nanoseconds == 0
* (otherwise the filesystem supports nsec timestamps, see stat(2)).
*/
if (usr.st_mtim.tv_nsec == 0 || other.st_mtim.tv_nsec > 0)
return usr.st_mtim.tv_nsec > other.st_mtim.tv_nsec;
_cleanup_free_ char *timestamp_str = NULL;
r = parse_env_file(NULL, p, "TIMESTAMP_NSEC", &timestamp_str);
if (r < 0) {
log_debug_errno(r, "Failed to parse timestamp file '%s', using mtime: %m", p);
return true;
}
if (isempty(timestamp_str)) {
log_debug("No data in timestamp file '%s', using mtime.", p);
return true;
}
uint64_t timestamp;
r = safe_atou64(timestamp_str, &timestamp);
if (r < 0) {
log_debug_errno(r, "Failed to parse timestamp value '%s' in file '%s', using mtime: %m", timestamp_str, p);
return true;
}
return timespec_load_nsec(&usr.st_mtim) > timestamp;
}
static int condition_test_first_boot(Condition *c, char **env) {
int r, q;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_FIRST_BOOT);
r = parse_boolean(c->parameter);
if (r < 0)
return r;
q = access("/run/systemd/first-boot", F_OK);
if (q < 0 && errno != ENOENT)
log_debug_errno(errno, "Failed to check if /run/systemd/first-boot exists, assuming no: %m");
return (q >= 0) == r;
}
static int condition_test_environment(Condition *c, char **env) {
bool equal;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_ENVIRONMENT);
equal = strchr(c->parameter, '=');
STRV_FOREACH(i, env) {
bool found;
if (equal)
found = streq(c->parameter, *i);
else {
const char *f;
f = startswith(*i, c->parameter);
found = f && IN_SET(*f, 0, '=');
}
if (found)
return true;
}
return false;
}
static int condition_test_path_exists(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_EXISTS);
return access(c->parameter, F_OK) >= 0;
}
static int condition_test_path_exists_glob(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_EXISTS_GLOB);
return glob_exists(c->parameter) > 0;
}
static int condition_test_path_is_directory(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_IS_DIRECTORY);
return is_dir(c->parameter, true) > 0;
}
static int condition_test_path_is_symbolic_link(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_IS_SYMBOLIC_LINK);
return is_symlink(c->parameter) > 0;
}
static int condition_test_path_is_mount_point(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_IS_MOUNT_POINT);
return path_is_mount_point(c->parameter, NULL, AT_SYMLINK_FOLLOW) > 0;
}
static int condition_test_path_is_read_write(Condition *c, char **env) {
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_IS_READ_WRITE);
r = path_is_read_only_fs(c->parameter);
return r <= 0 && r != -ENOENT;
}
static int condition_test_cpufeature(Condition *c, char **env) {
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_CPU_FEATURE);
return has_cpu_with_flag(ascii_strlower(c->parameter));
}
static int condition_test_path_is_encrypted(Condition *c, char **env) {
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_PATH_IS_ENCRYPTED);
r = path_is_encrypted(c->parameter);
if (r < 0 && r != -ENOENT)
log_debug_errno(r, "Failed to determine if '%s' is encrypted: %m", c->parameter);
return r > 0;
}
static int condition_test_directory_not_empty(Condition *c, char **env) {
int r;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_DIRECTORY_NOT_EMPTY);
r = dir_is_empty(c->parameter, /* ignore_hidden_or_backup= */ true);
return r <= 0 && !IN_SET(r, -ENOENT, -ENOTDIR);
}
static int condition_test_file_not_empty(Condition *c, char **env) {
struct stat st;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_FILE_NOT_EMPTY);
return (stat(c->parameter, &st) >= 0 &&
S_ISREG(st.st_mode) &&
st.st_size > 0);
}
static int condition_test_file_is_executable(Condition *c, char **env) {
struct stat st;
assert(c);
assert(c->parameter);
assert(c->type == CONDITION_FILE_IS_EXECUTABLE);
return (stat(c->parameter, &st) >= 0 &&
S_ISREG(st.st_mode) &&
(st.st_mode & 0111));
}
static int condition_test_psi(Condition *c, char **env) {
_cleanup_free_ char *first = NULL, *second = NULL, *third = NULL, *fourth = NULL, *pressure_path = NULL;
const char *p, *value, *pressure_type;
loadavg_t *current, limit;
ResourcePressure pressure;
int r;
assert(c);
assert(c->parameter);
assert(IN_SET(c->type, CONDITION_MEMORY_PRESSURE, CONDITION_CPU_PRESSURE, CONDITION_IO_PRESSURE));
if (!is_pressure_supported()) {
log_debug("Pressure Stall Information (PSI) is not supported, skipping.");
return 1;
}
pressure_type = c->type == CONDITION_MEMORY_PRESSURE ? "memory" :
c->type == CONDITION_CPU_PRESSURE ? "cpu" :
"io";
p = c->parameter;
r = extract_many_words(&p, ":", 0, &first, &second, NULL);
if (r <= 0)
return log_debug_errno(r < 0 ? r : SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
/* If only one parameter is passed, then we look at the global system pressure rather than a specific cgroup. */
if (r == 1) {
pressure_path = path_join("/proc/pressure", pressure_type);
if (!pressure_path)
return log_oom_debug();
value = first;
} else {
const char *controller = strjoina(pressure_type, ".pressure");
_cleanup_free_ char *slice_path = NULL, *root_scope = NULL;
CGroupMask mask, required_mask;
char *slice, *e;
required_mask = c->type == CONDITION_MEMORY_PRESSURE ? CGROUP_MASK_MEMORY :
c->type == CONDITION_CPU_PRESSURE ? CGROUP_MASK_CPU :
CGROUP_MASK_IO;
slice = strstrip(first);
if (!slice)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
r = cg_all_unified();
if (r < 0)
return log_debug_errno(r, "Failed to determine whether the unified cgroups hierarchy is used: %m");
if (r == 0) {
log_debug("PSI condition check requires the unified cgroups hierarchy, skipping.");
return 1;
}
r = cg_mask_supported(&mask);
if (r < 0)
return log_debug_errno(r, "Failed to get supported cgroup controllers: %m");
if (!FLAGS_SET(mask, required_mask)) {
log_debug("Cgroup %s controller not available, skipping PSI condition check.", pressure_type);
return 1;
}
r = cg_slice_to_path(slice, &slice_path);
if (r < 0)
return log_debug_errno(r, "Cannot determine slice \"%s\" cgroup path: %m", slice);
/* We might be running under the user manager, so get the root path and prefix it accordingly. */
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, getpid_cached(), &root_scope);
if (r < 0)
return log_debug_errno(r, "Failed to get root cgroup path: %m");
/* Drop init.scope, we want the parent. We could get an empty or / path, but that's fine,
* just skip it in that case. */
e = endswith(root_scope, "/" SPECIAL_INIT_SCOPE);
if (e)
*e = 0;
if (!empty_or_root(root_scope)) {
_cleanup_free_ char *slice_joined = NULL;
slice_joined = path_join(root_scope, slice_path);
if (!slice_joined)
return log_oom_debug();
free_and_replace(slice_path, slice_joined);
}
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, slice_path, controller, &pressure_path);
if (r < 0)
return log_debug_errno(r, "Error getting cgroup pressure path from %s: %m", slice_path);
value = second;
}
/* If a value including a specific timespan (in the intervals allowed by the kernel),
* parse it, otherwise we assume just a plain percentage that will be checked if it is
* smaller or equal to the current pressure average over 5 minutes. */
r = extract_many_words(&value, "/", 0, &third, &fourth, NULL);
if (r <= 0)
return log_debug_errno(r < 0 ? r : SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
if (r == 1)
current = &pressure.avg300;
else {
const char *timespan;
timespan = skip_leading_chars(fourth, NULL);
if (!timespan)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
if (startswith(timespan, "10sec"))
current = &pressure.avg10;
else if (startswith(timespan, "1min"))
current = &pressure.avg60;
else if (startswith(timespan, "5min"))
current = &pressure.avg300;
else
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
}
value = strstrip(third);
if (!value)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter);
r = parse_permyriad(value);
if (r < 0)
return log_debug_errno(r, "Failed to parse permyriad: %s", c->parameter);
r = store_loadavg_fixed_point(r / 100LU, r % 100LU, &limit);
if (r < 0)
return log_debug_errno(r, "Failed to parse loadavg: %s", c->parameter);
r = read_resource_pressure(pressure_path, PRESSURE_TYPE_FULL, &pressure);
if (r == -ENODATA) /* cpu.pressure 'full' was added recently, fall back to 'some'. */
r = read_resource_pressure(pressure_path, PRESSURE_TYPE_SOME, &pressure);
if (r == -ENOENT) {
/* We already checked that /proc/pressure exists, so this means we were given a cgroup
* that doesn't exist or doesn't exist any longer. */
log_debug("\"%s\" not found, skipping PSI check.", pressure_path);
return 1;
}
if (r < 0)
return log_debug_errno(r, "Error parsing pressure from %s: %m", pressure_path);
return *current <= limit;
}
int condition_test(Condition *c, char **env) {
static int (*const condition_tests[_CONDITION_TYPE_MAX])(Condition *c, char **env) = {
[CONDITION_PATH_EXISTS] = condition_test_path_exists,
[CONDITION_PATH_EXISTS_GLOB] = condition_test_path_exists_glob,
[CONDITION_PATH_IS_DIRECTORY] = condition_test_path_is_directory,
[CONDITION_PATH_IS_SYMBOLIC_LINK] = condition_test_path_is_symbolic_link,
[CONDITION_PATH_IS_MOUNT_POINT] = condition_test_path_is_mount_point,
[CONDITION_PATH_IS_READ_WRITE] = condition_test_path_is_read_write,
[CONDITION_PATH_IS_ENCRYPTED] = condition_test_path_is_encrypted,
[CONDITION_DIRECTORY_NOT_EMPTY] = condition_test_directory_not_empty,
[CONDITION_FILE_NOT_EMPTY] = condition_test_file_not_empty,
[CONDITION_FILE_IS_EXECUTABLE] = condition_test_file_is_executable,
[CONDITION_KERNEL_COMMAND_LINE] = condition_test_kernel_command_line,
[CONDITION_KERNEL_VERSION] = condition_test_kernel_version,
[CONDITION_CREDENTIAL] = condition_test_credential,
[CONDITION_VIRTUALIZATION] = condition_test_virtualization,
[CONDITION_SECURITY] = condition_test_security,
[CONDITION_CAPABILITY] = condition_test_capability,
[CONDITION_HOST] = condition_test_host,
[CONDITION_AC_POWER] = condition_test_ac_power,
[CONDITION_ARCHITECTURE] = condition_test_architecture,
[CONDITION_FIRMWARE] = condition_test_firmware,
[CONDITION_NEEDS_UPDATE] = condition_test_needs_update,
[CONDITION_FIRST_BOOT] = condition_test_first_boot,
[CONDITION_USER] = condition_test_user,
[CONDITION_GROUP] = condition_test_group,
[CONDITION_CONTROL_GROUP_CONTROLLER] = condition_test_control_group_controller,
[CONDITION_CPUS] = condition_test_cpus,
[CONDITION_MEMORY] = condition_test_memory,
[CONDITION_ENVIRONMENT] = condition_test_environment,
[CONDITION_CPU_FEATURE] = condition_test_cpufeature,
[CONDITION_OS_RELEASE] = condition_test_osrelease,
[CONDITION_MEMORY_PRESSURE] = condition_test_psi,
[CONDITION_CPU_PRESSURE] = condition_test_psi,
[CONDITION_IO_PRESSURE] = condition_test_psi,
};
int r, b;
assert(c);
assert(c->type >= 0);
assert(c->type < _CONDITION_TYPE_MAX);
r = condition_tests[c->type](c, env);
if (r < 0) {
c->result = CONDITION_ERROR;
return r;
}
b = (r > 0) == !c->negate;
c->result = b ? CONDITION_SUCCEEDED : CONDITION_FAILED;
return b;
}
bool condition_test_list(
Condition *first,
char **env,
condition_to_string_t to_string,
condition_test_logger_t logger,
void *userdata) {
int triggered = -1;
assert(!!logger == !!to_string);
/* If the condition list is empty, then it is true */
if (!first)
return true;
/* Otherwise, if all of the non-trigger conditions apply and
* if any of the trigger conditions apply (unless there are
* none) we return true */
LIST_FOREACH(conditions, c, first) {
int r;
r = condition_test(c, env);
if (logger) {
if (r < 0)
logger(userdata, LOG_WARNING, r, PROJECT_FILE, __LINE__, __func__,
"Couldn't determine result for %s=%s%s%s, assuming failed: %m",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter);
else
logger(userdata, LOG_DEBUG, 0, PROJECT_FILE, __LINE__, __func__,
"%s=%s%s%s %s.",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter,
condition_result_to_string(c->result));
}
if (!c->trigger && r <= 0)
return false;
if (c->trigger && triggered <= 0)
triggered = r > 0;
}
return triggered != 0;
}
void condition_dump(Condition *c, FILE *f, const char *prefix, condition_to_string_t to_string) {
assert(c);
assert(f);
assert(to_string);
prefix = strempty(prefix);
fprintf(f,
"%s\t%s: %s%s%s %s\n",
prefix,
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter,
condition_result_to_string(c->result));
}
void condition_dump_list(Condition *first, FILE *f, const char *prefix, condition_to_string_t to_string) {
LIST_FOREACH(conditions, c, first)
condition_dump(c, f, prefix, to_string);
}
static const char* const condition_type_table[_CONDITION_TYPE_MAX] = {
[CONDITION_ARCHITECTURE] = "ConditionArchitecture",
[CONDITION_FIRMWARE] = "ConditionFirmware",
[CONDITION_VIRTUALIZATION] = "ConditionVirtualization",
[CONDITION_HOST] = "ConditionHost",
[CONDITION_KERNEL_COMMAND_LINE] = "ConditionKernelCommandLine",
[CONDITION_KERNEL_VERSION] = "ConditionKernelVersion",
[CONDITION_CREDENTIAL] = "ConditionCredential",
[CONDITION_SECURITY] = "ConditionSecurity",
[CONDITION_CAPABILITY] = "ConditionCapability",
[CONDITION_AC_POWER] = "ConditionACPower",
[CONDITION_NEEDS_UPDATE] = "ConditionNeedsUpdate",
[CONDITION_FIRST_BOOT] = "ConditionFirstBoot",
[CONDITION_PATH_EXISTS] = "ConditionPathExists",
[CONDITION_PATH_EXISTS_GLOB] = "ConditionPathExistsGlob",
[CONDITION_PATH_IS_DIRECTORY] = "ConditionPathIsDirectory",
[CONDITION_PATH_IS_SYMBOLIC_LINK] = "ConditionPathIsSymbolicLink",
[CONDITION_PATH_IS_MOUNT_POINT] = "ConditionPathIsMountPoint",
[CONDITION_PATH_IS_READ_WRITE] = "ConditionPathIsReadWrite",
[CONDITION_PATH_IS_ENCRYPTED] = "ConditionPathIsEncrypted",
[CONDITION_DIRECTORY_NOT_EMPTY] = "ConditionDirectoryNotEmpty",
[CONDITION_FILE_NOT_EMPTY] = "ConditionFileNotEmpty",
[CONDITION_FILE_IS_EXECUTABLE] = "ConditionFileIsExecutable",
[CONDITION_USER] = "ConditionUser",
[CONDITION_GROUP] = "ConditionGroup",
[CONDITION_CONTROL_GROUP_CONTROLLER] = "ConditionControlGroupController",
[CONDITION_CPUS] = "ConditionCPUs",
[CONDITION_MEMORY] = "ConditionMemory",
[CONDITION_ENVIRONMENT] = "ConditionEnvironment",
[CONDITION_CPU_FEATURE] = "ConditionCPUFeature",
[CONDITION_OS_RELEASE] = "ConditionOSRelease",
[CONDITION_MEMORY_PRESSURE] = "ConditionMemoryPressure",
[CONDITION_CPU_PRESSURE] = "ConditionCPUPressure",
[CONDITION_IO_PRESSURE] = "ConditionIOPressure",
};
DEFINE_STRING_TABLE_LOOKUP(condition_type, ConditionType);
static const char* const assert_type_table[_CONDITION_TYPE_MAX] = {
[CONDITION_ARCHITECTURE] = "AssertArchitecture",
[CONDITION_FIRMWARE] = "AssertFirmware",
[CONDITION_VIRTUALIZATION] = "AssertVirtualization",
[CONDITION_HOST] = "AssertHost",
[CONDITION_KERNEL_COMMAND_LINE] = "AssertKernelCommandLine",
[CONDITION_KERNEL_VERSION] = "AssertKernelVersion",
[CONDITION_CREDENTIAL] = "AssertCredential",
[CONDITION_SECURITY] = "AssertSecurity",
[CONDITION_CAPABILITY] = "AssertCapability",
[CONDITION_AC_POWER] = "AssertACPower",
[CONDITION_NEEDS_UPDATE] = "AssertNeedsUpdate",
[CONDITION_FIRST_BOOT] = "AssertFirstBoot",
[CONDITION_PATH_EXISTS] = "AssertPathExists",
[CONDITION_PATH_EXISTS_GLOB] = "AssertPathExistsGlob",
[CONDITION_PATH_IS_DIRECTORY] = "AssertPathIsDirectory",
[CONDITION_PATH_IS_SYMBOLIC_LINK] = "AssertPathIsSymbolicLink",
[CONDITION_PATH_IS_MOUNT_POINT] = "AssertPathIsMountPoint",
[CONDITION_PATH_IS_READ_WRITE] = "AssertPathIsReadWrite",
[CONDITION_PATH_IS_ENCRYPTED] = "AssertPathIsEncrypted",
[CONDITION_DIRECTORY_NOT_EMPTY] = "AssertDirectoryNotEmpty",
[CONDITION_FILE_NOT_EMPTY] = "AssertFileNotEmpty",
[CONDITION_FILE_IS_EXECUTABLE] = "AssertFileIsExecutable",
[CONDITION_USER] = "AssertUser",
[CONDITION_GROUP] = "AssertGroup",
[CONDITION_CONTROL_GROUP_CONTROLLER] = "AssertControlGroupController",
[CONDITION_CPUS] = "AssertCPUs",
[CONDITION_MEMORY] = "AssertMemory",
[CONDITION_ENVIRONMENT] = "AssertEnvironment",
[CONDITION_CPU_FEATURE] = "AssertCPUFeature",
[CONDITION_OS_RELEASE] = "AssertOSRelease",
[CONDITION_MEMORY_PRESSURE] = "AssertMemoryPressure",
[CONDITION_CPU_PRESSURE] = "AssertCPUPressure",
[CONDITION_IO_PRESSURE] = "AssertIOPressure",
};
DEFINE_STRING_TABLE_LOOKUP(assert_type, ConditionType);
static const char* const condition_result_table[_CONDITION_RESULT_MAX] = {
[CONDITION_UNTESTED] = "untested",
[CONDITION_SUCCEEDED] = "succeeded",
[CONDITION_FAILED] = "failed",
[CONDITION_ERROR] = "error",
};
DEFINE_STRING_TABLE_LOOKUP(condition_result, ConditionResult);