blob: 1eb00717ca7549c1e4b71f8504852832fe916525 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/***
Copyright © 2018 Dell Inc.
***/
#include <errno.h>
#include <fcntl.h>
#include <linux/fs.h>
#include <linux/magic.h>
#include <stdbool.h>
#include <stddef.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <syslog.h>
#include <unistd.h>
#include "sd-device.h"
#include "alloc-util.h"
#include "blockdev-util.h"
#include "btrfs-util.h"
#include "conf-parser.h"
#include "constants.h"
#include "device-private.h"
#include "device-util.h"
#include "devnum-util.h"
#include "env-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "hexdecoct.h"
#include "id128-util.h"
#include "log.h"
#include "macro.h"
#include "path-util.h"
#include "sleep-config.h"
#include "siphash24.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "time-util.h"
#include "udev-util.h"
#define BATTERY_LOW_CAPACITY_LEVEL 5
#define DISCHARGE_RATE_FILEPATH "/var/lib/systemd/sleep/battery_discharge_percentage_rate_per_hour"
#define BATTERY_DISCHARGE_RATE_HASH_KEY SD_ID128_MAKE(5f,9a,20,18,38,76,46,07,8d,36,58,0b,bb,c4,e0,63)
#define SYS_ENTRY_RAW_FILE_TYPE1 "/sys/firmware/dmi/entries/1-0/raw"
static void *CAPACITY_TO_PTR(int capacity) {
assert(capacity >= 0);
assert(capacity <= 100);
return INT_TO_PTR(capacity + 1);
}
static int PTR_TO_CAPACITY(void *p) {
int capacity = PTR_TO_INT(p) - 1;
assert(capacity >= 0);
assert(capacity <= 100);
return capacity;
}
int parse_sleep_config(SleepConfig **ret_sleep_config) {
_cleanup_(free_sleep_configp) SleepConfig *sc = NULL;
int allow_suspend = -1, allow_hibernate = -1,
allow_s2h = -1, allow_hybrid_sleep = -1;
sc = new(SleepConfig, 1);
if (!sc)
return log_oom();
*sc = (SleepConfig) {
.hibernate_delay_usec = USEC_INFINITY,
};
const ConfigTableItem items[] = {
{ "Sleep", "AllowSuspend", config_parse_tristate, 0, &allow_suspend },
{ "Sleep", "AllowHibernation", config_parse_tristate, 0, &allow_hibernate },
{ "Sleep", "AllowSuspendThenHibernate", config_parse_tristate, 0, &allow_s2h },
{ "Sleep", "AllowHybridSleep", config_parse_tristate, 0, &allow_hybrid_sleep },
{ "Sleep", "SuspendMode", config_parse_strv, 0, sc->modes + SLEEP_SUSPEND },
{ "Sleep", "SuspendState", config_parse_strv, 0, sc->states + SLEEP_SUSPEND },
{ "Sleep", "HibernateMode", config_parse_strv, 0, sc->modes + SLEEP_HIBERNATE },
{ "Sleep", "HibernateState", config_parse_strv, 0, sc->states + SLEEP_HIBERNATE },
{ "Sleep", "HybridSleepMode", config_parse_strv, 0, sc->modes + SLEEP_HYBRID_SLEEP },
{ "Sleep", "HybridSleepState", config_parse_strv, 0, sc->states + SLEEP_HYBRID_SLEEP },
{ "Sleep", "HibernateDelaySec", config_parse_sec, 0, &sc->hibernate_delay_usec },
{ "Sleep", "SuspendEstimationSec", config_parse_sec, 0, &sc->suspend_estimation_usec },
{}
};
(void) config_parse_many_nulstr(
PKGSYSCONFDIR "/sleep.conf",
CONF_PATHS_NULSTR("systemd/sleep.conf.d"),
"Sleep\0",
config_item_table_lookup, items,
CONFIG_PARSE_WARN,
NULL,
NULL);
/* use default values unless set */
sc->allow[SLEEP_SUSPEND] = allow_suspend != 0;
sc->allow[SLEEP_HIBERNATE] = allow_hibernate != 0;
sc->allow[SLEEP_HYBRID_SLEEP] = allow_hybrid_sleep >= 0 ? allow_hybrid_sleep
: (allow_suspend != 0 && allow_hibernate != 0);
sc->allow[SLEEP_SUSPEND_THEN_HIBERNATE] = allow_s2h >= 0 ? allow_s2h
: (allow_suspend != 0 && allow_hibernate != 0);
if (!sc->states[SLEEP_SUSPEND])
sc->states[SLEEP_SUSPEND] = strv_new("mem", "standby", "freeze");
if (!sc->modes[SLEEP_HIBERNATE])
sc->modes[SLEEP_HIBERNATE] = strv_new("platform", "shutdown");
if (!sc->states[SLEEP_HIBERNATE])
sc->states[SLEEP_HIBERNATE] = strv_new("disk");
if (!sc->modes[SLEEP_HYBRID_SLEEP])
sc->modes[SLEEP_HYBRID_SLEEP] = strv_new("suspend", "platform", "shutdown");
if (!sc->states[SLEEP_HYBRID_SLEEP])
sc->states[SLEEP_HYBRID_SLEEP] = strv_new("disk");
if (sc->suspend_estimation_usec == 0)
sc->suspend_estimation_usec = DEFAULT_SUSPEND_ESTIMATION_USEC;
/* Ensure values set for all required fields */
if (!sc->states[SLEEP_SUSPEND] || !sc->modes[SLEEP_HIBERNATE]
|| !sc->states[SLEEP_HIBERNATE] || !sc->modes[SLEEP_HYBRID_SLEEP] || !sc->states[SLEEP_HYBRID_SLEEP])
return log_oom();
*ret_sleep_config = TAKE_PTR(sc);
return 0;
}
/* Get the list of batteries */
static int battery_enumerator_new(sd_device_enumerator **ret) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
int r;
assert(ret);
r = sd_device_enumerator_new(&e);
if (r < 0)
return r;
r = sd_device_enumerator_add_match_subsystem(e, "power_supply", /* match = */ true);
if (r < 0)
return r;
r = sd_device_enumerator_allow_uninitialized(e);
if (r < 0)
return r;
r = sd_device_enumerator_add_match_sysattr(e, "type", "Battery", /* match = */ true);
if (r < 0)
return r;
r = sd_device_enumerator_add_match_sysattr(e, "present", "1", /* match = */ true);
if (r < 0)
return r;
r = sd_device_enumerator_add_match_sysattr(e, "scope", "Device", /* match = */ false);
if (r < 0)
return r;
*ret = TAKE_PTR(e);
return 0;
}
int get_capacity_by_name(Hashmap *capacities_by_name, const char *name) {
void *p;
assert(capacities_by_name);
assert(name);
p = hashmap_get(capacities_by_name, name);
if (!p)
return -ENOENT;
return PTR_TO_CAPACITY(p);
}
/* Battery percentage capacity fetched from capacity file and if in range 0-100 then returned */
static int read_battery_capacity_percentage(sd_device *dev) {
int battery_capacity, r;
assert(dev);
r = device_get_sysattr_int(dev, "capacity", &battery_capacity);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to read/parse POWER_SUPPLY_CAPACITY: %m");
if (battery_capacity < 0 || battery_capacity > 100)
return log_device_debug_errno(dev, SYNTHETIC_ERRNO(ERANGE), "Invalid battery capacity");
return battery_capacity;
}
/* If a battery whose percentage capacity is <= 5% exists, and we're not on AC power, return success */
int battery_is_discharging_and_low(void) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
sd_device *dev;
int r;
/* We have not used battery capacity_level since value is set to full
* or Normal in case ACPI is not working properly. In case of no battery
* 0 will be returned and system will be suspended for 1st cycle then hibernated */
r = on_ac_power();
if (r < 0)
log_debug_errno(r, "Failed to check if the system is running on AC, assuming it is not: %m");
if (r > 0)
return false;
r = battery_enumerator_new(&e);
if (r < 0)
return log_debug_errno(r, "Failed to initialize battery enumerator: %m");
FOREACH_DEVICE(e, dev)
if (read_battery_capacity_percentage(dev) > BATTERY_LOW_CAPACITY_LEVEL)
return false;
return true;
}
/* Store current capacity of each battery before suspension and timestamp */
int fetch_batteries_capacity_by_name(Hashmap **ret) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
_cleanup_(hashmap_freep) Hashmap *batteries_capacity_by_name = NULL;
sd_device *dev;
int r;
assert(ret);
batteries_capacity_by_name = hashmap_new(&string_hash_ops_free);
if (!batteries_capacity_by_name)
return log_oom_debug();
r = battery_enumerator_new(&e);
if (r < 0)
return log_debug_errno(r, "Failed to initialize battery enumerator: %m");
FOREACH_DEVICE(e, dev) {
_cleanup_free_ char *battery_name_copy = NULL;
const char *battery_name;
int battery_capacity;
battery_capacity = r = read_battery_capacity_percentage(dev);
if (r < 0)
continue;
r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name);
if (r < 0) {
log_device_debug_errno(dev, r, "Failed to get POWER_SUPPLY_NAME property, ignoring: %m");
continue;
}
battery_name_copy = strdup(battery_name);
if (!battery_name_copy)
return log_oom_debug();
r = hashmap_put(batteries_capacity_by_name, battery_name_copy, CAPACITY_TO_PTR(battery_capacity));
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to store battery capacity: %m");
TAKE_PTR(battery_name_copy);
}
*ret = TAKE_PTR(batteries_capacity_by_name);
return 0;
}
static int siphash24_compress_device_sysattr(sd_device *dev, const char *attr, struct siphash *state) {
const char *x;
int r;
assert(dev);
assert(attr);
assert(state);
r = sd_device_get_sysattr_value(dev, attr, &x);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to read '%s' attribute: %m", attr);
if (!isempty(x))
siphash24_compress_string(x, state);
return 0;
}
static int siphash24_compress_id128(int (*getter)(sd_id128_t*), const char *name, struct siphash *state) {
sd_id128_t id;
int r;
assert(getter);
assert(state);
r = getter(&id);
if (r < 0)
return log_debug_errno(r, "Failed to get %s ID: %m", name);
siphash24_compress(&id, sizeof(sd_id128_t), state);
return 0;
}
/* Read system and battery identifier from specific location and generate hash of it */
static int get_system_battery_identifier_hash(sd_device *dev, uint64_t *ret) {
struct siphash state;
assert(ret);
assert(dev);
siphash24_init(&state, BATTERY_DISCHARGE_RATE_HASH_KEY.bytes);
(void) siphash24_compress_device_sysattr(dev, "manufacturer", &state);
(void) siphash24_compress_device_sysattr(dev, "model_name", &state);
(void) siphash24_compress_device_sysattr(dev, "serial_number", &state);
(void) siphash24_compress_id128(sd_id128_get_machine, "machine", &state);
(void) siphash24_compress_id128(id128_get_product, "product", &state);
*ret = siphash24_finalize(&state);
return 0;
}
/* Return success if battery percentage discharge rate per hour is in the range 1–199 */
static bool battery_discharge_rate_is_valid(int battery_discharge_rate) {
return battery_discharge_rate > 0 && battery_discharge_rate < 200;
}
/* Battery percentage discharge rate per hour is read from specific file. It is stored along with system
* and battery identifier hash to maintain the integrity of discharge rate value */
static int get_battery_discharge_rate(sd_device *dev, int *ret) {
_cleanup_fclose_ FILE *f = NULL;
uint64_t current_hash_id;
const char *p;
int r;
assert(dev);
assert(ret);
f = fopen(DISCHARGE_RATE_FILEPATH, "re");
if (!f)
return log_debug_errno(errno, "Failed to read discharge rate from " DISCHARGE_RATE_FILEPATH ": %m");
r = get_system_battery_identifier_hash(dev, &current_hash_id);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to generate system battery identifier hash: %m");
for (;;) {
_cleanup_free_ char *stored_hash_id = NULL, *stored_discharge_rate = NULL, *line = NULL;
uint64_t hash_id;
int discharge_rate;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return log_debug_errno(r, "Failed to read discharge rate from " DISCHARGE_RATE_FILEPATH ": %m");
if (r == 0)
break;
p = line;
r = extract_many_words(&p, NULL, 0, &stored_hash_id, &stored_discharge_rate, NULL);
if (r < 0)
return log_debug_errno(r, "Failed to parse hash_id and discharge_rate read from " DISCHARGE_RATE_FILEPATH ": %m");
if (r != 2)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid number of items fetched from " DISCHARGE_RATE_FILEPATH);
r = safe_atou64(stored_hash_id, &hash_id);
if (r < 0)
return log_debug_errno(r, "Failed to parse hash ID read from " DISCHARGE_RATE_FILEPATH " location: %m");
if (current_hash_id != hash_id)
/* matching device not found, move to next line */
continue;
r = safe_atoi(stored_discharge_rate, &discharge_rate);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to parse discharge rate read from " DISCHARGE_RATE_FILEPATH ": %m");
if (!battery_discharge_rate_is_valid(discharge_rate))
return log_device_debug_errno(dev, SYNTHETIC_ERRNO(ERANGE), "Invalid battery discharge percentage rate per hour: %m");
*ret = discharge_rate;
return 0; /* matching device found, exit iteration */
}
return -ENOENT;
}
/* Write battery percentage discharge rate per hour along with system and battery identifier hash to file */
static int put_battery_discharge_rate(int estimated_battery_discharge_rate, uint64_t system_hash_id, bool trunc) {
int r;
if (!battery_discharge_rate_is_valid(estimated_battery_discharge_rate))
return log_debug_errno(SYNTHETIC_ERRNO(ERANGE),
"Invalid battery discharge rate %d%% per hour: %m",
estimated_battery_discharge_rate);
r = write_string_filef(
DISCHARGE_RATE_FILEPATH,
WRITE_STRING_FILE_CREATE | WRITE_STRING_FILE_MKDIR_0755 | (trunc ? WRITE_STRING_FILE_TRUNCATE : 0),
"%"PRIu64" %d",
system_hash_id,
estimated_battery_discharge_rate);
if (r < 0)
return log_debug_errno(r, "Failed to update %s: %m", DISCHARGE_RATE_FILEPATH);
log_debug("Estimated discharge rate %d%% per hour successfully saved to %s", estimated_battery_discharge_rate, DISCHARGE_RATE_FILEPATH);
return 0;
}
/* Estimate battery discharge rate using stored previous and current capacity over timestamp difference */
int estimate_battery_discharge_rate_per_hour(
Hashmap *last_capacity,
Hashmap *current_capacity,
usec_t before_timestamp,
usec_t after_timestamp) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
sd_device *dev;
bool trunc = true;
int r;
assert(last_capacity);
assert(current_capacity);
assert(before_timestamp < after_timestamp);
r = battery_enumerator_new(&e);
if (r < 0)
return log_debug_errno(r, "Failed to initialize battery enumerator: %m");
FOREACH_DEVICE(e, dev) {
int battery_last_capacity, battery_current_capacity, battery_discharge_rate;
const char *battery_name;
uint64_t system_hash_id;
r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name);
if (r < 0) {
log_device_debug_errno(dev, r, "Failed to read battery name, ignoring: %m");
continue;
}
battery_last_capacity = get_capacity_by_name(last_capacity, battery_name);
if (battery_last_capacity < 0)
continue;
battery_current_capacity = get_capacity_by_name(current_capacity, battery_name);
if (battery_current_capacity < 0)
continue;
if (battery_current_capacity >= battery_last_capacity) {
log_device_debug(dev, "Battery was not discharged during suspension");
continue;
}
r = get_system_battery_identifier_hash(dev, &system_hash_id);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to generate system battery identifier hash: %m");
log_device_debug(dev,
"%d%% was discharged in %s. Estimating discharge rate...",
battery_last_capacity - battery_current_capacity,
FORMAT_TIMESPAN(after_timestamp - before_timestamp, USEC_PER_SEC));
battery_discharge_rate = (battery_last_capacity - battery_current_capacity) * USEC_PER_HOUR / (after_timestamp - before_timestamp);
r = put_battery_discharge_rate(battery_discharge_rate, system_hash_id, trunc);
if (r < 0)
log_device_warning_errno(dev, r, "Failed to update battery discharge rate, ignoring: %m");
else
trunc = false;
}
return 0;
}
/* Calculate the suspend interval for each battery and then return their sum */
int get_total_suspend_interval(Hashmap *last_capacity, usec_t *ret) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
usec_t total_suspend_interval = 0;
sd_device *dev;
int r;
assert(last_capacity);
assert(ret);
r = battery_enumerator_new(&e);
if (r < 0)
return log_debug_errno(r, "Failed to initialize battery enumerator: %m");
FOREACH_DEVICE(e, dev) {
int battery_last_capacity, previous_discharge_rate = 0;
const char *battery_name;
usec_t suspend_interval;
r = sd_device_get_property_value(dev, "POWER_SUPPLY_NAME", &battery_name);
if (r < 0) {
log_device_debug_errno(dev, r, "Failed to read battery name, ignoring: %m");
continue;
}
battery_last_capacity = get_capacity_by_name(last_capacity, battery_name);
if (battery_last_capacity <= 0)
continue;
r = get_battery_discharge_rate(dev, &previous_discharge_rate);
if (r < 0) {
log_device_debug_errno(dev, r, "Failed to get discharge rate, ignoring: %m");
continue;
}
if (previous_discharge_rate == 0)
continue;
if (battery_last_capacity * 2 <= previous_discharge_rate) {
log_device_debug(dev, "Current battery capacity percentage too low compared to discharge rate");
continue;
}
suspend_interval = battery_last_capacity * USEC_PER_HOUR / previous_discharge_rate;
total_suspend_interval = usec_add(total_suspend_interval, suspend_interval);
}
/* Previous discharge rate is stored in per hour basis converted to usec.
* Subtract 30 minutes from the result to keep a buffer of 30 minutes before battery gets critical */
total_suspend_interval = usec_sub_unsigned(total_suspend_interval, 30 * USEC_PER_MINUTE);
if (total_suspend_interval == 0)
return -ENOENT;
*ret = total_suspend_interval;
return 0;
}
/* Return true if all batteries have acpi_btp support */
int battery_trip_point_alarm_exists(void) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
sd_device *dev;
int r;
r = battery_enumerator_new(&e);
if (r < 0)
return log_debug_errno(r, "Failed to initialize battery enumerator: %m");
FOREACH_DEVICE(e, dev) {
int battery_alarm;
const char *s;
r = sd_device_get_sysattr_value(dev, "alarm", &s);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to read battery alarm: %m");
r = safe_atoi(s, &battery_alarm);
if (r < 0)
return log_device_debug_errno(dev, r, "Failed to parse battery alarm: %m");
if (battery_alarm <= 0)
return false;
}
return true;
}
/* Return true if wakeup type is APM timer */
int check_wakeup_type(void) {
_cleanup_free_ char *s = NULL;
uint8_t wakeup_type_byte, tablesize;
size_t readsize;
int r;
/* implementation via dmi/entries */
r = read_full_virtual_file(SYS_ENTRY_RAW_FILE_TYPE1, &s, &readsize);
if (r < 0)
return log_debug_errno(r, "Unable to read %s: %m", SYS_ENTRY_RAW_FILE_TYPE1);
if (readsize < 25)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Only read %zu bytes from %s (expected 25)", readsize, SYS_ENTRY_RAW_FILE_TYPE1);
/* index 1 stores the size of table */
tablesize = (uint8_t) s[1];
if (tablesize < 25)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Table size lesser than the index[0x18] where waketype byte is available.");
wakeup_type_byte = (uint8_t) s[24];
/* 0 is Reserved and 8 is AC Power Restored. As per table 12 in
* https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.4.0.pdf */
if (wakeup_type_byte >= 128)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Expected value in range 0-127");
if (wakeup_type_byte == 3) {
log_debug("DMI BIOS System Information indicates wakeup type is APM Timer");
return true;
}
return false;
}
int can_sleep_state(char **types) {
_cleanup_free_ char *text = NULL;
int r;
if (strv_isempty(types))
return true;
/* If /sys is read-only we cannot sleep */
if (access("/sys/power/state", W_OK) < 0) {
log_debug_errno(errno, "/sys/power/state is not writable, cannot sleep: %m");
return false;
}
r = read_one_line_file("/sys/power/state", &text);
if (r < 0) {
log_debug_errno(r, "Failed to read /sys/power/state, cannot sleep: %m");
return false;
}
const char *found;
r = string_contains_word_strv(text, NULL, types, &found);
if (r < 0)
return log_debug_errno(r, "Failed to parse /sys/power/state: %m");
if (r > 0)
log_debug("Sleep mode \"%s\" is supported by the kernel.", found);
else if (DEBUG_LOGGING) {
_cleanup_free_ char *t = strv_join(types, "/");
log_debug("Sleep mode %s not supported by the kernel, sorry.", strnull(t));
}
return r;
}
int can_sleep_disk(char **types) {
_cleanup_free_ char *text = NULL;
int r;
if (strv_isempty(types))
return true;
/* If /sys is read-only we cannot sleep */
if (access("/sys/power/disk", W_OK) < 0) {
log_debug_errno(errno, "/sys/power/disk is not writable: %m");
return false;
}
r = read_one_line_file("/sys/power/disk", &text);
if (r < 0) {
log_debug_errno(r, "Couldn't read /sys/power/disk: %m");
return false;
}
for (const char *p = text;;) {
_cleanup_free_ char *word = NULL;
r = extract_first_word(&p, &word, NULL, 0);
if (r < 0)
return log_debug_errno(r, "Failed to parse /sys/power/disk: %m");
if (r == 0)
break;
char *s = word;
size_t l = strlen(s);
if (s[0] == '[' && s[l-1] == ']') {
s[l-1] = '\0';
s++;
}
if (strv_contains(types, s)) {
log_debug("Disk sleep mode \"%s\" is supported by the kernel.", s);
return true;
}
}
if (DEBUG_LOGGING) {
_cleanup_free_ char *t = strv_join(types, "/");
log_debug("Disk sleep mode %s not supported by the kernel, sorry.", strnull(t));
}
return false;
}
#define HIBERNATION_SWAP_THRESHOLD 0.98
SwapEntry* swap_entry_free(SwapEntry *se) {
if (!se)
return NULL;
free(se->device);
free(se->type);
return mfree(se);
}
HibernateLocation* hibernate_location_free(HibernateLocation *hl) {
if (!hl)
return NULL;
swap_entry_free(hl->swap);
return mfree(hl);
}
static int swap_device_to_device_id(const SwapEntry *swap, dev_t *ret_dev) {
struct stat sb;
int r;
assert(swap);
assert(swap->device);
assert(swap->type);
r = stat(swap->device, &sb);
if (r < 0)
return -errno;
if (streq(swap->type, "partition")) {
if (!S_ISBLK(sb.st_mode))
return -ENOTBLK;
*ret_dev = sb.st_rdev;
return 0;
}
return get_block_device(swap->device, ret_dev);
}
/*
* Attempt to calculate the swap file offset on supported filesystems. On unsupported
* filesystems, a debug message is logged and ret_offset is set to UINT64_MAX.
*/
static int calculate_swap_file_offset(const SwapEntry *swap, uint64_t *ret_offset) {
_cleanup_close_ int fd = -EBADF;
_cleanup_free_ struct fiemap *fiemap = NULL;
struct stat sb;
int r;
assert(swap);
assert(swap->device);
assert(streq(swap->type, "file"));
fd = open(swap->device, O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0)
return log_debug_errno(errno, "Failed to open swap file %s to determine on-disk offset: %m", swap->device);
if (fstat(fd, &sb) < 0)
return log_debug_errno(errno, "Failed to stat %s: %m", swap->device);
r = fd_is_fs_type(fd, BTRFS_SUPER_MAGIC);
if (r < 0)
return log_debug_errno(r, "Error checking %s for Btrfs filesystem: %m", swap->device);
if (r > 0) {
log_debug("%s: detection of swap file offset on Btrfs is not supported", swap->device);
*ret_offset = UINT64_MAX;
return 0;
}
r = read_fiemap(fd, &fiemap);
if (r < 0)
return log_debug_errno(r, "Unable to read extent map for '%s': %m", swap->device);
*ret_offset = fiemap->fm_extents[0].fe_physical / page_size();
return 0;
}
static int read_resume_files(dev_t *ret_resume, uint64_t *ret_resume_offset) {
_cleanup_free_ char *resume_str = NULL, *resume_offset_str = NULL;
uint64_t resume_offset = 0;
dev_t resume;
int r;
r = read_one_line_file("/sys/power/resume", &resume_str);
if (r < 0)
return log_debug_errno(r, "Error reading /sys/power/resume: %m");
r = parse_devnum(resume_str, &resume);
if (r < 0)
return log_debug_errno(r, "Error parsing /sys/power/resume device: %s: %m", resume_str);
r = read_one_line_file("/sys/power/resume_offset", &resume_offset_str);
if (r == -ENOENT)
log_debug_errno(r, "Kernel does not support resume_offset; swap file offset detection will be skipped.");
else if (r < 0)
return log_debug_errno(r, "Error reading /sys/power/resume_offset: %m");
else {
r = safe_atou64(resume_offset_str, &resume_offset);
if (r < 0)
return log_debug_errno(r, "Failed to parse value in /sys/power/resume_offset \"%s\": %m", resume_offset_str);
}
if (resume_offset > 0 && resume == 0)
log_debug("Warning: found /sys/power/resume_offset==%" PRIu64 ", but /sys/power/resume unset. Misconfiguration?",
resume_offset);
*ret_resume = resume;
*ret_resume_offset = resume_offset;
return 0;
}
/*
* Determine if the HibernateLocation matches the resume= (device) and resume_offset= (file).
*/
static bool location_is_resume_device(const HibernateLocation *location, dev_t sys_resume, uint64_t sys_offset) {
if (!location)
return false;
return sys_resume > 0 &&
sys_resume == location->devno &&
(sys_offset == location->offset || (sys_offset > 0 && location->offset == UINT64_MAX));
}
/*
* Attempt to find the hibernation location by parsing /proc/swaps, /sys/power/resume, and
* /sys/power/resume_offset.
*
* Returns:
* 1 - Values are set in /sys/power/resume and /sys/power/resume_offset.
* ret_hibernate_location will represent matching /proc/swap entry if identified or NULL if not.
*
* 0 - No values are set in /sys/power/resume and /sys/power/resume_offset.
ret_hibernate_location will represent the highest priority swap with most remaining space discovered in /proc/swaps.
*
* Negative value in the case of error.
*/
int find_hibernate_location(HibernateLocation **ret_hibernate_location) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL;
dev_t sys_resume = 0; /* Unnecessary initialization to appease gcc */
uint64_t sys_offset = 0;
bool resume_match = false;
int r;
/* read the /sys/power/resume & /sys/power/resume_offset values */
r = read_resume_files(&sys_resume, &sys_offset);
if (r < 0)
return r;
f = fopen("/proc/swaps", "re");
if (!f) {
log_debug_errno(errno, "Failed to open /proc/swaps: %m");
return errno == ENOENT ? -EOPNOTSUPP : -errno; /* Convert swap not supported to a recognizable error */
}
(void) fscanf(f, "%*s %*s %*s %*s %*s\n");
for (unsigned i = 1;; i++) {
_cleanup_(swap_entry_freep) SwapEntry *swap = NULL;
uint64_t swap_offset = 0;
int k;
swap = new0(SwapEntry, 1);
if (!swap)
return -ENOMEM;
k = fscanf(f,
"%ms " /* device/file */
"%ms " /* type of swap */
"%" PRIu64 /* swap size */
"%" PRIu64 /* used */
"%i\n", /* priority */
&swap->device, &swap->type, &swap->size, &swap->used, &swap->priority);
if (k == EOF)
break;
if (k != 5) {
log_debug("Failed to parse /proc/swaps:%u, ignoring", i);
continue;
}
if (streq(swap->type, "file")) {
if (endswith(swap->device, "\\040(deleted)")) {
log_debug("Ignoring deleted swap file '%s'.", swap->device);
continue;
}
r = calculate_swap_file_offset(swap, &swap_offset);
if (r < 0)
return r;
} else if (streq(swap->type, "partition")) {
const char *fn;
fn = path_startswith(swap->device, "/dev/");
if (fn && startswith(fn, "zram")) {
log_debug("%s: ignoring zram swap", swap->device);
continue;
}
} else {
log_debug("%s: swap type %s is unsupported for hibernation, ignoring", swap->device, swap->type);
continue;
}
/* prefer resume device or highest priority swap with most remaining space */
if (sys_resume == 0) {
if (hibernate_location && swap->priority < hibernate_location->swap->priority) {
log_debug("%s: ignoring device with lower priority", swap->device);
continue;
}
if (hibernate_location &&
(swap->priority == hibernate_location->swap->priority
&& swap->size - swap->used < hibernate_location->swap->size - hibernate_location->swap->used)) {
log_debug("%s: ignoring device with lower usable space", swap->device);
continue;
}
}
dev_t swap_device;
r = swap_device_to_device_id(swap, &swap_device);
if (r < 0)
return log_debug_errno(r, "%s: failed to query device number: %m", swap->device);
if (swap_device == 0)
return log_debug_errno(SYNTHETIC_ERRNO(ENODEV), "%s: not backed by block device.", swap->device);
hibernate_location = hibernate_location_free(hibernate_location);
hibernate_location = new(HibernateLocation, 1);
if (!hibernate_location)
return -ENOMEM;
*hibernate_location = (HibernateLocation) {
.devno = swap_device,
.offset = swap_offset,
.swap = TAKE_PTR(swap),
};
/* if the swap is the resume device, stop the loop */
if (location_is_resume_device(hibernate_location, sys_resume, sys_offset)) {
log_debug("%s: device matches configured resume settings.", hibernate_location->swap->device);
resume_match = true;
break;
}
log_debug("%s: is a candidate device.", hibernate_location->swap->device);
}
/* We found nothing at all */
if (!hibernate_location)
return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS),
"No possible swap partitions or files suitable for hibernation were found in /proc/swaps.");
/* resume= is set but a matching /proc/swaps entry was not found */
if (sys_resume != 0 && !resume_match)
return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS),
"No swap partitions or files matching resume config were found in /proc/swaps.");
if (hibernate_location->offset == UINT64_MAX) {
if (sys_offset == 0)
return log_debug_errno(SYNTHETIC_ERRNO(ENOSYS), "Offset detection failed and /sys/power/resume_offset is not set.");
hibernate_location->offset = sys_offset;
}
if (resume_match)
log_debug("Hibernation will attempt to use swap entry with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i",
hibernate_location->swap->device, major(hibernate_location->devno), minor(hibernate_location->devno),
hibernate_location->offset, hibernate_location->swap->priority);
else
log_debug("/sys/power/resume is not configured; attempting to hibernate with path: %s, device: %u:%u, offset: %" PRIu64 ", priority: %i",
hibernate_location->swap->device, major(hibernate_location->devno), minor(hibernate_location->devno),
hibernate_location->offset, hibernate_location->swap->priority);
*ret_hibernate_location = TAKE_PTR(hibernate_location);
if (resume_match)
return 1;
return 0;
}
static bool enough_swap_for_hibernation(void) {
_cleanup_free_ char *active = NULL;
_cleanup_(hibernate_location_freep) HibernateLocation *hibernate_location = NULL;
unsigned long long act = 0;
int r;
if (getenv_bool("SYSTEMD_BYPASS_HIBERNATION_MEMORY_CHECK") > 0)
return true;
r = find_hibernate_location(&hibernate_location);
if (r < 0)
return false;
/* If /sys/power/{resume,resume_offset} is configured but a matching entry
* could not be identified in /proc/swaps, user is likely using Btrfs with a swapfile;
* return true and let the system attempt hibernation.
*/
if (r > 0 && !hibernate_location) {
log_debug("Unable to determine remaining swap space; hibernation may fail");
return true;
}
if (!hibernate_location)
return false;
r = get_proc_field("/proc/meminfo", "Active(anon)", WHITESPACE, &active);
if (r < 0) {
log_debug_errno(r, "Failed to retrieve Active(anon) from /proc/meminfo: %m");
return false;
}
r = safe_atollu(active, &act);
if (r < 0) {
log_debug_errno(r, "Failed to parse Active(anon) from /proc/meminfo: %s: %m", active);
return false;
}
r = act <= (hibernate_location->swap->size - hibernate_location->swap->used) * HIBERNATION_SWAP_THRESHOLD;
log_debug("%s swap for hibernation, Active(anon)=%llu kB, size=%" PRIu64 " kB, used=%" PRIu64 " kB, threshold=%.2g%%",
r ? "Enough" : "Not enough", act, hibernate_location->swap->size, hibernate_location->swap->used, 100*HIBERNATION_SWAP_THRESHOLD);
return r;
}
int read_fiemap(int fd, struct fiemap **ret) {
_cleanup_free_ struct fiemap *fiemap = NULL, *result_fiemap = NULL;
struct stat statinfo;
uint32_t result_extents = 0;
uint64_t fiemap_start = 0, fiemap_length;
const size_t n_extra = DIV_ROUND_UP(sizeof(struct fiemap), sizeof(struct fiemap_extent));
if (fstat(fd, &statinfo) < 0)
return log_debug_errno(errno, "Cannot determine file size: %m");
if (!S_ISREG(statinfo.st_mode))
return -ENOTTY;
fiemap_length = statinfo.st_size;
/* Zero this out in case we run on a file with no extents */
fiemap = calloc(n_extra, sizeof(struct fiemap_extent));
if (!fiemap)
return -ENOMEM;
result_fiemap = malloc_multiply(n_extra, sizeof(struct fiemap_extent));
if (!result_fiemap)
return -ENOMEM;
/* XFS filesystem has incorrect implementation of fiemap ioctl and
* returns extents for only one block-group at a time, so we need
* to handle it manually, starting the next fiemap call from the end
* of the last extent
*/
while (fiemap_start < fiemap_length) {
*fiemap = (struct fiemap) {
.fm_start = fiemap_start,
.fm_length = fiemap_length,
.fm_flags = FIEMAP_FLAG_SYNC,
};
/* Find out how many extents there are */
if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0)
return log_debug_errno(errno, "Failed to read extents: %m");
/* Nothing to process */
if (fiemap->fm_mapped_extents == 0)
break;
/* Resize fiemap to allow us to read in the extents, result fiemap has to hold all
* the extents for the whole file. Add space for the initial struct fiemap. */
if (!greedy_realloc0((void**) &fiemap, n_extra + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent)))
return -ENOMEM;
fiemap->fm_extent_count = fiemap->fm_mapped_extents;
fiemap->fm_mapped_extents = 0;
if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0)
return log_debug_errno(errno, "Failed to read extents: %m");
/* Resize result_fiemap to allow us to copy in the extents */
if (!greedy_realloc((void**) &result_fiemap,
n_extra + result_extents + fiemap->fm_mapped_extents, sizeof(struct fiemap_extent)))
return -ENOMEM;
memcpy(result_fiemap->fm_extents + result_extents,
fiemap->fm_extents,
sizeof(struct fiemap_extent) * fiemap->fm_mapped_extents);
result_extents += fiemap->fm_mapped_extents;
/* Highly unlikely that it is zero */
if (_likely_(fiemap->fm_mapped_extents > 0)) {
uint32_t i = fiemap->fm_mapped_extents - 1;
fiemap_start = fiemap->fm_extents[i].fe_logical +
fiemap->fm_extents[i].fe_length;
if (fiemap->fm_extents[i].fe_flags & FIEMAP_EXTENT_LAST)
break;
}
}
memcpy(result_fiemap, fiemap, sizeof(struct fiemap));
result_fiemap->fm_mapped_extents = result_extents;
*ret = TAKE_PTR(result_fiemap);
return 0;
}
static int can_sleep_internal(const SleepConfig *sleep_config, SleepOperation operation, bool check_allowed);
static bool can_s2h(const SleepConfig *sleep_config) {
static const SleepOperation operations[] = {
SLEEP_SUSPEND,
SLEEP_HIBERNATE,
};
int r;
if (!clock_supported(CLOCK_BOOTTIME_ALARM)) {
log_debug("CLOCK_BOOTTIME_ALARM is not supported.");
return false;
}
for (size_t i = 0; i < ELEMENTSOF(operations); i++) {
r = can_sleep_internal(sleep_config, operations[i], false);
if (IN_SET(r, 0, -ENOSPC)) {
log_debug("Unable to %s system.", sleep_operation_to_string(operations[i]));
return false;
}
if (r < 0)
return log_debug_errno(r, "Failed to check if %s is possible: %m", sleep_operation_to_string(operations[i]));
}
return true;
}
static int can_sleep_internal(
const SleepConfig *sleep_config,
SleepOperation operation,
bool check_allowed) {
assert(operation >= 0);
assert(operation < _SLEEP_OPERATION_MAX);
if (check_allowed && !sleep_config->allow[operation]) {
log_debug("Sleep mode \"%s\" is disabled by configuration.", sleep_operation_to_string(operation));
return false;
}
if (operation == SLEEP_SUSPEND_THEN_HIBERNATE)
return can_s2h(sleep_config);
if (can_sleep_state(sleep_config->states[operation]) <= 0 ||
can_sleep_disk(sleep_config->modes[operation]) <= 0)
return false;
if (operation == SLEEP_SUSPEND)
return true;
if (!enough_swap_for_hibernation())
return -ENOSPC;
return true;
}
int can_sleep(SleepOperation operation) {
_cleanup_(free_sleep_configp) SleepConfig *sleep_config = NULL;
int r;
r = parse_sleep_config(&sleep_config);
if (r < 0)
return r;
return can_sleep_internal(sleep_config, operation, true);
}
SleepConfig* free_sleep_config(SleepConfig *sc) {
if (!sc)
return NULL;
for (SleepOperation i = 0; i < _SLEEP_OPERATION_MAX; i++) {
strv_free(sc->modes[i]);
strv_free(sc->states[i]);
}
return mfree(sc);
}
static const char* const sleep_operation_table[_SLEEP_OPERATION_MAX] = {
[SLEEP_SUSPEND] = "suspend",
[SLEEP_HIBERNATE] = "hibernate",
[SLEEP_HYBRID_SLEEP] = "hybrid-sleep",
[SLEEP_SUSPEND_THEN_HIBERNATE] = "suspend-then-hibernate",
};
DEFINE_STRING_TABLE_LOOKUP(sleep_operation, SleepOperation);