blob: 06068c4b7b8d4406249b645138d59d5380b1d248 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013-2015
* NVIDIA Corporation <www.nvidia.com>
*/
/* Tegra210 Clock control functions */
#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sysctr.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/timer.h>
#include <div64.h>
#include <fdtdec.h>
/*
* Clock types that we can use as a source. The Tegra210 has muxes for the
* peripheral clocks, and in most cases there are four options for the clock
* source. This gives us a clock 'type' and exploits what commonality exists
* in the device.
*
* Letters are obvious, except for T which means CLK_M, and S which means the
* clock derived from 32KHz. Beware that CLK_M (also called OSC in the
* datasheet) and PLL_M are different things. The former is the basic
* clock supplied to the SOC from an external oscillator. The latter is the
* memory clock PLL.
*
* See definitions in clock_id in the header file.
*/
enum clock_type_id {
CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
CLOCK_TYPE_MCPA, /* and so on */
CLOCK_TYPE_MCPT,
CLOCK_TYPE_PCM,
CLOCK_TYPE_PCMT,
CLOCK_TYPE_PDCT,
CLOCK_TYPE_ACPT,
CLOCK_TYPE_ASPTE,
CLOCK_TYPE_PMDACD2T,
CLOCK_TYPE_PCST,
CLOCK_TYPE_DP,
CLOCK_TYPE_PC2CC3M,
CLOCK_TYPE_PC2CC3S_T,
CLOCK_TYPE_PC2CC3M_T,
CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
CLOCK_TYPE_MC2CC3P_A,
CLOCK_TYPE_M,
CLOCK_TYPE_MCPTM2C2C3,
CLOCK_TYPE_PC2CC3T_S,
CLOCK_TYPE_AC2CC3P_TS2,
CLOCK_TYPE_PC01C00_C42C41TC40,
CLOCK_TYPE_COUNT,
CLOCK_TYPE_NONE = -1, /* invalid clock type */
};
enum {
CLOCK_MAX_MUX = 8 /* number of source options for each clock */
};
/*
* Clock source mux for each clock type. This just converts our enum into
* a list of mux sources for use by the code.
*
* Note:
* The extra column in each clock source array is used to store the mask
* bits in its register for the source.
*/
#define CLK(x) CLOCK_ID_ ## x
static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
{ CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_29},
{ CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
MASK_BITS_31_29},
{ CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_28},
/* CLOCK_TYPE_DP */
{ CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_28},
/* Additional clock types on Tegra114+ */
/* CLOCK_TYPE_PC2CC3M */
{ CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_PC2CC3S_T */
{ CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_PC2CC3M_T */
{ CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
{ CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_MC2CC3P_A */
{ CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_M */
{ CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
MASK_BITS_31_30},
/* CLOCK_TYPE_MCPTM2C2C3 */
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_PC2CC3T_S */
{ CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
MASK_BITS_31_29},
/* CLOCK_TYPE_AC2CC3P_TS2 */
{ CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
MASK_BITS_31_29},
/* CLOCK_TYPE_PC01C00_C42C41TC40 */
{ CLK(PERIPH), CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
MASK_BITS_31_29},
};
/*
* Clock type for each peripheral clock source. We put the name in each
* record just so it is easy to match things up
*/
#define TYPE(name, type) type
static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
/* 0x00 */
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
/* 0x08 */
TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
/* 0x10 */
TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
/* 0x18 */
TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
/* 0x20 */
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_23h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
/* 0x28 */
TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
/* 0x30 */
TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
/* 0x38 */
TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
/* 0x40 */
TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S5, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
/* 0x48 */
TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_4ah, CLOCK_TYPE_NONE),
TYPE(PERIPHC_4bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_4ch, CLOCK_TYPE_NONE),
TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
/* 0x50 */
TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
/* 0x58 */
TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_59h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
/* 0x60 */
TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
/* 0x68 */
TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
TYPE(PERIPHC_6eh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_6fh, CLOCK_TYPE_NONE),
/* 0x70 */
TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
/* 0x78 */
TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
TYPE(PERIPHC_7ah, CLOCK_TYPE_NONE),
TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
TYPE(PERIPHC_7ch, CLOCK_TYPE_NONE),
TYPE(PERIPHC_7dh, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
/* 0x80 */
TYPE(PERIPHC_SDMMC_LEGACY_TM, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NVDEC, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NVJPG, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NVENC, CLOCK_TYPE_NONE),
TYPE(PERIPHC_84h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_85h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_86h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_87h, CLOCK_TYPE_NONE),
/* 0x88 */
TYPE(PERIPHC_88h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_89h, CLOCK_TYPE_NONE),
TYPE(PERIPHC_DMIC3, CLOCK_TYPE_NONE),
TYPE(PERIPHC_APE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_QSPI, CLOCK_TYPE_PC01C00_C42C41TC40),
TYPE(PERIPHC_VI_I2C, CLOCK_TYPE_NONE),
TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
/* 0x90 */
TYPE(PERIPHC_MAUD, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TSECB, CLOCK_TYPE_NONE),
};
/*
* This array translates a periph_id to a periphc_internal_id
*
* Not present/matched up:
* uint vi_sensor; _VI_SENSOR_0, 0x1A8
* SPDIF - which is both 0x08 and 0x0c
*
*/
#define NONE(name) (-1)
#define OFFSET(name, value) PERIPHC_ ## name
#define INTERNAL_ID(id) (id & 0x000000ff)
static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
/* Low word: 31:0 */
NONE(CPU),
NONE(COP),
NONE(TRIGSYS),
NONE(ISPB),
NONE(RESERVED4),
NONE(TMR),
PERIPHC_UART1,
PERIPHC_UART2, /* and vfir 0x68 */
/* 8 */
NONE(GPIO),
PERIPHC_SDMMC2,
PERIPHC_SPDIF_IN,
PERIPHC_I2S2,
PERIPHC_I2C1,
NONE(RESERVED13),
PERIPHC_SDMMC1,
PERIPHC_SDMMC4,
/* 16 */
NONE(TCW),
PERIPHC_PWM,
PERIPHC_I2S3,
NONE(RESERVED19),
PERIPHC_VI,
NONE(RESERVED21),
NONE(USBD),
NONE(ISP),
/* 24 */
NONE(RESERVED24),
NONE(RESERVED25),
PERIPHC_DISP2,
PERIPHC_DISP1,
PERIPHC_HOST1X,
NONE(VCP),
PERIPHC_I2S1,
NONE(CACHE2),
/* Middle word: 63:32 */
NONE(MEM),
NONE(AHBDMA),
NONE(APBDMA),
NONE(RESERVED35),
NONE(RESERVED36),
NONE(STAT_MON),
NONE(RESERVED38),
NONE(FUSE),
/* 40 */
NONE(KFUSE),
PERIPHC_SBC1, /* SBCx = SPIx */
PERIPHC_NOR,
NONE(RESERVED43),
PERIPHC_SBC2,
NONE(XIO),
PERIPHC_SBC3,
PERIPHC_I2C5,
/* 48 */
NONE(DSI),
NONE(RESERVED49),
PERIPHC_HSI,
NONE(RESERVED51),
NONE(CSI),
NONE(RESERVED53),
PERIPHC_I2C2,
PERIPHC_UART3,
/* 56 */
NONE(MIPI_CAL),
PERIPHC_EMC,
NONE(USB2),
NONE(USB3),
NONE(RESERVED60),
PERIPHC_VDE,
NONE(BSEA),
NONE(BSEV),
/* Upper word 95:64 */
NONE(RESERVED64),
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_I2C3,
PERIPHC_SBC4,
PERIPHC_SDMMC3,
NONE(PCIE),
PERIPHC_OWR,
/* 72 */
NONE(AFI),
PERIPHC_CSITE,
NONE(PCIEXCLK),
NONE(AVPUCQ),
NONE(LA),
NONE(TRACECLKIN),
NONE(SOC_THERM),
NONE(DTV),
/* 80 */
NONE(RESERVED80),
PERIPHC_I2CSLOW,
NONE(DSIB),
PERIPHC_TSEC,
NONE(RESERVED84),
NONE(RESERVED85),
NONE(RESERVED86),
NONE(EMUCIF),
/* 88 */
NONE(RESERVED88),
NONE(XUSB_HOST),
NONE(RESERVED90),
PERIPHC_MSENC,
NONE(RESERVED92),
NONE(RESERVED93),
NONE(RESERVED94),
NONE(XUSB_DEV),
/* V word: 31:0 */
NONE(CPUG),
NONE(CPULP),
NONE(V_RESERVED2),
PERIPHC_MSELECT,
NONE(V_RESERVED4),
PERIPHC_I2S4,
PERIPHC_I2S5,
PERIPHC_I2C4,
/* 104 */
PERIPHC_SBC5,
PERIPHC_SBC6,
PERIPHC_AUDIO,
NONE(APBIF),
NONE(V_RESERVED12),
NONE(V_RESERVED13),
NONE(V_RESERVED14),
PERIPHC_HDA2CODEC2X,
/* 112 */
NONE(ATOMICS),
NONE(V_RESERVED17),
NONE(V_RESERVED18),
NONE(V_RESERVED19),
NONE(V_RESERVED20),
NONE(V_RESERVED21),
NONE(V_RESERVED22),
PERIPHC_ACTMON,
/* 120 */
NONE(EXTPERIPH1),
NONE(EXTPERIPH2),
NONE(EXTPERIPH3),
NONE(OOB),
PERIPHC_SATA,
PERIPHC_HDA,
NONE(TZRAM),
NONE(SE),
/* W word: 31:0 */
NONE(HDA2HDMICODEC),
NONE(SATACOLD),
NONE(W_RESERVED2),
NONE(W_RESERVED3),
NONE(W_RESERVED4),
NONE(W_RESERVED5),
NONE(W_RESERVED6),
NONE(W_RESERVED7),
/* 136 */
NONE(CEC),
NONE(W_RESERVED9),
NONE(W_RESERVED10),
NONE(W_RESERVED11),
NONE(W_RESERVED12),
NONE(W_RESERVED13),
NONE(XUSB_PADCTL),
NONE(W_RESERVED15),
/* 144 */
NONE(W_RESERVED16),
NONE(W_RESERVED17),
NONE(W_RESERVED18),
NONE(W_RESERVED19),
NONE(W_RESERVED20),
NONE(ENTROPY),
NONE(DDS),
NONE(W_RESERVED23),
/* 152 */
NONE(W_RESERVED24),
NONE(W_RESERVED25),
NONE(W_RESERVED26),
NONE(DVFS),
NONE(XUSB_SS),
NONE(W_RESERVED29),
NONE(W_RESERVED30),
NONE(W_RESERVED31),
/* X word: 31:0 */
NONE(SPARE),
NONE(X_RESERVED1),
NONE(X_RESERVED2),
NONE(X_RESERVED3),
NONE(CAM_MCLK),
NONE(CAM_MCLK2),
PERIPHC_I2C6,
NONE(X_RESERVED7),
/* 168 */
NONE(X_RESERVED8),
NONE(X_RESERVED9),
NONE(X_RESERVED10),
NONE(VIM2_CLK),
NONE(X_RESERVED12),
NONE(X_RESERVED13),
NONE(EMC_DLL),
NONE(X_RESERVED15),
/* 176 */
NONE(X_RESERVED16),
NONE(CLK72MHZ),
NONE(VIC),
NONE(X_RESERVED19),
NONE(X_RESERVED20),
NONE(DPAUX),
NONE(SOR0),
NONE(X_RESERVED23),
/* 184 */
NONE(GPU),
NONE(X_RESERVED25),
NONE(X_RESERVED26),
NONE(X_RESERVED27),
NONE(X_RESERVED28),
NONE(X_RESERVED29),
NONE(X_RESERVED30),
NONE(X_RESERVED31),
/* Y: 192 (192 - 223) */
NONE(Y_RESERVED0),
PERIPHC_SDMMC_LEGACY_TM,
PERIPHC_NVDEC,
PERIPHC_NVJPG,
NONE(Y_RESERVED4),
PERIPHC_DMIC3, /* 197 */
PERIPHC_APE, /* 198 */
NONE(Y_RESERVED7),
/* 200 */
NONE(Y_RESERVED8),
NONE(Y_RESERVED9),
NONE(Y_RESERVED10),
NONE(Y_RESERVED11),
NONE(Y_RESERVED12),
NONE(Y_RESERVED13),
NONE(Y_RESERVED14),
NONE(Y_RESERVED15),
/* 208 */
PERIPHC_VI_I2C, /* 208 */
NONE(Y_RESERVED17),
NONE(Y_RESERVED18),
PERIPHC_QSPI, /* 211 */
NONE(Y_RESERVED20),
NONE(Y_RESERVED21),
NONE(Y_RESERVED22),
NONE(Y_RESERVED23),
/* 216 */
NONE(Y_RESERVED24),
NONE(Y_RESERVED25),
NONE(Y_RESERVED26),
PERIPHC_NVENC, /* 219 */
NONE(Y_RESERVED28),
NONE(Y_RESERVED29),
NONE(Y_RESERVED30),
NONE(Y_RESERVED31),
};
/*
* PLL divider shift/mask tables for all PLL IDs.
*/
struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
/*
* NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
* If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
*/
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
.lock_ena = 32, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLC */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
.lock_ena = 4, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 }, /* PLLP */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
.lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLA */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
.lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLU */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 }, /* PLLD */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
.lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLX */
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
.lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
{ .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
.lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLS (gone)*/
{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 19, .p_mask = 0x1F,
.lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
};
/*
* Get the oscillator frequency, from the corresponding hardware configuration
* field. Note that Tegra30+ support 3 new higher freqs, but we map back
* to the old T20 freqs. Support for the higher oscillators is TBD.
*/
enum clock_osc_freq clock_get_osc_freq(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
/*
* 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
* 8 = 12MHz, 9 = 48MHz, 12 = 26MHz
*/
if (reg == 5) {
debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
/* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
return 4;
}
/*
* Map to most common (T20) freqs (except 38.4, handled above):
* 13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
*/
return reg >> 2;
}
/* Returns a pointer to the clock source register for a peripheral */
u32 *get_periph_source_reg(enum periph_id periph_id)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
enum periphc_internal_id internal_id;
/* Coresight is a special case */
if (periph_id == PERIPH_ID_CSI)
return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
assert(internal_id != -1);
if (internal_id < PERIPHC_VW_FIRST)
/* L, H, U */
return &clkrst->crc_clk_src[internal_id];
if (internal_id < PERIPHC_X_FIRST) {
/* VW */
internal_id -= PERIPHC_VW_FIRST;
return &clkrst->crc_clk_src_vw[internal_id];
}
if (internal_id < PERIPHC_Y_FIRST) {
/* X */
internal_id -= PERIPHC_X_FIRST;
return &clkrst->crc_clk_src_x[internal_id];
}
/* Y */
internal_id -= PERIPHC_Y_FIRST;
return &clkrst->crc_clk_src_y[internal_id];
}
int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
int *divider_bits, int *type)
{
enum periphc_internal_id internal_id;
if (!clock_periph_id_isvalid(periph_id))
return -1;
internal_id = periph_id_to_internal_id[periph_id];
if (!periphc_internal_id_isvalid(internal_id))
return -1;
*type = clock_periph_type[internal_id];
if (!clock_type_id_isvalid(*type))
return -1;
*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
if (*type == CLOCK_TYPE_PC2CC3M_T16)
*divider_bits = 16;
else
*divider_bits = 8;
return 0;
}
enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
{
enum periphc_internal_id internal_id;
int type;
if (!clock_periph_id_isvalid(periph_id))
return CLOCK_ID_NONE;
internal_id = periph_id_to_internal_id[periph_id];
if (!periphc_internal_id_isvalid(internal_id))
return CLOCK_ID_NONE;
type = clock_periph_type[internal_id];
if (!clock_type_id_isvalid(type))
return CLOCK_ID_NONE;
return clock_source[type][source];
}
/**
* Given a peripheral ID and the required source clock, this returns which
* value should be programmed into the source mux for that peripheral.
*
* There is special code here to handle the one source type with 5 sources.
*
* @param periph_id peripheral to start
* @param source PLL id of required parent clock
* @param mux_bits Set to number of bits in mux register: 2 or 4
* @param divider_bits Set to number of divider bits (8 or 16)
* @return mux value (0-4, or -1 if not found)
*/
int get_periph_clock_source(enum periph_id periph_id,
enum clock_id parent, int *mux_bits, int *divider_bits)
{
enum clock_type_id type;
int mux, err;
err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
assert(!err);
for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
if (clock_source[type][mux] == parent)
return mux;
/* if we get here, either us or the caller has made a mistake */
printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
parent);
return -1;
}
void clock_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *clk;
u32 reg;
/* Enable/disable the clock to this peripheral */
assert(clock_periph_id_isvalid(periph_id));
if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
clk = &clkrst->crc_clk_out_enb_x;
else
clk = &clkrst->crc_clk_out_enb_y;
reg = readl(clk);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, clk);
}
void reset_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *reset;
u32 reg;
/* Enable/disable reset to the peripheral */
assert(clock_periph_id_isvalid(periph_id));
if (periph_id < PERIPH_ID_VW_FIRST)
reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
reset = &clkrst->crc_rst_devices_x;
else
reset = &clkrst->crc_rst_devices_y;
reg = readl(reset);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, reset);
}
#ifdef CONFIG_OF_CONTROL
/*
* Convert a device tree clock ID to our peripheral ID. They are mostly
* the same but we are very cautious so we check that a valid clock ID is
* provided.
*
* @param clk_id Clock ID according to tegra210 device tree binding
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
*/
enum periph_id clk_id_to_periph_id(int clk_id)
{
if (clk_id > PERIPH_ID_COUNT)
return PERIPH_ID_NONE;
switch (clk_id) {
case PERIPH_ID_RESERVED4:
case PERIPH_ID_RESERVED25:
case PERIPH_ID_RESERVED35:
case PERIPH_ID_RESERVED36:
case PERIPH_ID_RESERVED38:
case PERIPH_ID_RESERVED43:
case PERIPH_ID_RESERVED49:
case PERIPH_ID_RESERVED53:
case PERIPH_ID_RESERVED64:
case PERIPH_ID_RESERVED84:
case PERIPH_ID_RESERVED85:
case PERIPH_ID_RESERVED86:
case PERIPH_ID_RESERVED88:
case PERIPH_ID_RESERVED90:
case PERIPH_ID_RESERVED92:
case PERIPH_ID_RESERVED93:
case PERIPH_ID_RESERVED94:
case PERIPH_ID_V_RESERVED2:
case PERIPH_ID_V_RESERVED4:
case PERIPH_ID_V_RESERVED17:
case PERIPH_ID_V_RESERVED18:
case PERIPH_ID_V_RESERVED19:
case PERIPH_ID_V_RESERVED20:
case PERIPH_ID_V_RESERVED21:
case PERIPH_ID_V_RESERVED22:
case PERIPH_ID_W_RESERVED2:
case PERIPH_ID_W_RESERVED3:
case PERIPH_ID_W_RESERVED4:
case PERIPH_ID_W_RESERVED5:
case PERIPH_ID_W_RESERVED6:
case PERIPH_ID_W_RESERVED7:
case PERIPH_ID_W_RESERVED9:
case PERIPH_ID_W_RESERVED10:
case PERIPH_ID_W_RESERVED11:
case PERIPH_ID_W_RESERVED12:
case PERIPH_ID_W_RESERVED13:
case PERIPH_ID_W_RESERVED15:
case PERIPH_ID_W_RESERVED16:
case PERIPH_ID_W_RESERVED17:
case PERIPH_ID_W_RESERVED18:
case PERIPH_ID_W_RESERVED19:
case PERIPH_ID_W_RESERVED20:
case PERIPH_ID_W_RESERVED23:
case PERIPH_ID_W_RESERVED29:
case PERIPH_ID_W_RESERVED30:
case PERIPH_ID_W_RESERVED31:
return PERIPH_ID_NONE;
default:
return clk_id;
}
}
#endif /* CONFIG_OF_CONTROL */
/*
* T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
* PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
*/
void tegra210_setup_pllp(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
/* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
/* OUT1 */
/* Assert RSTN before enable */
reg = PLLP_OUT1_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* Set divisor and reenable */
reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* OUT3, 4 */
/* Assert RSTN before enable */
reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
/* Set divisor and reenable */
reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
/*
* NOTE: If you want to change PLLP_OUT2 away from 204MHz,
* you can change PLLP_BASE DIVP here. Currently defaults
* to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
* See Table 13 in section 5.1.4 in T210 TRM for more info.
*/
}
void clock_early_init(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
u32 data;
tegra210_setup_pllp();
/*
* PLLC output frequency set to 600Mhz
* PLLD output frequency set to 925Mhz
*/
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
break;
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
break;
case CLOCK_OSC_FREQ_19_2:
clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
break;
case CLOCK_OSC_FREQ_38_4:
clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
break;
default:
/*
* These are not supported. It is too early to print a
* message and the UART likely won't work anyway due to the
* oscillator being wrong.
*/
break;
}
/* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
(1 << PLLC_IDDQ));
udelay(2);
/*
* PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
* to pll_out[1]
*/
clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
(1 << PLLC_RESET));
udelay(2);
/* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
udelay(2);
}
unsigned int clk_m_get_rate(unsigned parent_rate)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 value, div;
value = readl(&clkrst->crc_spare_reg0);
div = ((value >> 2) & 0x3) + 1;
return parent_rate / div;
}
void arch_timer_init(void)
{
struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
u32 freq, val;
freq = clock_get_rate(CLOCK_ID_CLK_M);
debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
if (current_el() == 3)
asm("msr cntfrq_el0, %0\n" : : "r" (freq));
/* Only Tegra114+ has the System Counter regs */
debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
writel(freq, &sysctr->cntfid0);
val = readl(&sysctr->cntcr);
val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
writel(val, &sysctr->cntcr);
debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
}
#define PLLREFE_MISC 0x4c8
#define PLLREFE_MISC_LOCK BIT(27)
#define PLLREFE_MISC_IDDQ BIT(24)
#define PLLREFE_BASE 0x4c4
#define PLLREFE_BASE_BYPASS BIT(31)
#define PLLREFE_BASE_ENABLE BIT(30)
#define PLLREFE_BASE_REF_DIS BIT(29)
#define PLLREFE_BASE_KCP(kcp) (((kcp) & 0x3) << 27)
#define PLLREFE_BASE_KVCO BIT(26)
#define PLLREFE_BASE_DIVP(p) (((p) & 0x1f) << 16)
#define PLLREFE_BASE_DIVN(n) (((n) & 0xff) << 8)
#define PLLREFE_BASE_DIVM(m) (((m) & 0xff) << 0)
static int tegra_pllref_enable(void)
{
u32 value;
unsigned long start;
/*
* This sequence comes from Tegra X1 TRM section "Cold Boot, with no
* Recovery Mode or Boot from USB", sub-section "PLLREFE".
*/
value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
value &= ~PLLREFE_MISC_IDDQ;
writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
udelay(5);
value = PLLREFE_BASE_ENABLE |
PLLREFE_BASE_KCP(0) |
PLLREFE_BASE_DIVP(0) |
PLLREFE_BASE_DIVN(0x41) |
PLLREFE_BASE_DIVM(4);
writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
debug("waiting for pllrefe lock\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
if (value & PLLREFE_MISC_LOCK)
break;
}
if (!(value & PLLREFE_MISC_LOCK)) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
return 0;
}
#define PLLE_SS_CNTL 0x68
#define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
#define PLLE_SS_CNTL_SSCINVERT (1 << 15)
#define PLLE_SS_CNTL_SSCCENTER (1 << 14)
#define PLLE_SS_CNTL_SSCBYP (1 << 12)
#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
#define PLLE_BASE 0x0e8
#define PLLE_BASE_ENABLE (1 << 31)
#define PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
#define PLLE_MISC 0x0ec
#define PLLE_MISC_IDDQ_SWCTL (1 << 14)
#define PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
#define PLLE_MISC_LOCK (1 << 11)
#define PLLE_PTS (1 << 8)
#define PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
#define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
#define PLLE_MISC_KVCO (1 << 0)
#define PLLE_AUX 0x48c
#define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
#define PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
#define PLLE_AUX_SEQ_ENABLE (1 << 24)
#define PLLE_AUX_SS_SWCTL (1 << 6)
#define PLLE_AUX_ENABLE_SWCTL (1 << 4)
#define PLLE_AUX_USE_LOCKDET (1 << 3)
int tegra_plle_enable(void)
{
u32 value;
unsigned long start;
/* PLLREF feeds PLLE */
tegra_pllref_enable();
/*
* This sequence comes from Tegra X1 TRM section "Cold Boot, with no
* Recovery Mode or Boot from USB", sub-section "PLLEs".
*/
/* 1. Select XTAL as the source */
value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
value &= ~PLLE_AUX_REF_SEL_PLLREFE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
/* 2. Wait 5 us */
udelay(5);
/*
* 3. Program the following registers to generate a low jitter 100MHz
* clock.
*/
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value &= ~PLLE_BASE_PLDIV_CML(0x1f);
value &= ~PLLE_BASE_NDIV(0xff);
value &= ~PLLE_BASE_MDIV(0xff);
value |= PLLE_BASE_PLDIV_CML(0xe);
value |= PLLE_BASE_NDIV(0x7d);
value |= PLLE_BASE_MDIV(2);
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value |= PLLE_PTS;
value &= ~PLLE_MISC_KCP(3);
value &= ~PLLE_MISC_VREG_CTRL(3);
value &= ~PLLE_MISC_KVCO;
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value |= PLLE_BASE_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
/* 4. Wait for LOCK */
debug("waiting for plle lock\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if (value & PLLE_MISC_LOCK)
break;
}
if (!(value & PLLE_MISC_LOCK)) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
/* 5. Enable SSA */
value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value &= ~PLLE_SS_CNTL_SSCINC(0xff);
value |= PLLE_SS_CNTL_SSCINC(1);
value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
value |= PLLE_SS_CNTL_SSCMAX(0x21);
value &= ~PLLE_SS_CNTL_SSCINVERT;
value &= ~PLLE_SS_CNTL_SSCCENTER;
value &= ~PLLE_SS_CNTL_BYPASS_SS;
value &= ~PLLE_SS_CNTL_SSCBYP;
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
/* 6. Wait 300 ns */
udelay(1);
value &= ~PLLE_SS_CNTL_INTERP_RESET;
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
/* 7. Enable HW power sequencer for PLLE */
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value &= ~PLLE_MISC_IDDQ_SWCTL;
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
value &= ~PLLE_AUX_SS_SWCTL;
value &= ~PLLE_AUX_ENABLE_SWCTL;
value |= PLLE_AUX_SS_SEQ_INCLUDE;
value |= PLLE_AUX_USE_LOCKDET;
writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
/* 8. Wait 1 us */
udelay(1);
value |= PLLE_AUX_SEQ_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
return 0;
}
struct periph_clk_init periph_clk_init_table[] = {
{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
{ PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
{ -1, },
};