blob: a0fca0d88083105e07a71cb4cccd23ed0751f325 [file] [log] [blame]
/*
* Copyright 2007,2009-2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <pci.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/fsl_pci.h>
#include <asm/io.h>
#include <libfdt.h>
#include <fdt_support.h>
#include <netdev.h>
#include <fdtdec.h>
#include <errno.h>
#include <malloc.h>
DECLARE_GLOBAL_DATA_PTR;
static void *get_fdt_virt(void)
{
return (void *)CONFIG_SYS_TMPVIRT;
}
static uint64_t get_fdt_phys(void)
{
return (uint64_t)(uintptr_t)gd->fdt_blob;
}
static void map_fdt_as(int esel)
{
u32 mas0, mas1, mas2, mas3, mas7;
uint64_t fdt_phys = get_fdt_phys();
unsigned long fdt_phys_tlb = fdt_phys & ~0xffffful;
unsigned long fdt_virt_tlb = (ulong)get_fdt_virt() & ~0xffffful;
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(esel);
mas1 = MAS1_VALID | MAS1_TID(0) | MAS1_TS | MAS1_TSIZE(BOOKE_PAGESZ_1M);
mas2 = FSL_BOOKE_MAS2(fdt_virt_tlb, 0);
mas3 = FSL_BOOKE_MAS3(fdt_phys_tlb, 0, MAS3_SW|MAS3_SR);
mas7 = FSL_BOOKE_MAS7(fdt_phys_tlb);
write_tlb(mas0, mas1, mas2, mas3, mas7);
}
uint64_t get_phys_ccsrbar_addr_early(void)
{
void *fdt = get_fdt_virt();
uint64_t r;
/*
* To be able to read the FDT we need to create a temporary TLB
* map for it.
*/
map_fdt_as(10);
r = fdt_get_base_address(fdt, fdt_path_offset(fdt, "/soc"));
disable_tlb(10);
return r;
}
int board_early_init_f(void)
{
return 0;
}
int checkboard(void)
{
return 0;
}
static int pci_map_region(void *fdt, int pci_node, int range_id,
phys_size_t *ppaddr, pci_addr_t *pvaddr,
pci_size_t *psize, ulong *pmap_addr)
{
uint64_t addr;
uint64_t size;
ulong map_addr;
int r;
r = fdt_read_range(fdt, pci_node, 0, NULL, &addr, &size);
if (r)
return r;
if (ppaddr)
*ppaddr = addr;
if (psize)
*psize = size;
if (!pmap_addr)
return 0;
map_addr = *pmap_addr;
/* Align map_addr */
map_addr += size - 1;
map_addr &= ~(size - 1);
if (map_addr + size >= CONFIG_SYS_PCI_MAP_END)
return -1;
/* Map virtual memory for range */
assert(!tlb_map_range(map_addr, addr, size, TLB_MAP_IO));
*pmap_addr = map_addr + size;
if (pvaddr)
*pvaddr = map_addr;
return 0;
}
void pci_init_board(void)
{
struct pci_controller *pci_hoses;
void *fdt = get_fdt_virt();
int pci_node = -1;
int pci_num = 0;
int pci_count = 0;
ulong map_addr;
puts("\n");
/* Start MMIO and PIO range maps above RAM */
map_addr = CONFIG_SYS_PCI_MAP_START;
/* Count and allocate PCI buses */
pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
"device_type", "pci", 4);
while (pci_node != -FDT_ERR_NOTFOUND) {
pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
"device_type", "pci", 4);
pci_count++;
}
if (pci_count) {
pci_hoses = malloc(sizeof(struct pci_controller) * pci_count);
} else {
printf("PCI: disabled\n\n");
return;
}
/* Spawn PCI buses based on device tree */
pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
"device_type", "pci", 4);
while (pci_node != -FDT_ERR_NOTFOUND) {
struct fsl_pci_info pci_info = { };
const fdt32_t *reg;
int r;
reg = fdt_getprop(fdt, pci_node, "reg", NULL);
pci_info.regs = fdt_translate_address(fdt, pci_node, reg);
/* Map MMIO range */
r = pci_map_region(fdt, pci_node, 0, &pci_info.mem_phys, NULL,
&pci_info.mem_size, &map_addr);
if (r)
break;
/* Map PIO range */
r = pci_map_region(fdt, pci_node, 1, &pci_info.io_phys, NULL,
&pci_info.io_size, &map_addr);
if (r)
break;
/*
* The PCI framework finds virtual addresses for the buses
* through our address map, so tell it the physical addresses.
*/
pci_info.mem_bus = pci_info.mem_phys;
pci_info.io_bus = pci_info.io_phys;
/* Instantiate */
pci_info.pci_num = pci_num + 1;
fsl_setup_hose(&pci_hoses[pci_num], pci_info.regs);
printf("PCI: base address %lx\n", pci_info.regs);
fsl_pci_init_port(&pci_info, &pci_hoses[pci_num], pci_num);
/* Jump to next PCI node */
pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
"device_type", "pci", 4);
pci_num++;
}
puts("\n");
}
int last_stage_init(void)
{
void *fdt = get_fdt_virt();
int len = 0;
const uint64_t *prop;
int chosen;
chosen = fdt_path_offset(fdt, "/chosen");
if (chosen < 0) {
printf("Couldn't find /chosen node in fdt\n");
return -EIO;
}
/* -kernel boot */
prop = fdt_getprop(fdt, chosen, "qemu,boot-kernel", &len);
if (prop && (len >= 8))
setenv_hex("qemu_kernel_addr", *prop);
/* Give the user a variable for the host fdt */
setenv_hex("fdt_addr_r", (ulong)fdt);
return 0;
}
static uint64_t get_linear_ram_size(void)
{
void *fdt = get_fdt_virt();
const void *prop;
int memory;
int len;
memory = fdt_path_offset(fdt, "/memory");
prop = fdt_getprop(fdt, memory, "reg", &len);
if (prop && len >= 16)
return *(uint64_t *)(prop+8);
panic("Couldn't determine RAM size");
}
int board_eth_init(bd_t *bis)
{
return pci_eth_init(bis);
}
#if defined(CONFIG_OF_BOARD_SETUP)
int ft_board_setup(void *blob, bd_t *bd)
{
FT_FSL_PCI_SETUP;
return 0;
}
#endif
void print_laws(void)
{
/* We don't emulate LAWs yet */
}
phys_size_t fixed_sdram(void)
{
return get_linear_ram_size();
}
phys_size_t fsl_ddr_sdram_size(void)
{
return get_linear_ram_size();
}
void init_tlbs(void)
{
phys_size_t ram_size;
/*
* Create a temporary AS=1 map for the fdt
*
* We use ESEL=0 here to overwrite the previous AS=0 map for ourselves
* which was only 4k big. This way we don't have to clear any other maps.
*/
map_fdt_as(0);
/* Fetch RAM size from the fdt */
ram_size = get_linear_ram_size();
/* And remove our fdt map again */
disable_tlb(0);
/* Create an internal map of manually created TLB maps */
init_used_tlb_cams();
/* Create a dynamic AS=0 CCSRBAR mapping */
assert(!tlb_map_range(CONFIG_SYS_CCSRBAR, CONFIG_SYS_CCSRBAR_PHYS,
1024 * 1024, TLB_MAP_IO));
/* Create a RAM map that spans all accessible RAM */
setup_ddr_tlbs(ram_size >> 20);
/* Create a map for the TLB */
assert(!tlb_map_range((ulong)get_fdt_virt(), get_fdt_phys(),
1024 * 1024, TLB_MAP_RAM));
}
void init_laws(void)
{
/* We don't emulate LAWs yet */
}
static uint32_t get_cpu_freq(void)
{
void *fdt = get_fdt_virt();
int cpus_node = fdt_path_offset(fdt, "/cpus");
int cpu_node = fdt_first_subnode(fdt, cpus_node);
const char *prop = "clock-frequency";
return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
}
void get_sys_info(sys_info_t *sys_info)
{
int freq = get_cpu_freq();
memset(sys_info, 0, sizeof(sys_info_t));
sys_info->freq_systembus = freq;
sys_info->freq_ddrbus = freq;
sys_info->freq_processor[0] = freq;
}
int get_clocks (void)
{
sys_info_t sys_info;
get_sys_info(&sys_info);
gd->cpu_clk = sys_info.freq_processor[0];
gd->bus_clk = sys_info.freq_systembus;
gd->mem_clk = sys_info.freq_ddrbus;
gd->arch.lbc_clk = sys_info.freq_ddrbus;
return 0;
}
unsigned long get_tbclk (void)
{
void *fdt = get_fdt_virt();
int cpus_node = fdt_path_offset(fdt, "/cpus");
int cpu_node = fdt_first_subnode(fdt, cpus_node);
const char *prop = "timebase-frequency";
return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
}
/********************************************
* get_bus_freq
* return system bus freq in Hz
*********************************************/
ulong get_bus_freq (ulong dummy)
{
sys_info_t sys_info;
get_sys_info(&sys_info);
return sys_info.freq_systembus;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
/*
* The QEMU u-boot target only needs to drive the first core,
* spinning and device tree nodes get driven by QEMU itself
*/
return 1;
}
/*
* Return a 32-bit mask indicating which cores are present on this SOC.
*/
u32 cpu_mask(void)
{
return (1 << cpu_numcores()) - 1;
}