blob: 30e5cdb1717ae28469ddff6990d8b7872bf90597 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2011
* Corscience GmbH & Co. KG - Simon Schwarz <schwarz@corscience.de>
* - Added prep subcommand support
* - Reorganized source - modeled after powerpc version
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* Copyright (C) 2001 Erik Mouw (J.A.K.Mouw@its.tudelft.nl)
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <dm/root.h>
#include <image.h>
#include <u-boot/zlib.h>
#include <asm/byteorder.h>
#include <linux/libfdt.h>
#include <mapmem.h>
#include <fdt_support.h>
#include <asm/bootm.h>
#include <asm/secure.h>
#include <linux/compiler.h>
#include <bootm.h>
#include <vxworks.h>
#include <tee/ta_vx_helper.h>
#ifdef CONFIG_ARMV7_NONSEC
#include <asm/armv7.h>
#endif
#include <asm/setup.h>
#if defined(CONFIG_ZIRCON_BOOT_IMAGE)
#include <zircon_uboot/zircon.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
static struct tag *params;
static ulong get_sp(void)
{
ulong ret;
asm("mov %0, sp" : "=r"(ret) : );
return ret;
}
void arch_lmb_reserve(struct lmb *lmb)
{
ulong sp, bank_end;
int bank;
/*
* Booting a (Linux) kernel image
*
* Allocate space for command line and board info - the
* address should be as high as possible within the reach of
* the kernel (see CONFIG_SYS_BOOTMAPSZ settings), but in unused
* memory, which means far enough below the current stack
* pointer.
*/
sp = get_sp();
debug("## Current stack ends at 0x%08lx ", sp);
/* adjust sp by 4K to be safe */
sp -= 4096;
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (sp < gd->bd->bi_dram[bank].start)
continue;
bank_end = gd->bd->bi_dram[bank].start +
gd->bd->bi_dram[bank].size;
if (sp >= bank_end)
continue;
lmb_reserve(lmb, sp, bank_end - sp);
break;
}
}
__weak void board_quiesce_devices(void)
{
}
#ifndef CONFIG_TA_VX
static inline void vx_finalize_or_panic(void) {}
#else
static void vx_finalize_or_panic(void)
{
printf("VX: finalizing policies and configurations...\n");
ta_vx_exit_bootloader_or_panic(); // Panics on error.
}
#endif /* CONFIG_TA_VX */
/**
* announce_and_cleanup() - Print message and prepare for kernel boot
*
* @fake: non-zero to do everything except actually boot
*/
static void announce_and_cleanup(int fake)
{
printf("\nStarting kernel ...%s\n\n", fake ?
"(fake run for tracing)" : "");
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_HANDOFF, "start_kernel");
#ifdef CONFIG_BOOTSTAGE_FDT
bootstage_fdt_add_report();
#endif
#ifdef CONFIG_BOOTSTAGE_REPORT
bootstage_report();
#endif
#ifdef CONFIG_USB_DEVICE
udc_disconnect();
#endif
/* Finalize Verified Execution policies and configurations. */
vx_finalize_or_panic();
board_quiesce_devices();
/*
* Call remove function of all devices with a removal flag set.
* This may be useful for last-stage operations, like cancelling
* of DMA operation or releasing device internal buffers.
*/
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
cleanup_before_linux();
}
static void setup_start_tag (bd_t *bd)
{
params = (struct tag *)bd->bi_boot_params;
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size (tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
params = tag_next (params);
}
static void setup_memory_tags(bd_t *bd)
{
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32);
params->u.mem.start = bd->bi_dram[i].start;
params->u.mem.size = bd->bi_dram[i].size;
params = tag_next (params);
}
}
static void setup_commandline_tag(bd_t *bd, char *commandline)
{
char *p;
if (!commandline)
return;
/* eat leading white space */
for (p = commandline; *p == ' '; p++);
/* skip non-existent command lines so the kernel will still
* use its default command line.
*/
if (*p == '\0')
return;
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size =
(sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2;
strcpy (params->u.cmdline.cmdline, p);
params = tag_next (params);
}
static void setup_initrd_tag(bd_t *bd, ulong initrd_start, ulong initrd_end)
{
/* an ATAG_INITRD node tells the kernel where the compressed
* ramdisk can be found. ATAG_RDIMG is a better name, actually.
*/
params->hdr.tag = ATAG_INITRD2;
params->hdr.size = tag_size (tag_initrd);
params->u.initrd.start = initrd_start;
params->u.initrd.size = initrd_end - initrd_start;
params = tag_next (params);
}
static void setup_serial_tag(struct tag **tmp)
{
struct tag *params = *tmp;
struct tag_serialnr serialnr;
get_board_serial(&serialnr);
params->hdr.tag = ATAG_SERIAL;
params->hdr.size = tag_size (tag_serialnr);
params->u.serialnr.low = serialnr.low;
params->u.serialnr.high= serialnr.high;
params = tag_next (params);
*tmp = params;
}
static void setup_revision_tag(struct tag **in_params)
{
u32 rev = 0;
rev = get_board_rev();
params->hdr.tag = ATAG_REVISION;
params->hdr.size = tag_size (tag_revision);
params->u.revision.rev = rev;
params = tag_next (params);
}
static void setup_end_tag(bd_t *bd)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
__weak void setup_board_tags(struct tag **in_params) {}
#ifdef CONFIG_ARM64
static void do_nonsec_virt_switch(void)
{
smp_kick_all_cpus();
dcache_disable(); /* flush cache before swtiching to EL2 */
}
#endif
/* Subcommand: PREP */
static void boot_prep_linux(bootm_headers_t *images)
{
char *commandline = env_get("bootargs");
if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) {
#ifdef CONFIG_OF_LIBFDT
debug("using: FDT\n");
if (image_setup_linux(images)) {
printf("FDT creation failed! hanging...");
hang();
}
#endif
} else if (BOOTM_ENABLE_TAGS) {
debug("using: ATAGS\n");
setup_start_tag(gd->bd);
if (BOOTM_ENABLE_SERIAL_TAG)
setup_serial_tag(&params);
if (BOOTM_ENABLE_CMDLINE_TAG)
setup_commandline_tag(gd->bd, commandline);
if (BOOTM_ENABLE_REVISION_TAG)
setup_revision_tag(&params);
if (BOOTM_ENABLE_MEMORY_TAGS)
setup_memory_tags(gd->bd);
if (BOOTM_ENABLE_INITRD_TAG) {
/*
* In boot_ramdisk_high(), it may relocate ramdisk to
* a specified location. And set images->initrd_start &
* images->initrd_end to relocated ramdisk's start/end
* addresses. So use them instead of images->rd_start &
* images->rd_end when possible.
*/
if (images->initrd_start && images->initrd_end) {
setup_initrd_tag(gd->bd, images->initrd_start,
images->initrd_end);
} else if (images->rd_start && images->rd_end) {
setup_initrd_tag(gd->bd, images->rd_start,
images->rd_end);
}
}
setup_board_tags(&params);
setup_end_tag(gd->bd);
} else {
printf("FDT and ATAGS support not compiled in - hanging\n");
hang();
}
}
__weak bool armv7_boot_nonsec_default(void)
{
#ifdef CONFIG_ARMV7_BOOT_SEC_DEFAULT
return false;
#else
return true;
#endif
}
#ifdef CONFIG_ARMV7_NONSEC
bool armv7_boot_nonsec(void)
{
char *s = env_get("bootm_boot_mode");
bool nonsec = armv7_boot_nonsec_default();
if (s && !strcmp(s, "sec"))
nonsec = false;
if (s && !strcmp(s, "nonsec"))
nonsec = true;
return nonsec;
}
#endif
#ifdef CONFIG_ARM64
__weak void update_os_arch_secondary_cores(uint8_t os_arch)
{
}
#ifdef CONFIG_ARMV8_SWITCH_TO_EL1
static void switch_to_el1(void)
{
if ((IH_ARCH_DEFAULT == IH_ARCH_ARM64) &&
(images.os.arch == IH_ARCH_ARM))
armv8_switch_to_el1(0, (u64)gd->bd->bi_arch_number,
(u64)images.ft_addr, 0,
(u64)images.ep,
ES_TO_AARCH32);
else
armv8_switch_to_el1((u64)images.ft_addr, 0, 0, 0,
images.ep,
ES_TO_AARCH64);
}
#endif
#endif
/* Subcommand: GO */
extern void jump_to_a32_kernel(unsigned long, unsigned long, unsigned long);
static void boot_jump_linux(bootm_headers_t *images, int flag)
{
#ifdef CONFIG_ARM64
void (*kernel_entry)(void *fdt_addr, void *res0, void *res1,
void *res2);
int fake = (flag & BOOTM_STATE_OS_FAKE_GO);
unsigned long machid = 0xf81;
kernel_entry = (void (*)(void *fdt_addr, void *res0, void *res1,
void *res2))images->ep;
debug("## Transferring control to Linux (at address %lx)...\n",
(ulong) kernel_entry);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
#if CONFIG_AML_IMAGE_DEBUG
printf("images->legacy_hdr_os: %lx\n", images->legacy_hdr_os);
printf("images->legacy_hdr_os_copy: %lx\n", images->legacy_hdr_os_copy);
printf("images->legacy_hdr_valid: %lx\n", images->legacy_hdr_valid);
#if IMAGE_ENABLE_FIT
printf("images->fit_uname_cfg: %lx\n", images->fit_uname_cfg);
printf("images->fit_hdr_os: %lx\n", images->fit_hdr_os);
printf("images->fit_uname_os: %lx\n", images->fit_uname_os);
printf("images->fit_noffset_os: %lx\n", images->fit_noffset_os);
printf("images->fit_hdr_rd: %lx\n", images->fit_hdr_rd);
printf("images->fit_uname_rd: %lx\n", images->fit_uname_rd);
printf("images->fit_noffset_rd: %lx\n", images->fit_noffset_rd);
printf("images->fit_hdr_fdt: %lx\n", images->fit_hdr_fdt);
printf("images->fit_uname_fdt: %lx\n", images->fit_uname_fdt);
printf("images->fit_noffset_fdt: %lx\n", images->fit_noffset_fdt);
printf("images->fit_hdr_setup: %lx\n", images->fit_hdr_setup);
printf("images->fit_uname_setup: %lx\n", images->fit_uname_setup);
printf("images->fit_noffset_setup: %lx\n", images->fit_noffset_setup);
#endif
#ifndef USE_HOSTCC
printf("images->os.start: %lx\n", (uint64_t)images->os.start);
printf("images->os.end: %lx\n", (uint64_t)images->os.end);
printf("images->os.image_start: %lx\n", (uint64_t)images->os.image_start);
printf("images->os.image_len: %lx\n", (uint64_t)images->os.image_len);
printf("images->os.load: %lx\n", (uint64_t)images->os.load);
printf("images->os.comp: %lx\n", (uint64_t)images->os.comp);
printf("images->os.type: %lx\n", (uint64_t)images->os.type);
printf("images->os.os: %lx\n", (uint64_t)images->os.os);
printf("images->os.arch: %lx\n", (uint64_t)images->os.arch);
printf("images->ep: %lx\n", images->ep);
printf("images->rd_start: %lx\n", images->rd_start);
printf("images->rd_end: %lx\n", images->rd_end);
printf("images->ft_addr: %lx\n", images->ft_addr);
printf("images->ft_len: %lx\n", images->ft_len);
printf("images->initrd_start: %lx\n", images->initrd_start);
printf("images->initrd_end: %lx\n", images->initrd_end);
printf("images->cmdline_start: %lx\n", images->cmdline_start);
printf("images->cmdline_end: %lx\n", images->cmdline_end);
printf("images->kbd: %lx\n", images->kbd);
#endif
printf("images->verify: %lx\n", images->verify);
printf("images->state: %lx\n", images->state);
#endif
announce_and_cleanup(fake);
if (!fake) {
#ifdef CONFIG_ARMV8_PSCI
armv8_setup_psci();
#endif
do_nonsec_virt_switch();
update_os_arch_secondary_cores(images->os.arch);
/* disable EL switch */
#if 0
printf("switch el\n");
#ifdef CONFIG_ARMV8_SWITCH_TO_EL1
armv8_switch_to_el2((u64)images->ft_addr, 0, 0, 0,
(u64)switch_to_el1, ES_TO_AARCH64);
#else
if ((IH_ARCH_DEFAULT == IH_ARCH_ARM64) &&
(images->os.arch == IH_ARCH_ARM)) {
printf("switch el2-1\n");
armv8_switch_to_el2(0, (u64)gd->bd->bi_arch_number,
(u64)images->ft_addr, 0,
(u64)images->ep,
ES_TO_AARCH32);
}
else {
printf("switch el2-2\n");
armv8_switch_to_el2((u64)images->ft_addr, 0, 0, 0,
images->ep,
ES_TO_AARCH64);
}
#endif
#endif
if (images->os.arch == IH_ARCH_ARM) {
printf("boot 32bit kernel\n");
jump_to_a32_kernel(images->ep, machid, (unsigned long)images->ft_addr);
}
else {
printf("boot 64bit kernel\n");
kernel_entry(images->ft_addr, NULL, NULL, NULL);
}
}
#else
unsigned long machid = gd->bd->bi_arch_number;
char *s;
void (*kernel_entry)(int zero, int arch, uint params);
unsigned long r2;
int fake = (flag & BOOTM_STATE_OS_FAKE_GO);
kernel_entry = (void (*)(int, int, uint))images->ep;
#ifdef CONFIG_CPU_V7M
ulong addr = (ulong)kernel_entry | 1;
kernel_entry = (void *)addr;
#endif
s = env_get("machid");
if (s) {
if (strict_strtoul(s, 16, &machid) < 0) {
debug("strict_strtoul failed!\n");
return;
}
printf("Using machid 0x%lx from environment\n", machid);
}
debug("## Transferring control to Linux (at address %08lx)" \
"...\n", (ulong) kernel_entry);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
announce_and_cleanup(fake);
if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)
r2 = (unsigned long)images->ft_addr;
else
r2 = gd->bd->bi_boot_params;
if (!fake) {
#ifdef CONFIG_ARMV7_NONSEC
if (armv7_boot_nonsec()) {
armv7_init_nonsec();
secure_ram_addr(_do_nonsec_entry)(kernel_entry,
0, machid, r2);
} else
#endif
kernel_entry(0, machid, r2);
}
#endif
}
/* Main Entry point for arm bootm implementation
*
* Modeled after the powerpc implementation
* DIFFERENCE: Instead of calling prep and go at the end
* they are called if subcommand is equal 0.
*/
int do_bootm_linux(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
/* No need for those on ARM */
if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)
return -1;
if (flag & BOOTM_STATE_OS_PREP) {
boot_prep_linux(images);
return 0;
}
if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
boot_jump_linux(images, flag);
return 0;
}
boot_prep_linux(images);
boot_jump_linux(images, flag);
return 0;
}
#if defined(CONFIG_BOOTM_VXWORKS)
void boot_prep_vxworks(bootm_headers_t *images)
{
#if defined(CONFIG_OF_LIBFDT)
int off;
if (images->ft_addr) {
off = fdt_path_offset(images->ft_addr, "/memory");
if (off < 0) {
if (arch_fixup_fdt(images->ft_addr))
puts("## WARNING: fixup memory failed!\n");
}
}
#endif
cleanup_before_linux();
}
void boot_jump_vxworks(bootm_headers_t *images)
{
#if defined(CONFIG_ARM64) && defined(CONFIG_ARMV8_PSCI)
armv8_setup_psci();
smp_kick_all_cpus();
#endif
/* ARM VxWorks requires device tree physical address to be passed */
((void (*)(void *))images->ep)(images->ft_addr);
}
#endif
#if defined(CONFIG_ZIRCON_BOOT_IMAGE)
#define ZIRCON_KERNEL_ALIGN 65536
int do_bootm_zircon(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
zbi_header_t *zbi = (zbi_header_t *)images->ep;
const zbi_header_t *kernel_hdr = &zbi[1];
const zbi_kernel_t *kernel = (zbi_kernel_t *)&zbi[2];
u32 zbi_len = zbi->length + sizeof(zbi_header_t);
if (zbi_len < zbi->length) {
printf("Total ZBI length: integer overflow detected\n");
return -1;
}
u32 kernel_len = kernel_hdr->length + 2 * sizeof(zbi_header_t);
if (kernel_len < kernel_hdr->length) {
printf("Total Kernel length: integer overflow detected\n");
return -1;
}
/*
* If zbi_len is greater than kernel_len,
* then we have boot items after the kernel.
* In that case we must relocate the kernel after the zbi
*/
if (zbi_len > kernel_len) {
uintptr_t dest = (ulong)zbi + zbi_len;
// align to 64K boundary
dest = (dest + ZIRCON_KERNEL_ALIGN - 1) &
~(ZIRCON_KERNEL_ALIGN - 1);
memcpy((void *)dest, zbi, kernel_len);
images->ep = dest + kernel->entry;
} else {
images->ep = (ulong)zbi + kernel->entry;
}
/* this will pass the zbi pointer to the kernel via x0 */
images->ft_addr = (char *)zbi;
boot_jump_linux(images, flag);
return 0;
}
#endif