blob: 0379444872e73ed413cc03ff029b08dad30d1f37 [file] [log] [blame] [edit]
/*
* Copyright (c) 2011-12 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*
* This file is derived from the flashrom project.
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <pci.h>
#include <pci_ids.h>
#include <asm/io.h>
#include "ich.h"
#define SPI_OPCODE_WREN 0x06
#define SPI_OPCODE_FAST_READ 0x0b
struct ich_ctlr {
pci_dev_t dev; /* PCI device number */
int ich_version; /* Controller version, 7 or 9 */
int ichspi_lock;
int locked;
uint8_t *opmenu;
int menubytes;
void *base; /* Base of register set */
uint16_t *preop;
uint16_t *optype;
uint32_t *addr;
uint8_t *data;
unsigned databytes;
uint8_t *status;
uint16_t *control;
uint32_t *bbar;
uint32_t *pr; /* only for ich9 */
uint8_t *speed; /* pointer to speed control */
ulong max_speed; /* Maximum bus speed in MHz */
};
struct ich_ctlr ctlr;
static inline struct ich_spi_slave *to_ich_spi(struct spi_slave *slave)
{
return container_of(slave, struct ich_spi_slave, slave);
}
static unsigned int ich_reg(const void *addr)
{
return (unsigned)(addr - ctlr.base) & 0xffff;
}
static u8 ich_readb(const void *addr)
{
u8 value = readb(addr);
debug("read %2.2x from %4.4x\n", value, ich_reg(addr));
return value;
}
static u16 ich_readw(const void *addr)
{
u16 value = readw(addr);
debug("read %4.4x from %4.4x\n", value, ich_reg(addr));
return value;
}
static u32 ich_readl(const void *addr)
{
u32 value = readl(addr);
debug("read %8.8x from %4.4x\n", value, ich_reg(addr));
return value;
}
static void ich_writeb(u8 value, void *addr)
{
writeb(value, addr);
debug("wrote %2.2x to %4.4x\n", value, ich_reg(addr));
}
static void ich_writew(u16 value, void *addr)
{
writew(value, addr);
debug("wrote %4.4x to %4.4x\n", value, ich_reg(addr));
}
static void ich_writel(u32 value, void *addr)
{
writel(value, addr);
debug("wrote %8.8x to %4.4x\n", value, ich_reg(addr));
}
static void write_reg(const void *value, void *dest, uint32_t size)
{
memcpy_toio(dest, value, size);
}
static void read_reg(const void *src, void *value, uint32_t size)
{
memcpy_fromio(value, src, size);
}
static void ich_set_bbar(struct ich_ctlr *ctlr, uint32_t minaddr)
{
const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar;
minaddr &= bbar_mask;
ichspi_bbar = ich_readl(ctlr->bbar) & ~bbar_mask;
ichspi_bbar |= minaddr;
ich_writel(ichspi_bbar, ctlr->bbar);
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
puts("spi_cs_is_valid used but not implemented\n");
return 0;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct ich_spi_slave *ich;
ich = spi_alloc_slave(struct ich_spi_slave, bus, cs);
if (!ich) {
puts("ICH SPI: Out of memory\n");
return NULL;
}
/*
* Yes this controller can only write a small number of bytes at
* once! The limit is typically 64 bytes.
*/
ich->slave.max_write_size = ctlr.databytes;
ich->speed = max_hz;
/*
* ICH 7 SPI controller only supports array read command
* and byte program command for SST flash
*/
if (ctlr.ich_version == 7) {
ich->slave.op_mode_rx = SPI_OPM_RX_AS;
ich->slave.op_mode_tx = SPI_OPM_TX_BP;
}
return &ich->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct ich_spi_slave *ich = to_ich_spi(slave);
free(ich);
}
/*
* Check if this device ID matches one of supported Intel PCH devices.
*
* Return the ICH version if there is a match, or zero otherwise.
*/
static int get_ich_version(uint16_t device_id)
{
if (device_id == PCI_DEVICE_ID_INTEL_TGP_LPC ||
device_id == PCI_DEVICE_ID_INTEL_ITC_LPC)
return 7;
if ((device_id >= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MIN &&
device_id <= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MAX) ||
(device_id >= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MIN &&
device_id <= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MAX))
return 9;
return 0;
}
/* @return 1 if the SPI flash supports the 33MHz speed */
static int ich9_can_do_33mhz(pci_dev_t dev)
{
u32 fdod, speed;
/* Observe SPI Descriptor Component Section 0 */
pci_write_config_dword(dev, 0xb0, 0x1000);
/* Extract the Write/Erase SPI Frequency from descriptor */
pci_read_config_dword(dev, 0xb4, &fdod);
/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
speed = (fdod >> 21) & 7;
return speed == 1;
}
static int ich_find_spi_controller(pci_dev_t *devp, int *ich_versionp)
{
int last_bus = pci_last_busno();
int bus;
if (last_bus == -1) {
debug("No PCI busses?\n");
return -1;
}
for (bus = 0; bus <= last_bus; bus++) {
uint16_t vendor_id, device_id;
uint32_t ids;
pci_dev_t dev;
dev = PCI_BDF(bus, 31, 0);
pci_read_config_dword(dev, 0, &ids);
vendor_id = ids;
device_id = ids >> 16;
if (vendor_id == PCI_VENDOR_ID_INTEL) {
*devp = dev;
*ich_versionp = get_ich_version(device_id);
return 0;
}
}
debug("ICH SPI: No ICH found.\n");
return -1;
}
static int ich_init_controller(struct ich_ctlr *ctlr)
{
uint8_t *rcrb; /* Root Complex Register Block */
uint32_t rcba; /* Root Complex Base Address */
pci_read_config_dword(ctlr->dev, 0xf0, &rcba);
/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
rcrb = (uint8_t *)(rcba & 0xffffc000);
if (ctlr->ich_version == 7) {
struct ich7_spi_regs *ich7_spi;
ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020);
ctlr->ichspi_lock = ich_readw(&ich7_spi->spis) & SPIS_LOCK;
ctlr->opmenu = ich7_spi->opmenu;
ctlr->menubytes = sizeof(ich7_spi->opmenu);
ctlr->optype = &ich7_spi->optype;
ctlr->addr = &ich7_spi->spia;
ctlr->data = (uint8_t *)ich7_spi->spid;
ctlr->databytes = sizeof(ich7_spi->spid);
ctlr->status = (uint8_t *)&ich7_spi->spis;
ctlr->control = &ich7_spi->spic;
ctlr->bbar = &ich7_spi->bbar;
ctlr->preop = &ich7_spi->preop;
ctlr->base = ich7_spi;
} else if (ctlr->ich_version == 9) {
struct ich9_spi_regs *ich9_spi;
ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800);
ctlr->ichspi_lock = ich_readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
ctlr->opmenu = ich9_spi->opmenu;
ctlr->menubytes = sizeof(ich9_spi->opmenu);
ctlr->optype = &ich9_spi->optype;
ctlr->addr = &ich9_spi->faddr;
ctlr->data = (uint8_t *)ich9_spi->fdata;
ctlr->databytes = sizeof(ich9_spi->fdata);
ctlr->status = &ich9_spi->ssfs;
ctlr->control = (uint16_t *)ich9_spi->ssfc;
ctlr->speed = ich9_spi->ssfc + 2;
ctlr->bbar = &ich9_spi->bbar;
ctlr->preop = &ich9_spi->preop;
ctlr->pr = &ich9_spi->pr[0];
ctlr->base = ich9_spi;
} else {
debug("ICH SPI: Unrecognized ICH version %d.\n",
ctlr->ich_version);
return -1;
}
debug("ICH SPI: Version %d detected\n", ctlr->ich_version);
/* Work out the maximum speed we can support */
ctlr->max_speed = 20000000;
if (ctlr->ich_version == 9 && ich9_can_do_33mhz(ctlr->dev))
ctlr->max_speed = 33000000;
ich_set_bbar(ctlr, 0);
return 0;
}
void spi_init(void)
{
uint8_t bios_cntl;
if (ich_find_spi_controller(&ctlr.dev, &ctlr.ich_version)) {
printf("ICH SPI: Cannot find device\n");
return;
}
if (ich_init_controller(&ctlr)) {
printf("ICH SPI: Cannot setup controller\n");
return;
}
/*
* Disable the BIOS write protect so write commands are allowed. On
* v9, deassert SMM BIOS Write Protect Disable.
*/
pci_read_config_byte(ctlr.dev, 0xdc, &bios_cntl);
if (ctlr.ich_version == 9)
bios_cntl &= ~(1 << 5);
pci_write_config_byte(ctlr.dev, 0xdc, bios_cntl | 0x1);
}
int spi_claim_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
void spi_cs_activate(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
void spi_cs_deactivate(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
static inline void spi_use_out(struct spi_trans *trans, unsigned bytes)
{
trans->out += bytes;
trans->bytesout -= bytes;
}
static inline void spi_use_in(struct spi_trans *trans, unsigned bytes)
{
trans->in += bytes;
trans->bytesin -= bytes;
}
static void spi_setup_type(struct spi_trans *trans, int data_bytes)
{
trans->type = 0xFF;
/* Try to guess spi type from read/write sizes. */
if (trans->bytesin == 0) {
if (trans->bytesout + data_bytes > 4)
/*
* If bytesin = 0 and bytesout > 4, we presume this is
* a write data operation, which is accompanied by an
* address.
*/
trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
else
trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
return;
}
if (trans->bytesout == 1) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
return;
}
if (trans->bytesout == 4) /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
/* Fast read command is called with 5 bytes instead of 4 */
if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
--trans->bytesout;
}
}
static int spi_setup_opcode(struct spi_trans *trans)
{
uint16_t optypes;
uint8_t opmenu[ctlr.menubytes];
trans->opcode = trans->out[0];
spi_use_out(trans, 1);
if (!ctlr.ichspi_lock) {
/* The lock is off, so just use index 0. */
ich_writeb(trans->opcode, ctlr.opmenu);
optypes = ich_readw(ctlr.optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3);
ich_writew(optypes, ctlr.optype);
return 0;
} else {
/* The lock is on. See if what we need is on the menu. */
uint8_t optype;
uint16_t opcode_index;
/* Write Enable is handled as atomic prefix */
if (trans->opcode == SPI_OPCODE_WREN)
return 0;
read_reg(ctlr.opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < ctlr.menubytes;
opcode_index++) {
if (opmenu[opcode_index] == trans->opcode)
break;
}
if (opcode_index == ctlr.menubytes) {
printf("ICH SPI: Opcode %x not found\n",
trans->opcode);
return -1;
}
optypes = ich_readw(ctlr.optype);
optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
trans->bytesout >= 3) {
/* We guessed wrong earlier. Fix it up. */
trans->type = optype;
}
if (optype != trans->type) {
printf("ICH SPI: Transaction doesn't fit type %d\n",
optype);
return -1;
}
return opcode_index;
}
}
static int spi_setup_offset(struct spi_trans *trans)
{
/* Separate the SPI address and data. */
switch (trans->type) {
case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
return 0;
case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
trans->offset = ((uint32_t)trans->out[0] << 16) |
((uint32_t)trans->out[1] << 8) |
((uint32_t)trans->out[2] << 0);
spi_use_out(trans, 3);
return 1;
default:
printf("Unrecognized SPI transaction type %#x\n", trans->type);
return -1;
}
}
/*
* Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
* below is true) or 0. In case the wait was for the bit(s) to set - write
* those bits back, which would cause resetting them.
*
* Return the last read status value on success or -1 on failure.
*/
static int ich_status_poll(u16 bitmask, int wait_til_set)
{
int timeout = 600000; /* This will result in 6s */
u16 status = 0;
while (timeout--) {
status = ich_readw(ctlr.status);
if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set)
ich_writew((status & bitmask), ctlr.status);
return status;
}
udelay(10);
}
printf("ICH SPI: SCIP timeout, read %x, expected %x\n",
status, bitmask);
return -1;
}
/*
int spi_xfer(struct spi_slave *slave, const void *dout,
unsigned int bitsout, void *din, unsigned int bitsin)
*/
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct ich_spi_slave *ich = to_ich_spi(slave);
uint16_t control;
int16_t opcode_index;
int with_address;
int status;
int bytes = bitlen / 8;
struct spi_trans *trans = &ich->trans;
unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END);
int using_cmd = 0;
/* Ee don't support writing partial bytes. */
if (bitlen % 8) {
debug("ICH SPI: Accessing partial bytes not supported\n");
return -1;
}
/* An empty end transaction can be ignored */
if (type == SPI_XFER_END && !dout && !din)
return 0;
if (type & SPI_XFER_BEGIN)
memset(trans, '\0', sizeof(*trans));
/* Dp we need to come back later to finish it? */
if (dout && type == SPI_XFER_BEGIN) {
if (bytes > ICH_MAX_CMD_LEN) {
debug("ICH SPI: Command length limit exceeded\n");
return -1;
}
memcpy(trans->cmd, dout, bytes);
trans->cmd_len = bytes;
debug("ICH SPI: Saved %d bytes\n", bytes);
return 0;
}
/*
* We process a 'middle' spi_xfer() call, which has no
* SPI_XFER_BEGIN/END, as an independent transaction as if it had
* an end. We therefore repeat the command. This is because ICH
* seems to have no support for this, or because interest (in digging
* out the details and creating a special case in the code) is low.
*/
if (trans->cmd_len) {
trans->out = trans->cmd;
trans->bytesout = trans->cmd_len;
using_cmd = 1;
debug("ICH SPI: Using %d bytes\n", trans->cmd_len);
} else {
trans->out = dout;
trans->bytesout = dout ? bytes : 0;
}
trans->in = din;
trans->bytesin = din ? bytes : 0;
/* There has to always at least be an opcode. */
if (!trans->bytesout) {
debug("ICH SPI: No opcode for transfer\n");
return -1;
}
if (ich_status_poll(SPIS_SCIP, 0) == -1)
return -1;
ich_writew(SPIS_CDS | SPIS_FCERR, ctlr.status);
spi_setup_type(trans, using_cmd ? bytes : 0);
opcode_index = spi_setup_opcode(trans);
if (opcode_index < 0)
return -1;
with_address = spi_setup_offset(trans);
if (with_address < 0)
return -1;
if (trans->opcode == SPI_OPCODE_WREN) {
/*
* Treat Write Enable as Atomic Pre-Op if possible
* in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA.
*/
if (!ctlr.ichspi_lock)
ich_writew(trans->opcode, ctlr.preop);
return 0;
}
if (ctlr.speed && ctlr.max_speed >= 33000000) {
int byte;
byte = ich_readb(ctlr.speed);
if (ich->speed >= 33000000)
byte |= SSFC_SCF_33MHZ;
else
byte &= ~SSFC_SCF_33MHZ;
ich_writeb(byte, ctlr.speed);
}
/* See if we have used up the command data */
if (using_cmd && dout && bytes) {
trans->out = dout;
trans->bytesout = bytes;
debug("ICH SPI: Moving to data, %d bytes\n", bytes);
}
/* Preset control fields */
control = ich_readw(ctlr.control);
control &= ~SSFC_RESERVED;
control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */
if (ich_readw(ctlr.preop))
control |= SPIC_ACS;
if (!trans->bytesout && !trans->bytesin) {
/* SPI addresses are 24 bit only */
if (with_address)
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr);
/*
* This is a 'no data' command (like Write Enable), its
* bitesout size was 1, decremented to zero while executing
* spi_setup_opcode() above. Tell the chip to send the
* command.
*/
ich_writew(control, ctlr.control);
/* wait for the result */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
debug("ICH SPI: Command transaction error\n");
return -1;
}
return 0;
}
/*
* Check if this is a write command atempting to transfer more bytes
* than the controller can handle. Iterations for writes are not
* supported here because each SPI write command needs to be preceded
* and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver.
*/
if (trans->bytesout > ctlr.databytes) {
debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n");
return -1;
}
/*
* Read or write up to databytes bytes at a time until everything has
* been sent.
*/
while (trans->bytesout || trans->bytesin) {
uint32_t data_length;
/* SPI addresses are 24 bit only */
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr);
if (trans->bytesout)
data_length = min(trans->bytesout, ctlr.databytes);
else
data_length = min(trans->bytesin, ctlr.databytes);
/* Program data into FDATA0 to N */
if (trans->bytesout) {
write_reg(trans->out, ctlr.data, data_length);
spi_use_out(trans, data_length);
if (with_address)
trans->offset += data_length;
}
/* Add proper control fields' values */
control &= ~((ctlr.databytes - 1) << 8);
control |= SPIC_DS;
control |= (data_length - 1) << 8;
/* write it */
ich_writew(control, ctlr.control);
/* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
debug("ICH SPI: Data transaction error\n");
return -1;
}
if (trans->bytesin) {
read_reg(ctlr.data, trans->in, data_length);
spi_use_in(trans, data_length);
if (with_address)
trans->offset += data_length;
}
}
/* Clear atomic preop now that xfer is done */
ich_writew(0, ctlr.preop);
return 0;
}
/*
* This uses the SPI controller from the Intel Cougar Point and Panther Point
* PCH to write-protect portions of the SPI flash until reboot. The changes
* don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's
* done elsewhere.
*/
int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint)
{
uint32_t tmplong;
uint32_t upper_limit;
if (!ctlr.pr) {
printf("%s: operation not supported on this chipset\n",
__func__);
return -1;
}
if (length == 0 ||
lower_limit > (0xFFFFFFFFUL - length) + 1 ||
hint < 0 || hint > 4) {
printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__,
lower_limit, length, hint);
return -1;
}
upper_limit = lower_limit + length - 1;
/*
* Determine bits to write, as follows:
* 31 Write-protection enable (includes erase operation)
* 30:29 reserved
* 28:16 Upper Limit (FLA address bits 24:12, with 11:0 == 0xfff)
* 15 Read-protection enable
* 14:13 reserved
* 12:0 Lower Limit (FLA address bits 24:12, with 11:0 == 0x000)
*/
tmplong = 0x80000000 |
((upper_limit & 0x01fff000) << 4) |
((lower_limit & 0x01fff000) >> 12);
printf("%s: writing 0x%08x to %p\n", __func__, tmplong,
&ctlr.pr[hint]);
ctlr.pr[hint] = tmplong;
return 0;
}