blob: 5873531953316a25799c020206328bd84280b97d [file] [log] [blame] [edit]
/*
* Porting to u-boot:
*
* (C) Copyright 2010
* Stefano Babic, DENX Software Engineering, sbabic@denx.de
*
* Linux IPU driver for MX51:
*
* (C) Copyright 2005-2010 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* #define DEBUG */
#include <common.h>
#include <linux/types.h>
#include <linux/err.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include "ipu.h"
#include "ipu_regs.h"
extern struct mxc_ccm_reg *mxc_ccm;
extern u32 *ipu_cpmem_base;
struct ipu_ch_param_word {
uint32_t data[5];
uint32_t res[3];
};
struct ipu_ch_param {
struct ipu_ch_param_word word[2];
};
#define ipu_ch_param_addr(ch) (((struct ipu_ch_param *)ipu_cpmem_base) + (ch))
#define _param_word(base, w) \
(((struct ipu_ch_param *)(base))->word[(w)].data)
#define ipu_ch_param_set_field(base, w, bit, size, v) { \
int i = (bit) / 32; \
int off = (bit) % 32; \
_param_word(base, w)[i] |= (v) << off; \
if (((bit) + (size) - 1) / 32 > i) { \
_param_word(base, w)[i + 1] |= (v) >> (off ? (32 - off) : 0); \
} \
}
#define ipu_ch_param_mod_field(base, w, bit, size, v) { \
int i = (bit) / 32; \
int off = (bit) % 32; \
u32 mask = (1UL << size) - 1; \
u32 temp = _param_word(base, w)[i]; \
temp &= ~(mask << off); \
_param_word(base, w)[i] = temp | (v) << off; \
if (((bit) + (size) - 1) / 32 > i) { \
temp = _param_word(base, w)[i + 1]; \
temp &= ~(mask >> (32 - off)); \
_param_word(base, w)[i + 1] = \
temp | ((v) >> (off ? (32 - off) : 0)); \
} \
}
#define ipu_ch_param_read_field(base, w, bit, size) ({ \
u32 temp2; \
int i = (bit) / 32; \
int off = (bit) % 32; \
u32 mask = (1UL << size) - 1; \
u32 temp1 = _param_word(base, w)[i]; \
temp1 = mask & (temp1 >> off); \
if (((bit)+(size) - 1) / 32 > i) { \
temp2 = _param_word(base, w)[i + 1]; \
temp2 &= mask >> (off ? (32 - off) : 0); \
temp1 |= temp2 << (off ? (32 - off) : 0); \
} \
temp1; \
})
#define IPU_SW_RST_TOUT_USEC (10000)
void clk_enable(struct clk *clk)
{
if (clk) {
if (clk->usecount++ == 0) {
clk->enable(clk);
}
}
}
void clk_disable(struct clk *clk)
{
if (clk) {
if (!(--clk->usecount)) {
if (clk->disable)
clk->disable(clk);
}
}
}
int clk_get_usecount(struct clk *clk)
{
if (clk == NULL)
return 0;
return clk->usecount;
}
u32 clk_get_rate(struct clk *clk)
{
if (!clk)
return 0;
return clk->rate;
}
struct clk *clk_get_parent(struct clk *clk)
{
if (!clk)
return 0;
return clk->parent;
}
int clk_set_rate(struct clk *clk, unsigned long rate)
{
if (clk && clk->set_rate)
clk->set_rate(clk, rate);
return clk->rate;
}
long clk_round_rate(struct clk *clk, unsigned long rate)
{
if (clk == NULL || !clk->round_rate)
return 0;
return clk->round_rate(clk, rate);
}
int clk_set_parent(struct clk *clk, struct clk *parent)
{
clk->parent = parent;
if (clk->set_parent)
return clk->set_parent(clk, parent);
return 0;
}
static int clk_ipu_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg |= MXC_CCM_CCGR_CG_MASK << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
/* Handshake with IPU when certain clock rates are changed. */
reg = __raw_readl(&mxc_ccm->ccdr);
reg &= ~MXC_CCM_CCDR_IPU_HS_MASK;
__raw_writel(reg, &mxc_ccm->ccdr);
/* Handshake with IPU when LPM is entered as its enabled. */
reg = __raw_readl(&mxc_ccm->clpcr);
reg &= ~MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS;
__raw_writel(reg, &mxc_ccm->clpcr);
#endif
return 0;
}
static void clk_ipu_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg &= ~(MXC_CCM_CCGR_CG_MASK << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
/*
* No handshake with IPU whe dividers are changed
* as its not enabled.
*/
reg = __raw_readl(&mxc_ccm->ccdr);
reg |= MXC_CCM_CCDR_IPU_HS_MASK;
__raw_writel(reg, &mxc_ccm->ccdr);
/* No handshake with IPU when LPM is entered as its not enabled. */
reg = __raw_readl(&mxc_ccm->clpcr);
reg |= MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS;
__raw_writel(reg, &mxc_ccm->clpcr);
#endif
}
static struct clk ipu_clk = {
.name = "ipu_clk",
.rate = CONFIG_IPUV3_CLK,
#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
.enable_reg = (u32 *)(CCM_BASE_ADDR +
offsetof(struct mxc_ccm_reg, CCGR5)),
.enable_shift = MXC_CCM_CCGR5_IPU_OFFSET,
#else
.enable_reg = (u32 *)(CCM_BASE_ADDR +
offsetof(struct mxc_ccm_reg, CCGR3)),
.enable_shift = MXC_CCM_CCGR3_IPU1_IPU_DI0_OFFSET,
#endif
.enable = clk_ipu_enable,
.disable = clk_ipu_disable,
.usecount = 0,
};
static struct clk ldb_clk = {
.name = "ldb_clk",
.rate = 65000000,
.usecount = 0,
};
/* Globals */
struct clk *g_ipu_clk;
struct clk *g_ldb_clk;
unsigned char g_ipu_clk_enabled;
struct clk *g_di_clk[2];
struct clk *g_pixel_clk[2];
unsigned char g_dc_di_assignment[10];
uint32_t g_channel_init_mask;
uint32_t g_channel_enable_mask;
static int ipu_dc_use_count;
static int ipu_dp_use_count;
static int ipu_dmfc_use_count;
static int ipu_di_use_count[2];
u32 *ipu_cpmem_base;
u32 *ipu_dc_tmpl_reg;
/* Static functions */
static inline void ipu_ch_param_set_high_priority(uint32_t ch)
{
ipu_ch_param_mod_field(ipu_ch_param_addr(ch), 1, 93, 2, 1);
};
static inline uint32_t channel_2_dma(ipu_channel_t ch, ipu_buffer_t type)
{
return ((uint32_t) ch >> (6 * type)) & 0x3F;
};
/* Either DP BG or DP FG can be graphic window */
static inline int ipu_is_dp_graphic_chan(uint32_t dma_chan)
{
return (dma_chan == 23 || dma_chan == 27);
}
static inline int ipu_is_dmfc_chan(uint32_t dma_chan)
{
return ((dma_chan >= 23) && (dma_chan <= 29));
}
static inline void ipu_ch_param_set_buffer(uint32_t ch, int bufNum,
dma_addr_t phyaddr)
{
ipu_ch_param_mod_field(ipu_ch_param_addr(ch), 1, 29 * bufNum, 29,
phyaddr / 8);
};
#define idma_is_valid(ch) (ch != NO_DMA)
#define idma_mask(ch) (idma_is_valid(ch) ? (1UL << (ch & 0x1F)) : 0)
#define idma_is_set(reg, dma) (__raw_readl(reg(dma)) & idma_mask(dma))
static void ipu_pixel_clk_recalc(struct clk *clk)
{
u32 div = __raw_readl(DI_BS_CLKGEN0(clk->id));
if (div == 0)
clk->rate = 0;
else
clk->rate = (clk->parent->rate * 16) / div;
}
static unsigned long ipu_pixel_clk_round_rate(struct clk *clk,
unsigned long rate)
{
u32 div, div1;
u32 tmp;
/*
* Calculate divider
* Fractional part is 4 bits,
* so simply multiply by 2^4 to get fractional part.
*/
tmp = (clk->parent->rate * 16);
div = tmp / rate;
if (div < 0x10) /* Min DI disp clock divider is 1 */
div = 0x10;
if (div & ~0xFEF)
div &= 0xFF8;
else {
div1 = div & 0xFE0;
if ((tmp/div1 - tmp/div) < rate / 4)
div = div1;
else
div &= 0xFF8;
}
return (clk->parent->rate * 16) / div;
}
static int ipu_pixel_clk_set_rate(struct clk *clk, unsigned long rate)
{
u32 div = (clk->parent->rate * 16) / rate;
__raw_writel(div, DI_BS_CLKGEN0(clk->id));
/* Setup pixel clock timing */
__raw_writel((div / 16) << 16, DI_BS_CLKGEN1(clk->id));
clk->rate = (clk->parent->rate * 16) / div;
return 0;
}
static int ipu_pixel_clk_enable(struct clk *clk)
{
u32 disp_gen = __raw_readl(IPU_DISP_GEN);
disp_gen |= clk->id ? DI1_COUNTER_RELEASE : DI0_COUNTER_RELEASE;
__raw_writel(disp_gen, IPU_DISP_GEN);
return 0;
}
static void ipu_pixel_clk_disable(struct clk *clk)
{
u32 disp_gen = __raw_readl(IPU_DISP_GEN);
disp_gen &= clk->id ? ~DI1_COUNTER_RELEASE : ~DI0_COUNTER_RELEASE;
__raw_writel(disp_gen, IPU_DISP_GEN);
}
static int ipu_pixel_clk_set_parent(struct clk *clk, struct clk *parent)
{
u32 di_gen = __raw_readl(DI_GENERAL(clk->id));
if (parent == g_ipu_clk)
di_gen &= ~DI_GEN_DI_CLK_EXT;
else if (!IS_ERR(g_di_clk[clk->id]) && parent == g_ldb_clk)
di_gen |= DI_GEN_DI_CLK_EXT;
else
return -EINVAL;
__raw_writel(di_gen, DI_GENERAL(clk->id));
ipu_pixel_clk_recalc(clk);
return 0;
}
static struct clk pixel_clk[] = {
{
.name = "pixel_clk",
.id = 0,
.recalc = ipu_pixel_clk_recalc,
.set_rate = ipu_pixel_clk_set_rate,
.round_rate = ipu_pixel_clk_round_rate,
.set_parent = ipu_pixel_clk_set_parent,
.enable = ipu_pixel_clk_enable,
.disable = ipu_pixel_clk_disable,
.usecount = 0,
},
{
.name = "pixel_clk",
.id = 1,
.recalc = ipu_pixel_clk_recalc,
.set_rate = ipu_pixel_clk_set_rate,
.round_rate = ipu_pixel_clk_round_rate,
.set_parent = ipu_pixel_clk_set_parent,
.enable = ipu_pixel_clk_enable,
.disable = ipu_pixel_clk_disable,
.usecount = 0,
},
};
/*
* This function resets IPU
*/
static void ipu_reset(void)
{
u32 *reg;
u32 value;
int timeout = IPU_SW_RST_TOUT_USEC;
reg = (u32 *)SRC_BASE_ADDR;
value = __raw_readl(reg);
value = value | SW_IPU_RST;
__raw_writel(value, reg);
while (__raw_readl(reg) & SW_IPU_RST) {
udelay(1);
if (!(timeout--)) {
printf("ipu software reset timeout\n");
break;
}
};
}
/*
* This function is called by the driver framework to initialize the IPU
* hardware.
*
* @param dev The device structure for the IPU passed in by the
* driver framework.
*
* @return Returns 0 on success or negative error code on error
*/
int ipu_probe(void)
{
unsigned long ipu_base;
#if defined CONFIG_MX51
u32 temp;
u32 *reg_hsc_mcd = (u32 *)MIPI_HSC_BASE_ADDR;
u32 *reg_hsc_mxt_conf = (u32 *)(MIPI_HSC_BASE_ADDR + 0x800);
__raw_writel(0xF00, reg_hsc_mcd);
/* CSI mode reserved*/
temp = __raw_readl(reg_hsc_mxt_conf);
__raw_writel(temp | 0x0FF, reg_hsc_mxt_conf);
temp = __raw_readl(reg_hsc_mxt_conf);
__raw_writel(temp | 0x10000, reg_hsc_mxt_conf);
#endif
ipu_base = IPU_CTRL_BASE_ADDR;
ipu_cpmem_base = (u32 *)(ipu_base + IPU_CPMEM_REG_BASE);
ipu_dc_tmpl_reg = (u32 *)(ipu_base + IPU_DC_TMPL_REG_BASE);
g_pixel_clk[0] = &pixel_clk[0];
g_pixel_clk[1] = &pixel_clk[1];
g_ipu_clk = &ipu_clk;
debug("ipu_clk = %u\n", clk_get_rate(g_ipu_clk));
g_ldb_clk = &ldb_clk;
debug("ldb_clk = %u\n", clk_get_rate(g_ldb_clk));
ipu_reset();
clk_set_parent(g_pixel_clk[0], g_ipu_clk);
clk_set_parent(g_pixel_clk[1], g_ipu_clk);
clk_enable(g_ipu_clk);
g_di_clk[0] = NULL;
g_di_clk[1] = NULL;
__raw_writel(0x807FFFFF, IPU_MEM_RST);
while (__raw_readl(IPU_MEM_RST) & 0x80000000)
;
ipu_init_dc_mappings();
__raw_writel(0, IPU_INT_CTRL(5));
__raw_writel(0, IPU_INT_CTRL(6));
__raw_writel(0, IPU_INT_CTRL(9));
__raw_writel(0, IPU_INT_CTRL(10));
/* DMFC Init */
ipu_dmfc_init(DMFC_NORMAL, 1);
/* Set sync refresh channels as high priority */
__raw_writel(0x18800000L, IDMAC_CHA_PRI(0));
/* Set MCU_T to divide MCU access window into 2 */
__raw_writel(0x00400000L | (IPU_MCU_T_DEFAULT << 18), IPU_DISP_GEN);
clk_disable(g_ipu_clk);
return 0;
}
void ipu_dump_registers(void)
{
debug("IPU_CONF = \t0x%08X\n", __raw_readl(IPU_CONF));
debug("IDMAC_CONF = \t0x%08X\n", __raw_readl(IDMAC_CONF));
debug("IDMAC_CHA_EN1 = \t0x%08X\n",
__raw_readl(IDMAC_CHA_EN(0)));
debug("IDMAC_CHA_EN2 = \t0x%08X\n",
__raw_readl(IDMAC_CHA_EN(32)));
debug("IDMAC_CHA_PRI1 = \t0x%08X\n",
__raw_readl(IDMAC_CHA_PRI(0)));
debug("IDMAC_CHA_PRI2 = \t0x%08X\n",
__raw_readl(IDMAC_CHA_PRI(32)));
debug("IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n",
__raw_readl(IPU_CHA_DB_MODE_SEL(0)));
debug("IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n",
__raw_readl(IPU_CHA_DB_MODE_SEL(32)));
debug("DMFC_WR_CHAN = \t0x%08X\n",
__raw_readl(DMFC_WR_CHAN));
debug("DMFC_WR_CHAN_DEF = \t0x%08X\n",
__raw_readl(DMFC_WR_CHAN_DEF));
debug("DMFC_DP_CHAN = \t0x%08X\n",
__raw_readl(DMFC_DP_CHAN));
debug("DMFC_DP_CHAN_DEF = \t0x%08X\n",
__raw_readl(DMFC_DP_CHAN_DEF));
debug("DMFC_IC_CTRL = \t0x%08X\n",
__raw_readl(DMFC_IC_CTRL));
debug("IPU_FS_PROC_FLOW1 = \t0x%08X\n",
__raw_readl(IPU_FS_PROC_FLOW1));
debug("IPU_FS_PROC_FLOW2 = \t0x%08X\n",
__raw_readl(IPU_FS_PROC_FLOW2));
debug("IPU_FS_PROC_FLOW3 = \t0x%08X\n",
__raw_readl(IPU_FS_PROC_FLOW3));
debug("IPU_FS_DISP_FLOW1 = \t0x%08X\n",
__raw_readl(IPU_FS_DISP_FLOW1));
}
/*
* This function is called to initialize a logical IPU channel.
*
* @param channel Input parameter for the logical channel ID to init.
*
* @param params Input parameter containing union of channel
* initialization parameters.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_init_channel(ipu_channel_t channel, ipu_channel_params_t *params)
{
int ret = 0;
uint32_t ipu_conf;
debug("init channel = %d\n", IPU_CHAN_ID(channel));
if (g_ipu_clk_enabled == 0) {
g_ipu_clk_enabled = 1;
clk_enable(g_ipu_clk);
}
if (g_channel_init_mask & (1L << IPU_CHAN_ID(channel))) {
printf("Warning: channel already initialized %d\n",
IPU_CHAN_ID(channel));
}
ipu_conf = __raw_readl(IPU_CONF);
switch (channel) {
case MEM_DC_SYNC:
if (params->mem_dc_sync.di > 1) {
ret = -EINVAL;
goto err;
}
g_dc_di_assignment[1] = params->mem_dc_sync.di;
ipu_dc_init(1, params->mem_dc_sync.di,
params->mem_dc_sync.interlaced);
ipu_di_use_count[params->mem_dc_sync.di]++;
ipu_dc_use_count++;
ipu_dmfc_use_count++;
break;
case MEM_BG_SYNC:
if (params->mem_dp_bg_sync.di > 1) {
ret = -EINVAL;
goto err;
}
g_dc_di_assignment[5] = params->mem_dp_bg_sync.di;
ipu_dp_init(channel, params->mem_dp_bg_sync.in_pixel_fmt,
params->mem_dp_bg_sync.out_pixel_fmt);
ipu_dc_init(5, params->mem_dp_bg_sync.di,
params->mem_dp_bg_sync.interlaced);
ipu_di_use_count[params->mem_dp_bg_sync.di]++;
ipu_dc_use_count++;
ipu_dp_use_count++;
ipu_dmfc_use_count++;
break;
case MEM_FG_SYNC:
ipu_dp_init(channel, params->mem_dp_fg_sync.in_pixel_fmt,
params->mem_dp_fg_sync.out_pixel_fmt);
ipu_dc_use_count++;
ipu_dp_use_count++;
ipu_dmfc_use_count++;
break;
default:
printf("Missing channel initialization\n");
break;
}
/* Enable IPU sub module */
g_channel_init_mask |= 1L << IPU_CHAN_ID(channel);
if (ipu_dc_use_count == 1)
ipu_conf |= IPU_CONF_DC_EN;
if (ipu_dp_use_count == 1)
ipu_conf |= IPU_CONF_DP_EN;
if (ipu_dmfc_use_count == 1)
ipu_conf |= IPU_CONF_DMFC_EN;
if (ipu_di_use_count[0] == 1) {
ipu_conf |= IPU_CONF_DI0_EN;
}
if (ipu_di_use_count[1] == 1) {
ipu_conf |= IPU_CONF_DI1_EN;
}
__raw_writel(ipu_conf, IPU_CONF);
err:
return ret;
}
/*
* This function is called to uninitialize a logical IPU channel.
*
* @param channel Input parameter for the logical channel ID to uninit.
*/
void ipu_uninit_channel(ipu_channel_t channel)
{
uint32_t reg;
uint32_t in_dma, out_dma = 0;
uint32_t ipu_conf;
if ((g_channel_init_mask & (1L << IPU_CHAN_ID(channel))) == 0) {
debug("Channel already uninitialized %d\n",
IPU_CHAN_ID(channel));
return;
}
/*
* Make sure channel is disabled
* Get input and output dma channels
*/
in_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
out_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
if (idma_is_set(IDMAC_CHA_EN, in_dma) ||
idma_is_set(IDMAC_CHA_EN, out_dma)) {
printf(
"Channel %d is not disabled, disable first\n",
IPU_CHAN_ID(channel));
return;
}
ipu_conf = __raw_readl(IPU_CONF);
/* Reset the double buffer */
reg = __raw_readl(IPU_CHA_DB_MODE_SEL(in_dma));
__raw_writel(reg & ~idma_mask(in_dma), IPU_CHA_DB_MODE_SEL(in_dma));
reg = __raw_readl(IPU_CHA_DB_MODE_SEL(out_dma));
__raw_writel(reg & ~idma_mask(out_dma), IPU_CHA_DB_MODE_SEL(out_dma));
switch (channel) {
case MEM_DC_SYNC:
ipu_dc_uninit(1);
ipu_di_use_count[g_dc_di_assignment[1]]--;
ipu_dc_use_count--;
ipu_dmfc_use_count--;
break;
case MEM_BG_SYNC:
ipu_dp_uninit(channel);
ipu_dc_uninit(5);
ipu_di_use_count[g_dc_di_assignment[5]]--;
ipu_dc_use_count--;
ipu_dp_use_count--;
ipu_dmfc_use_count--;
break;
case MEM_FG_SYNC:
ipu_dp_uninit(channel);
ipu_dc_use_count--;
ipu_dp_use_count--;
ipu_dmfc_use_count--;
break;
default:
break;
}
g_channel_init_mask &= ~(1L << IPU_CHAN_ID(channel));
if (ipu_dc_use_count == 0)
ipu_conf &= ~IPU_CONF_DC_EN;
if (ipu_dp_use_count == 0)
ipu_conf &= ~IPU_CONF_DP_EN;
if (ipu_dmfc_use_count == 0)
ipu_conf &= ~IPU_CONF_DMFC_EN;
if (ipu_di_use_count[0] == 0) {
ipu_conf &= ~IPU_CONF_DI0_EN;
}
if (ipu_di_use_count[1] == 0) {
ipu_conf &= ~IPU_CONF_DI1_EN;
}
__raw_writel(ipu_conf, IPU_CONF);
if (ipu_conf == 0) {
clk_disable(g_ipu_clk);
g_ipu_clk_enabled = 0;
}
}
static inline void ipu_ch_param_dump(int ch)
{
#ifdef DEBUG
struct ipu_ch_param *p = ipu_ch_param_addr(ch);
debug("ch %d word 0 - %08X %08X %08X %08X %08X\n", ch,
p->word[0].data[0], p->word[0].data[1], p->word[0].data[2],
p->word[0].data[3], p->word[0].data[4]);
debug("ch %d word 1 - %08X %08X %08X %08X %08X\n", ch,
p->word[1].data[0], p->word[1].data[1], p->word[1].data[2],
p->word[1].data[3], p->word[1].data[4]);
debug("PFS 0x%x, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 85, 4));
debug("BPP 0x%x, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 107, 3));
debug("NPB 0x%x\n",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 78, 7));
debug("FW %d, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 125, 13));
debug("FH %d, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 0, 138, 12));
debug("Stride %d\n",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 102, 14));
debug("Width0 %d+1, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 116, 3));
debug("Width1 %d+1, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 119, 3));
debug("Width2 %d+1, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 122, 3));
debug("Width3 %d+1, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 125, 3));
debug("Offset0 %d, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 128, 5));
debug("Offset1 %d, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 133, 5));
debug("Offset2 %d, ",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 138, 5));
debug("Offset3 %d\n",
ipu_ch_param_read_field(ipu_ch_param_addr(ch), 1, 143, 5));
#endif
}
static inline void ipu_ch_params_set_packing(struct ipu_ch_param *p,
int red_width, int red_offset,
int green_width, int green_offset,
int blue_width, int blue_offset,
int alpha_width, int alpha_offset)
{
/* Setup red width and offset */
ipu_ch_param_set_field(p, 1, 116, 3, red_width - 1);
ipu_ch_param_set_field(p, 1, 128, 5, red_offset);
/* Setup green width and offset */
ipu_ch_param_set_field(p, 1, 119, 3, green_width - 1);
ipu_ch_param_set_field(p, 1, 133, 5, green_offset);
/* Setup blue width and offset */
ipu_ch_param_set_field(p, 1, 122, 3, blue_width - 1);
ipu_ch_param_set_field(p, 1, 138, 5, blue_offset);
/* Setup alpha width and offset */
ipu_ch_param_set_field(p, 1, 125, 3, alpha_width - 1);
ipu_ch_param_set_field(p, 1, 143, 5, alpha_offset);
}
static void ipu_ch_param_init(int ch,
uint32_t pixel_fmt, uint32_t width,
uint32_t height, uint32_t stride,
uint32_t u, uint32_t v,
uint32_t uv_stride, dma_addr_t addr0,
dma_addr_t addr1)
{
uint32_t u_offset = 0;
uint32_t v_offset = 0;
struct ipu_ch_param params;
memset(&params, 0, sizeof(params));
ipu_ch_param_set_field(&params, 0, 125, 13, width - 1);
if ((ch == 8) || (ch == 9) || (ch == 10)) {
ipu_ch_param_set_field(&params, 0, 138, 12, (height / 2) - 1);
ipu_ch_param_set_field(&params, 1, 102, 14, (stride * 2) - 1);
} else {
ipu_ch_param_set_field(&params, 0, 138, 12, height - 1);
ipu_ch_param_set_field(&params, 1, 102, 14, stride - 1);
}
ipu_ch_param_set_field(&params, 1, 0, 29, addr0 >> 3);
ipu_ch_param_set_field(&params, 1, 29, 29, addr1 >> 3);
switch (pixel_fmt) {
case IPU_PIX_FMT_GENERIC:
/*Represents 8-bit Generic data */
ipu_ch_param_set_field(&params, 0, 107, 3, 5); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 6); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 63); /* burst size */
break;
case IPU_PIX_FMT_GENERIC_32:
/*Represents 32-bit Generic data */
break;
case IPU_PIX_FMT_RGB565:
ipu_ch_param_set_field(&params, 0, 107, 3, 3); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 15); /* burst size */
ipu_ch_params_set_packing(&params, 5, 0, 6, 5, 5, 11, 8, 16);
break;
case IPU_PIX_FMT_BGR24:
ipu_ch_param_set_field(&params, 0, 107, 3, 1); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 19); /* burst size */
ipu_ch_params_set_packing(&params, 8, 0, 8, 8, 8, 16, 8, 24);
break;
case IPU_PIX_FMT_RGB24:
case IPU_PIX_FMT_YUV444:
ipu_ch_param_set_field(&params, 0, 107, 3, 1); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 19); /* burst size */
ipu_ch_params_set_packing(&params, 8, 16, 8, 8, 8, 0, 8, 24);
break;
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_BGR32:
ipu_ch_param_set_field(&params, 0, 107, 3, 0); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 15); /* burst size */
ipu_ch_params_set_packing(&params, 8, 8, 8, 16, 8, 24, 8, 0);
break;
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_RGB32:
ipu_ch_param_set_field(&params, 0, 107, 3, 0); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 15); /* burst size */
ipu_ch_params_set_packing(&params, 8, 24, 8, 16, 8, 8, 8, 0);
break;
case IPU_PIX_FMT_ABGR32:
ipu_ch_param_set_field(&params, 0, 107, 3, 0); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 7); /* pix format */
ipu_ch_params_set_packing(&params, 8, 0, 8, 8, 8, 16, 8, 24);
break;
case IPU_PIX_FMT_UYVY:
ipu_ch_param_set_field(&params, 0, 107, 3, 3); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 0xA); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 15); /* burst size */
break;
case IPU_PIX_FMT_YUYV:
ipu_ch_param_set_field(&params, 0, 107, 3, 3); /* bits/pixel */
ipu_ch_param_set_field(&params, 1, 85, 4, 0x8); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 31); /* burst size */
break;
case IPU_PIX_FMT_YUV420P2:
case IPU_PIX_FMT_YUV420P:
ipu_ch_param_set_field(&params, 1, 85, 4, 2); /* pix format */
if (uv_stride < stride / 2)
uv_stride = stride / 2;
u_offset = stride * height;
v_offset = u_offset + (uv_stride * height / 2);
/* burst size */
if ((ch == 8) || (ch == 9) || (ch == 10)) {
ipu_ch_param_set_field(&params, 1, 78, 7, 15);
uv_stride = uv_stride*2;
} else {
ipu_ch_param_set_field(&params, 1, 78, 7, 31);
}
break;
case IPU_PIX_FMT_YVU422P:
/* BPP & pixel format */
ipu_ch_param_set_field(&params, 1, 85, 4, 1); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 31); /* burst size */
if (uv_stride < stride / 2)
uv_stride = stride / 2;
v_offset = (v == 0) ? stride * height : v;
u_offset = (u == 0) ? v_offset + v_offset / 2 : u;
break;
case IPU_PIX_FMT_YUV422P:
/* BPP & pixel format */
ipu_ch_param_set_field(&params, 1, 85, 4, 1); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 31); /* burst size */
if (uv_stride < stride / 2)
uv_stride = stride / 2;
u_offset = (u == 0) ? stride * height : u;
v_offset = (v == 0) ? u_offset + u_offset / 2 : v;
break;
case IPU_PIX_FMT_NV12:
/* BPP & pixel format */
ipu_ch_param_set_field(&params, 1, 85, 4, 4); /* pix format */
ipu_ch_param_set_field(&params, 1, 78, 7, 31); /* burst size */
uv_stride = stride;
u_offset = (u == 0) ? stride * height : u;
break;
default:
puts("mxc ipu: unimplemented pixel format\n");
break;
}
if (uv_stride)
ipu_ch_param_set_field(&params, 1, 128, 14, uv_stride - 1);
/* Get the uv offset from user when need cropping */
if (u || v) {
u_offset = u;
v_offset = v;
}
/* UBO and VBO are 22-bit */
if (u_offset/8 > 0x3fffff)
puts("The value of U offset exceeds IPU limitation\n");
if (v_offset/8 > 0x3fffff)
puts("The value of V offset exceeds IPU limitation\n");
ipu_ch_param_set_field(&params, 0, 46, 22, u_offset / 8);
ipu_ch_param_set_field(&params, 0, 68, 22, v_offset / 8);
debug("initializing idma ch %d @ %p\n", ch, ipu_ch_param_addr(ch));
memcpy(ipu_ch_param_addr(ch), &params, sizeof(params));
};
/*
* This function is called to initialize a buffer for logical IPU channel.
*
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to initialize.
*
* @param pixel_fmt Input parameter for pixel format of buffer.
* Pixel format is a FOURCC ASCII code.
*
* @param width Input parameter for width of buffer in pixels.
*
* @param height Input parameter for height of buffer in pixels.
*
* @param stride Input parameter for stride length of buffer
* in pixels.
*
* @param phyaddr_0 Input parameter buffer 0 physical address.
*
* @param phyaddr_1 Input parameter buffer 1 physical address.
* Setting this to a value other than NULL enables
* double buffering mode.
*
* @param u private u offset for additional cropping,
* zero if not used.
*
* @param v private v offset for additional cropping,
* zero if not used.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_init_channel_buffer(ipu_channel_t channel, ipu_buffer_t type,
uint32_t pixel_fmt,
uint16_t width, uint16_t height,
uint32_t stride,
dma_addr_t phyaddr_0, dma_addr_t phyaddr_1,
uint32_t u, uint32_t v)
{
uint32_t reg;
uint32_t dma_chan;
dma_chan = channel_2_dma(channel, type);
if (!idma_is_valid(dma_chan))
return -EINVAL;
if (stride < width * bytes_per_pixel(pixel_fmt))
stride = width * bytes_per_pixel(pixel_fmt);
if (stride % 4) {
printf(
"Stride not 32-bit aligned, stride = %d\n", stride);
return -EINVAL;
}
/* Build parameter memory data for DMA channel */
ipu_ch_param_init(dma_chan, pixel_fmt, width, height, stride, u, v, 0,
phyaddr_0, phyaddr_1);
if (ipu_is_dmfc_chan(dma_chan)) {
ipu_dmfc_set_wait4eot(dma_chan, width);
}
if (idma_is_set(IDMAC_CHA_PRI, dma_chan))
ipu_ch_param_set_high_priority(dma_chan);
ipu_ch_param_dump(dma_chan);
reg = __raw_readl(IPU_CHA_DB_MODE_SEL(dma_chan));
if (phyaddr_1)
reg |= idma_mask(dma_chan);
else
reg &= ~idma_mask(dma_chan);
__raw_writel(reg, IPU_CHA_DB_MODE_SEL(dma_chan));
/* Reset to buffer 0 */
__raw_writel(idma_mask(dma_chan), IPU_CHA_CUR_BUF(dma_chan));
return 0;
}
/*
* This function enables a logical channel.
*
* @param channel Input parameter for the logical channel ID.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_enable_channel(ipu_channel_t channel)
{
uint32_t reg;
uint32_t in_dma;
uint32_t out_dma;
if (g_channel_enable_mask & (1L << IPU_CHAN_ID(channel))) {
printf("Warning: channel already enabled %d\n",
IPU_CHAN_ID(channel));
}
/* Get input and output dma channels */
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
if (idma_is_valid(in_dma)) {
reg = __raw_readl(IDMAC_CHA_EN(in_dma));
__raw_writel(reg | idma_mask(in_dma), IDMAC_CHA_EN(in_dma));
}
if (idma_is_valid(out_dma)) {
reg = __raw_readl(IDMAC_CHA_EN(out_dma));
__raw_writel(reg | idma_mask(out_dma), IDMAC_CHA_EN(out_dma));
}
if ((channel == MEM_DC_SYNC) || (channel == MEM_BG_SYNC) ||
(channel == MEM_FG_SYNC))
ipu_dp_dc_enable(channel);
g_channel_enable_mask |= 1L << IPU_CHAN_ID(channel);
return 0;
}
/*
* This function clear buffer ready for a logical channel.
*
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to clear.
*
* @param bufNum Input parameter for which buffer number clear
* ready state.
*
*/
void ipu_clear_buffer_ready(ipu_channel_t channel, ipu_buffer_t type,
uint32_t bufNum)
{
uint32_t dma_ch = channel_2_dma(channel, type);
if (!idma_is_valid(dma_ch))
return;
__raw_writel(0xF0000000, IPU_GPR); /* write one to clear */
if (bufNum == 0) {
if (idma_is_set(IPU_CHA_BUF0_RDY, dma_ch)) {
__raw_writel(idma_mask(dma_ch),
IPU_CHA_BUF0_RDY(dma_ch));
}
} else {
if (idma_is_set(IPU_CHA_BUF1_RDY, dma_ch)) {
__raw_writel(idma_mask(dma_ch),
IPU_CHA_BUF1_RDY(dma_ch));
}
}
__raw_writel(0x0, IPU_GPR); /* write one to set */
}
/*
* This function disables a logical channel.
*
* @param channel Input parameter for the logical channel ID.
*
* @param wait_for_stop Flag to set whether to wait for channel end
* of frame or return immediately.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_disable_channel(ipu_channel_t channel)
{
uint32_t reg;
uint32_t in_dma;
uint32_t out_dma;
if ((g_channel_enable_mask & (1L << IPU_CHAN_ID(channel))) == 0) {
debug("Channel already disabled %d\n",
IPU_CHAN_ID(channel));
return 0;
}
/* Get input and output dma channels */
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
if ((idma_is_valid(in_dma) &&
!idma_is_set(IDMAC_CHA_EN, in_dma))
&& (idma_is_valid(out_dma) &&
!idma_is_set(IDMAC_CHA_EN, out_dma)))
return -EINVAL;
if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC) ||
(channel == MEM_DC_SYNC)) {
ipu_dp_dc_disable(channel, 0);
}
/* Disable DMA channel(s) */
if (idma_is_valid(in_dma)) {
reg = __raw_readl(IDMAC_CHA_EN(in_dma));
__raw_writel(reg & ~idma_mask(in_dma), IDMAC_CHA_EN(in_dma));
__raw_writel(idma_mask(in_dma), IPU_CHA_CUR_BUF(in_dma));
}
if (idma_is_valid(out_dma)) {
reg = __raw_readl(IDMAC_CHA_EN(out_dma));
__raw_writel(reg & ~idma_mask(out_dma), IDMAC_CHA_EN(out_dma));
__raw_writel(idma_mask(out_dma), IPU_CHA_CUR_BUF(out_dma));
}
g_channel_enable_mask &= ~(1L << IPU_CHAN_ID(channel));
/* Set channel buffers NOT to be ready */
if (idma_is_valid(in_dma)) {
ipu_clear_buffer_ready(channel, IPU_VIDEO_IN_BUFFER, 0);
ipu_clear_buffer_ready(channel, IPU_VIDEO_IN_BUFFER, 1);
}
if (idma_is_valid(out_dma)) {
ipu_clear_buffer_ready(channel, IPU_OUTPUT_BUFFER, 0);
ipu_clear_buffer_ready(channel, IPU_OUTPUT_BUFFER, 1);
}
return 0;
}
uint32_t bytes_per_pixel(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_GENERIC: /*generic data */
case IPU_PIX_FMT_RGB332:
case IPU_PIX_FMT_YUV420P:
case IPU_PIX_FMT_YUV422P:
return 1;
break;
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_YUYV:
case IPU_PIX_FMT_UYVY:
return 2;
break;
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
return 3;
break;
case IPU_PIX_FMT_GENERIC_32: /*generic data */
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_RGB32:
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_ABGR32:
return 4;
break;
default:
return 1;
break;
}
return 0;
}
ipu_color_space_t format_to_colorspace(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_RGB666:
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_RGB32:
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_ABGR32:
case IPU_PIX_FMT_LVDS666:
case IPU_PIX_FMT_LVDS888:
return RGB;
break;
default:
return YCbCr;
break;
}
return RGB;
}