blob: bb338baefa836a6a73d5872c9f7412536b0a25f2 [file] [log] [blame] [edit]
/*
* FIPS-180-2 compliant SHA-256 implementation
*
* Copyright (C) 2001-2003 Christophe Devine
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <linux/string.h>
#else
#include <string.h>
#endif /* USE_HOSTCC */
#include <watchdog.h>
#include <u-boot/sha256.h>
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) { \
(n) = ( (unsigned long) (b)[(i) ] << 24 ) \
| ( (unsigned long) (b)[(i) + 1] << 16 ) \
| ( (unsigned long) (b)[(i) + 2] << 8 ) \
| ( (unsigned long) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) { \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
void sha256_starts(sha256_context * ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
static void sha256_process(sha256_context *ctx, const uint8_t data[64])
{
uint32_t temp1, temp2;
uint32_t W[64];
uint32_t A, B, C, D, E, F, G, H;
GET_UINT32_BE(W[0], data, 0);
GET_UINT32_BE(W[1], data, 4);
GET_UINT32_BE(W[2], data, 8);
GET_UINT32_BE(W[3], data, 12);
GET_UINT32_BE(W[4], data, 16);
GET_UINT32_BE(W[5], data, 20);
GET_UINT32_BE(W[6], data, 24);
GET_UINT32_BE(W[7], data, 28);
GET_UINT32_BE(W[8], data, 32);
GET_UINT32_BE(W[9], data, 36);
GET_UINT32_BE(W[10], data, 40);
GET_UINT32_BE(W[11], data, 44);
GET_UINT32_BE(W[12], data, 48);
GET_UINT32_BE(W[13], data, 52);
GET_UINT32_BE(W[14], data, 56);
GET_UINT32_BE(W[15], data, 60);
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) { \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
}
void sha256_update(sha256_context *ctx, const uint8_t *input, uint32_t length)
{
uint32_t left, fill;
if (!length)
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += length;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < length)
ctx->total[1]++;
if (left && length >= fill) {
memcpy((void *) (ctx->buffer + left), (void *) input, fill);
sha256_process(ctx, ctx->buffer);
length -= fill;
input += fill;
left = 0;
}
while (length >= 64) {
sha256_process(ctx, input);
length -= 64;
input += 64;
}
if (length)
memcpy((void *) (ctx->buffer + left), (void *) input, length);
}
static uint8_t sha256_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void sha256_finish(sha256_context * ctx, uint8_t digest[32])
{
uint32_t last, padn;
uint32_t high, low;
uint8_t msglen[8];
high = ((ctx->total[0] >> 29)
| (ctx->total[1] << 3));
low = (ctx->total[0] << 3);
PUT_UINT32_BE(high, msglen, 0);
PUT_UINT32_BE(low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
sha256_update(ctx, sha256_padding, padn);
sha256_update(ctx, msglen, 8);
PUT_UINT32_BE(ctx->state[0], digest, 0);
PUT_UINT32_BE(ctx->state[1], digest, 4);
PUT_UINT32_BE(ctx->state[2], digest, 8);
PUT_UINT32_BE(ctx->state[3], digest, 12);
PUT_UINT32_BE(ctx->state[4], digest, 16);
PUT_UINT32_BE(ctx->state[5], digest, 20);
PUT_UINT32_BE(ctx->state[6], digest, 24);
PUT_UINT32_BE(ctx->state[7], digest, 28);
}
/*
* Output = SHA-256( input buffer ). Trigger the watchdog every 'chunk_sz'
* bytes of input processed.
*/
void sha256_csum_wd(const unsigned char *input, unsigned int ilen,
unsigned char *output, unsigned int chunk_sz)
{
sha256_context ctx;
#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
const unsigned char *end;
unsigned char *curr;
int chunk;
#endif
sha256_starts(&ctx);
#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
curr = (unsigned char *)input;
end = input + ilen;
while (curr < end) {
chunk = end - curr;
if (chunk > chunk_sz)
chunk = chunk_sz;
sha256_update(&ctx, curr, chunk);
curr += chunk;
WATCHDOG_RESET();
}
#else
sha256_update(&ctx, input, ilen);
#endif
sha256_finish(&ctx, output);
}