blob: e8b805d1722f0503f19822e8e02c695dea1d0171 [file] [log] [blame]
/*
* (C) Copyright 2010
* Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* Designware ethernet IP driver for u-boot
*/
#include <common.h>
#include <miiphy.h>
#include <malloc.h>
#include <linux/compiler.h>
#include <linux/err.h>
#include <asm/io.h>
#include <asm/arch/io.h>
#include "designware.h"
#if !defined(CONFIG_PHYLIB)
# error "DesignWare Ether MAC requires PHYLIB - missing CONFIG_PHYLIB"
#endif
struct eth_device *dev = NULL;
struct dw_eth_dev *priv = NULL;
static int dw_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct eth_mac_regs *mac_p = bus->priv;
ulong start;
u16 miiaddr;
int timeout = CONFIG_MDIO_TIMEOUT;
miiaddr = ((addr << MIIADDRSHIFT) & MII_ADDRMSK) |
((reg << MIIREGSHIFT) & MII_REGMSK);
writel(miiaddr | MII_CLKRANGE_150_250M | MII_BUSY, &mac_p->miiaddr);
start = get_timer(0);
while (get_timer(start) < timeout) {
if (!(readl(&mac_p->miiaddr) & MII_BUSY))
return readl(&mac_p->miidata);
udelay(10);
};
return -1;
}
static int dw_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct eth_mac_regs *mac_p = bus->priv;
ulong start;
u16 miiaddr;
int ret = -1, timeout = CONFIG_MDIO_TIMEOUT;
writel(val, &mac_p->miidata);
miiaddr = ((addr << MIIADDRSHIFT) & MII_ADDRMSK) |
((reg << MIIREGSHIFT) & MII_REGMSK) | MII_WRITE;
writel(miiaddr | MII_CLKRANGE_150_250M | MII_BUSY, &mac_p->miiaddr);
start = get_timer(0);
while (get_timer(start) < timeout) {
if (!(readl(&mac_p->miiaddr) & MII_BUSY)) {
ret = 0;
break;
}
udelay(10);
};
return ret;
}
static int dw_mdio_init(char *name, struct eth_mac_regs *mac_regs_p)
{
struct mii_dev *bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate MDIO bus\n");
return -1;
}
bus->read = dw_mdio_read;
bus->write = dw_mdio_write;
sprintf(bus->name, name);
bus->priv = (void *)mac_regs_p;
return mdio_register(bus);
}
static void tx_descs_init(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
struct dmamacdescr *desc_table_p = &priv->tx_mac_descrtable[0];
char *txbuffs = &priv->txbuffs[0];
struct dmamacdescr *desc_p;
u32 idx;
for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->dmamac_addr = (u32)(phys_addr_t)&txbuffs[idx * CONFIG_ETH_BUFSIZE];
desc_p->dmamac_next = (u32)(phys_addr_t)&desc_table_p[idx + 1];
#if defined(CONFIG_DW_ALTDESCRIPTOR)
desc_p->txrx_status &= ~(DESC_TXSTS_TXINT | DESC_TXSTS_TXLAST |
DESC_TXSTS_TXFIRST | DESC_TXSTS_TXCRCDIS | \
DESC_TXSTS_TXCHECKINSCTRL | \
DESC_TXSTS_TXRINGEND | DESC_TXSTS_TXPADDIS);
desc_p->txrx_status |= DESC_TXSTS_TXCHAIN;
desc_p->dmamac_cntl = 0;
desc_p->txrx_status &= ~(DESC_TXSTS_MSK | DESC_TXSTS_OWNBYDMA);
#else
desc_p->dmamac_cntl = DESC_TXCTRL_TXCHAIN;
desc_p->txrx_status = 0;
#endif
}
/* Correcting the last pointer of the chain */
desc_p->dmamac_next = (u32)(phys_addr_t)&desc_table_p[0];
/* Flush all Tx buffer descriptors at once */
flush_dcache_range((phys_addr_t)priv->tx_mac_descrtable,
(phys_addr_t)priv->tx_mac_descrtable +
sizeof(priv->tx_mac_descrtable));
writel((ulong)&desc_table_p[0], &dma_p->txdesclistaddr);
priv->tx_currdescnum = 0;
}
static void rx_descs_init(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
struct dmamacdescr *desc_table_p = &priv->rx_mac_descrtable[0];
char *rxbuffs = &priv->rxbuffs[0];
struct dmamacdescr *desc_p;
u32 idx;
/* Before passing buffers to GMAC we need to make sure zeros
* written there right after "priv" structure allocation were
* flushed into RAM.
* Otherwise there's a chance to get some of them flushed in RAM when
* GMAC is already pushing data to RAM via DMA. This way incoming from
* GMAC data will be corrupted. */
flush_dcache_range((phys_addr_t)rxbuffs, (phys_addr_t)rxbuffs +
RX_TOTAL_BUFSIZE);
for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->dmamac_addr = (u32)(phys_addr_t)&rxbuffs[idx * CONFIG_ETH_BUFSIZE];
desc_p->dmamac_next = (u32)(phys_addr_t)&desc_table_p[idx + 1];
desc_p->dmamac_cntl =
(MAC_MAX_FRAME_SZ & DESC_RXCTRL_SIZE1MASK) | \
DESC_RXCTRL_RXCHAIN;
desc_p->txrx_status = DESC_RXSTS_OWNBYDMA;
}
/* Correcting the last pointer of the chain */
desc_p->dmamac_next = (u32)(phys_addr_t)&desc_table_p[0];
/* Flush all Rx buffer descriptors at once */
flush_dcache_range((phys_addr_t)priv->rx_mac_descrtable,
(phys_addr_t)priv->rx_mac_descrtable +
sizeof(priv->rx_mac_descrtable));
writel((ulong)&desc_table_p[0], &dma_p->rxdesclistaddr);
priv->rx_currdescnum = 0;
}
static int dw_write_hwaddr(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
u32 macid_lo, macid_hi;
u8 *mac_id = &dev->enetaddr[0];
macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
(mac_id[3] << 24);
macid_hi = mac_id[4] + (mac_id[5] << 8);
writel(macid_hi, &mac_p->macaddr0hi);
writel(macid_lo, &mac_p->macaddr0lo);
return 0;
}
static void dw_adjust_link(struct eth_mac_regs *mac_p,
struct phy_device *phydev)
{
u32 conf = readl(&mac_p->conf) | FRAMEBURSTENABLE | DISABLERXOWN;
if (!phydev->link) {
printf("%s: No link.\n", phydev->dev->name);
return;
}
if (phydev->speed != 1000)
conf |= MII_PORTSELECT;
if (phydev->speed == 100)
conf |= FES_100;
if (phydev->duplex)
conf |= FULLDPLXMODE;
writel(conf, &mac_p->conf);
printf("Speed: %d, %s duplex%s\n", phydev->speed,
(phydev->duplex) ? "full" : "half",
(phydev->port == PORT_FIBRE) ? ", fiber mode" : "");
}
static void dw_eth_halt(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
writel(readl(&mac_p->conf) & ~(RXENABLE | TXENABLE), &mac_p->conf);
writel(readl(&dma_p->opmode) & ~(RXSTART | TXSTART), &dma_p->opmode);
phy_shutdown(priv->phydev);
}
static int dw_eth_init(struct eth_device *dev, bd_t *bis)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
unsigned int start;
writel(readl(&dma_p->busmode) | DMAMAC_SRST, &dma_p->busmode);
start = get_timer(0);
while (readl(&dma_p->busmode) & DMAMAC_SRST) {
if (get_timer(start) >= CONFIG_MACRESET_TIMEOUT)
return -1;
#ifdef CONFIG_PXP_EMULATOR
udelay(100);
#else
mdelay(100);
#endif
};
/* Soft reset above clears HW address registers.
* So we have to set it here once again */
dw_write_hwaddr(dev);
rx_descs_init(dev);
tx_descs_init(dev);
writel(FIXEDBURST | PRIORXTX_41 | DMA_PBL, &dma_p->busmode);
writel(readl(&dma_p->opmode) | FLUSHTXFIFO | STOREFORWARD,
&dma_p->opmode);
writel(readl(&dma_p->opmode) | RXSTART | TXSTART, &dma_p->opmode);
/* Start up the PHY */
if (phy_startup(priv->phydev)) {
printf("Could not initialize PHY %s\n",
priv->phydev->dev->name);
return -1;
}
#ifdef CONFIG_PXP_EMULATOR
priv->phydev->link = 1;
priv->phydev->speed = 100;
priv->phydev->duplex = 1;
#endif
dw_adjust_link(mac_p, priv->phydev);
if (!priv->phydev->link)
return -1;
writel(readl(&mac_p->conf) | RXENABLE | TXENABLE, &mac_p->conf);
return 0;
}
static int dw_eth_send(struct eth_device *dev, void *packet, int length)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
u32 desc_num = priv->tx_currdescnum;
struct dmamacdescr *desc_p = &priv->tx_mac_descrtable[desc_num];
phys_addr_t desc_start = (phys_addr_t)desc_p;
phys_addr_t desc_end = desc_start +
roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
/*
* Strictly we only need to invalidate the "txrx_status" field
* for the following check, but on some platforms we cannot
* invalidate only 4 bytes, so we flush the entire descriptor,
* which is 16 bytes in total. This is safe because the
* individual descriptors in the array are each aligned to
* ARCH_DMA_MINALIGN and padded appropriately.
*/
invalidate_dcache_range(desc_start, desc_end);
/* Check if the descriptor is owned by CPU */
if (desc_p->txrx_status & DESC_TXSTS_OWNBYDMA) {
printf("CPU not owner of tx frame\n");
return -1;
}
memcpy((void *)(phys_addr_t)desc_p->dmamac_addr, packet, length);
/* Flush data to be sent */
flush_dcache_range((phys_addr_t)priv->txbuffs, (phys_addr_t)priv->txbuffs + TX_TOTAL_BUFSIZE);
#if defined(CONFIG_DW_ALTDESCRIPTOR)
desc_p->txrx_status |= DESC_TXSTS_TXFIRST | DESC_TXSTS_TXLAST;
desc_p->dmamac_cntl &= (~DESC_TXCTRL_SIZE1MASK);
desc_p->dmamac_cntl |= (length << DESC_TXCTRL_SIZE1SHFT) & \
DESC_TXCTRL_SIZE1MASK;
desc_p->txrx_status &= ~(DESC_TXSTS_MSK);
desc_p->txrx_status |= DESC_TXSTS_OWNBYDMA;
#else
desc_p->dmamac_cntl &= (~DESC_TXCTRL_SIZE1MASK);
desc_p->dmamac_cntl |= ((length << DESC_TXCTRL_SIZE1SHFT) & \
DESC_TXCTRL_SIZE1MASK) | DESC_TXCTRL_TXLAST | \
DESC_TXCTRL_TXFIRST;
desc_p->txrx_status = DESC_TXSTS_OWNBYDMA;
#endif
/* Flush modified buffer descriptor */
flush_dcache_range(desc_start, desc_end);
/* Test the wrap-around condition. */
if (++desc_num >= CONFIG_TX_DESCR_NUM)
desc_num = 0;
priv->tx_currdescnum = desc_num;
/* Start the transmission */
writel(POLL_DATA, &dma_p->txpolldemand);
return 0;
}
static int dw_eth_recv(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
u32 status, desc_num = priv->rx_currdescnum;
struct dmamacdescr *desc_p = &priv->rx_mac_descrtable[desc_num];
int length = 0;
phys_addr_t desc_start = (phys_addr_t)desc_p;
phys_addr_t desc_end = desc_start +
roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
/* Invalidate entire buffer descriptor */
invalidate_dcache_range(desc_start, desc_end);
status = desc_p->txrx_status;
/* Check if the owner is the CPU */
if (!(status & DESC_RXSTS_OWNBYDMA)) {
length = (status & DESC_RXSTS_FRMLENMSK) >> \
DESC_RXSTS_FRMLENSHFT;
/* Invalidate received data */
invalidate_dcache_range((phys_addr_t)priv->rxbuffs, (phys_addr_t)priv->rxbuffs + RX_TOTAL_BUFSIZE);
NetReceive((uchar *)(phys_addr_t)desc_p->dmamac_addr, length);
/*
* Make the current descriptor valid again and go to
* the next one
*/
desc_p->txrx_status |= DESC_RXSTS_OWNBYDMA;
/* Flush only status field - others weren't changed */
flush_dcache_range(desc_start, desc_end);
/* Test the wrap-around condition. */
if (++desc_num >= CONFIG_RX_DESCR_NUM)
desc_num = 0;
}
priv->rx_currdescnum = desc_num;
return length;
}
static int dw_phy_init(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct phy_device *phydev;
int mask = 0xffffffff;
#ifdef CONFIG_PHY_ADDR
mask = 1 << CONFIG_PHY_ADDR;
#endif
phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
if (!phydev)
return -1;
phy_connect_dev(phydev, dev);
phydev->supported &= PHY_GBIT_FEATURES;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
return 1;
}
int designware_initialize(ulong base_addr, u32 interface)
{
dev = (struct eth_device *) malloc(sizeof(struct eth_device));
if (!dev)
return -ENOMEM;
/*
* Since the priv structure contains the descriptors which need a strict
* buswidth alignment, memalign is used to allocate memory
*/
priv = (struct dw_eth_dev *) memalign(ARCH_DMA_MINALIGN,
sizeof(struct dw_eth_dev));
if (!priv) {
free(dev);
return -ENOMEM;
}
memset(dev, 0, sizeof(struct eth_device));
memset(priv, 0, sizeof(struct dw_eth_dev));
sprintf(dev->name, "dwmac.%lx", base_addr);
dev->iobase = (int)base_addr;
dev->priv = priv;
priv->dev = dev;
priv->mac_regs_p = (struct eth_mac_regs *)base_addr;
priv->dma_regs_p = (struct eth_dma_regs *)(base_addr +
DW_DMA_BASE_OFFSET);
dev->init = dw_eth_init;
dev->send = dw_eth_send;
dev->recv = dw_eth_recv;
dev->halt = dw_eth_halt;
dev->write_hwaddr = dw_write_hwaddr;
eth_register(dev);
priv->interface = interface;
dw_mdio_init(dev->name, priv->mac_regs_p);
priv->bus = miiphy_get_dev_by_name(dev->name);
return dw_phy_init(dev);
}
/* amlogic debug cmd start */
static int do_phyreg(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int reg, value;
unsigned char *cmd = NULL;
unsigned int i;
if (argc < 2) {
return cmd_usage(cmdtp);
}
if (priv == NULL || priv->phydev == NULL) {
return -1;
}
cmd = (unsigned char *)argv[1];
switch (*cmd) {
case 'd':
printf("=== ethernet phy register dump:\n");
for (i = 0; i < 32; i++)
printf("[reg_%d] 0x%x\n", i, phy_read(priv->phydev, MDIO_DEVAD_NONE, i));
break;
case 'r':
if (argc != 3) {
return cmd_usage(cmdtp);
}
printf("=== ethernet phy register read:\n");
reg = simple_strtoul(argv[2], NULL, 10);
printf("[reg_%d] 0x%x\n", reg, phy_read(priv->phydev, MDIO_DEVAD_NONE, reg));
break;
case 'w':
if (argc != 4) {
return cmd_usage(cmdtp);
}
printf("=== ethernet phy register write:\n");
reg = simple_strtoul(argv[2], NULL, 10);
value = simple_strtoul(argv[3], NULL, 16);
phy_write(priv->phydev, MDIO_DEVAD_NONE, reg, value);
printf("[reg_%d] 0x%x\n", reg, phy_read(priv->phydev, MDIO_DEVAD_NONE, reg));
break;
default:
return cmd_usage(cmdtp);
}
return 0;
}
static int do_macreg(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int reg, value;
unsigned char *cmd = NULL;
unsigned int i = 0;
if (argc < 2) {
return cmd_usage(cmdtp);
}
cmd = (unsigned char *)argv[1];
switch (*cmd) {
case 'd':
printf("=== ETH_MAC register dump:\n");
for (i = 0x0000; i <= 0x004C; i += 0x4)
printf("[0x%04x] 0x%lx\n", i, (unsigned long)readl((unsigned long)priv->mac_regs_p + i));
printf("=== ETH_DMA register dump:\n");
for (i = 0x0000; i <= 0x0054; i += 0x4)
printf("[0x%04x] 0x%x\n", i, (unsigned int)readl((unsigned long)priv->dma_regs_p + i));
break;
case 'r':
if (argc != 3) {
return cmd_usage(cmdtp);
}
printf("=== ethernet mac register read:\n");
reg = simple_strtoul(argv[2], NULL, 10);
printf("[0x%04x] 0x%x\n", i, (unsigned int)readl((unsigned long)priv->mac_regs_p + reg));
break;
case 'w':
if (argc != 4) {
return cmd_usage(cmdtp);
}
printf("=== ethernet mac register write:\n");
reg = simple_strtoul(argv[2], NULL, 10);
value = simple_strtoul(argv[3], NULL, 16);
writel(value, (unsigned long)priv->mac_regs_p + reg);
printf("[0x%04x] 0x%x\n", reg, value);
break;
default:
return cmd_usage(cmdtp);
}
return 0;
}
static int do_cbusreg(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int reg, value;
char *cmd = NULL;
if (argc < 3) {
return cmd_usage(cmdtp);
}
cmd = argv[1];
switch (*cmd) {
case 'r':
if (argc != 3) {
return cmd_usage(cmdtp);
}
printf("=== cbus register read:\n");
reg = simple_strtoul(argv[2], NULL, 16);
printf("[0x%04x] 0x%x\n", reg, READ_CBUS_REG(reg));
break;
case 'w':
if (argc != 4) {
return cmd_usage(cmdtp);
}
printf("=== cbus register write:\n");
reg = simple_strtoul(argv[2], NULL, 16);
value = simple_strtoul(argv[3], NULL, 16);
WRITE_CBUS_REG(reg, value);
printf("[0x%04x] 0x%x\n", reg, READ_CBUS_REG(reg));
break;
default:
return cmd_usage(cmdtp);
}
return 0;
}
U_BOOT_CMD(
phyreg, 4, 1, do_phyreg,
"ethernet phy register read/write/dump",
"d - dump phy registers\n"
" r reg - read phy register\n"
" w reg val - write phy register"
);
U_BOOT_CMD(
macreg, 4, 1, do_macreg,
"ethernet mac register read/write/dump",
"d - dump mac registers\n"
" r reg - read mac register\n"
" w reg val - write mac register"
);
U_BOOT_CMD(
cbusreg, 4, 1, do_cbusreg,
"cbus register read/write",
"r reg - read cbus register\n"
" w reg val - write cbus register"
);
/* amlogic debug cmd end */