Automated g4 rollback of changelist 343392735.
*** Reason for rollback ***
Breaks tests: https://test.corp.google.com/ui#cl=343456731&flags=CAMQAqAEAg==&id=OCL:343456731:BASE:343463333:1605870623135:b93bb9fc&t=//borg/containermgr/core_allocation:core_allocator_regtest_lib_test
*** Original change description ***
BEGIN_PUBLIC
Update Eigen to: https://gitlab.com/libeigen/eigen/-/commit/a8fdcae55d1f002966fc9b963597a404f30baa09
END_PUBLIC
We missed the `TensorRandom` change in the last update.
***
PiperOrigin-RevId: 343470420
diff --git a/Eigen/src/Core/arch/Default/BFloat16.h b/Eigen/src/Core/arch/Default/BFloat16.h
index ca2a86d..63ceace 100644
--- a/Eigen/src/Core/arch/Default/BFloat16.h
+++ b/Eigen/src/Core/arch/Default/BFloat16.h
@@ -69,7 +69,7 @@
template<class T>
explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16(const T& val)
: bfloat16_impl::bfloat16_base(bfloat16_impl::float_to_bfloat16_rtne<internal::is_integral<T>::value>(static_cast<float>(val))) {}
-
+
explicit EIGEN_DEVICE_FUNC bfloat16(float f)
: bfloat16_impl::bfloat16_base(bfloat16_impl::float_to_bfloat16_rtne<false>(f)) {}
@@ -88,7 +88,8 @@
// +0.0 and -0.0 become false, everything else becomes true.
return (value & 0x7fff) != 0;
}
-#endif
+#endif
+
};
} // namespace Eigen
@@ -271,16 +272,10 @@
return output;
}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw
-raw_uint16_to_bfloat16(numext::uint16_t value) {
+EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw raw_uint16_to_bfloat16(unsigned short value) {
return __bfloat16_raw(value);
}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR numext::uint16_t
-raw_bfloat16_as_uint16(const __bfloat16_raw& bf) {
- return bf.value;
-}
-
// float_to_bfloat16_rtne template specialization that does not make any
// assumption about the value of its function argument (ff).
template <>
@@ -459,7 +454,7 @@
// float_to_bfloat16_rtne template specialization that assumes that its function
// argument (ff) is either a normal floating point number, or +/-infinity, or
// zero. Used to improve the runtime performance of conversion from an integer
-// type to bfloat16.
+// type to bfloat16.
template <>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne<true>(float ff) {
#if (defined(EIGEN_HAS_CUDA_BF16) && defined(EIGEN_HAS_HIP_BF16))
@@ -696,19 +691,7 @@
return (bfloat16_impl::isfinite)(h);
}
-template <>
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16
-bit_cast<Eigen::bfloat16, uint16_t>(const uint16_t& src) {
- return Eigen::bfloat16(Eigen::bfloat16_impl::raw_uint16_to_bfloat16(src));
-}
-
-template <>
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t
-bit_cast<uint16_t, Eigen::bfloat16>(const Eigen::bfloat16& src) {
- return Eigen::bfloat16_impl::raw_bfloat16_as_uint16(src);
-}
-
-} // namespace numext
+} // namespace numext
} // namespace Eigen
#endif // EIGEN_BFLOAT16_H
diff --git a/Eigen/src/Core/arch/Default/Half.h b/Eigen/src/Core/arch/Default/Half.h
index e31f742..0bc1e9d 100644
--- a/Eigen/src/Core/arch/Default/Half.h
+++ b/Eigen/src/Core/arch/Default/Half.h
@@ -159,12 +159,6 @@
explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c)
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {}
- EIGEN_DEVICE_FUNC operator float()
- const { // NOLINT: Allow implicit conversion to float, because it is
- // lossless.
- return half_impl::half_to_float(*this);
- }
-
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const {
// +0.0 and -0.0 become false, everything else becomes true.
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
@@ -173,6 +167,47 @@
return (x & 0x7fff) != 0;
#endif
}
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const {
+ return static_cast<signed char>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const {
+ return static_cast<unsigned char>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const {
+ return static_cast<short>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(numext::uint16_t) const {
+ return static_cast<numext::uint16_t>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const {
+ return static_cast<int>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const {
+ return static_cast<unsigned int>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const {
+ return static_cast<long>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const {
+ return static_cast<unsigned long>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const {
+ return static_cast<long long>(half_impl::half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const {
+ return static_cast<unsigned long long>(half_to_float(*this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const {
+ return half_impl::half_to_float(*this);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const {
+ return static_cast<double>(half_impl::half_to_float(*this));
+ }
+
+ template<typename RealScalar>
+ EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(std::complex<RealScalar>) const {
+ return std::complex<RealScalar>(static_cast<RealScalar>(*this), RealScalar(0));
+ }
};
} // end namespace Eigen
@@ -459,20 +494,6 @@
#endif
}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR numext::uint16_t
-raw_half_as_uint16(const __half_raw& h) {
- // HIP/CUDA/Default have a member 'x' of type uint16_t.
- // For ARM64 native half, the member 'x' is of type __fp16, so we need to
- // bit-cast. For SYCL, cl::sycl::half is _Float16, so cast directly.
-#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
- return numext::bit_cast<numext::uint16_t>(h.x);
-#elif defined(SYCL_DEVICE_ONLY)
- return numext::bit_cast<numext::uint16_t>(h);
-#else
- return h.x;
-#endif
-}
-
union float32_bits {
unsigned int u;
float f;
@@ -652,12 +673,6 @@
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
return half(::tanhf(float(a)));
}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) {
- return half(::asinf(float(a)));
-}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) {
- return half(::acosf(float(a)));
-}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
@@ -666,9 +681,6 @@
return half(::floorf(float(a)));
#endif
}
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) {
- return half(::rintf(float(a)));
-}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
@@ -800,11 +812,10 @@
}
#endif
+#if defined(EIGEN_GPU_COMPILE_PHASE)
namespace Eigen {
namespace numext {
-#if defined(EIGEN_GPU_COMPILE_PHASE)
-
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) {
return (half_impl::isnan)(h);
@@ -819,22 +830,8 @@
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) {
return (half_impl::isfinite)(h);
}
-
-#endif
-
-template <>
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half
-bit_cast<Eigen::half, uint16_t>(const uint16_t& src) {
- return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src));
-}
-
-template <>
-EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t
-bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) {
- return Eigen::half_impl::raw_half_as_uint16(src);
-}
-
} // namespace numext
} // namespace Eigen
+#endif
#endif // EIGEN_HALF_H
diff --git a/Eigen/src/Core/arch/NEON/PacketMath.h b/Eigen/src/Core/arch/NEON/PacketMath.h
index 5ea108f..30edd70 100644
--- a/Eigen/src/Core/arch/NEON/PacketMath.h
+++ b/Eigen/src/Core/arch/NEON/PacketMath.h
@@ -3849,15 +3849,16 @@
typedef float16x4_t Packet4hf;
typedef float16x8_t Packet8hf;
+// TODO(tellenbach): Enable packets of size 8 as soon as the GEBP can handle them
template <>
struct packet_traits<Eigen::half> : default_packet_traits {
- typedef Packet8hf type;
+ typedef Packet4hf type;
typedef Packet4hf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
- size = 8,
- HasHalfPacket = 1,
+ size = 4,
+ HasHalfPacket = 0,
HasCmp = 1,
HasCast = 1,
@@ -3903,7 +3904,7 @@
template <>
struct unpacket_traits<Packet8hf> {
typedef Eigen::half type;
- typedef Packet4hf half;
+ typedef Packet8hf half;
enum {
size = 8,
alignment = Aligned16,
@@ -3914,11 +3915,6 @@
};
template <>
-EIGEN_DEVICE_FUNC Packet4hf predux_half_dowto4<Packet8hf>(const Packet8hf& a) {
- return vadd_f16(vget_low_f16(a), vget_high_f16(a));
-}
-
-template <>
EIGEN_STRONG_INLINE Packet8hf pset1<Packet8hf>(const Eigen::half& from) {
return vdupq_n_f16(from.x);
}
@@ -4436,11 +4432,11 @@
for (int i = 0; i < 4; ++i) {
EIGEN_UNROLL_LOOP
for (int j = 0; j < 4; ++j) {
- out[i][j] = in[j][2 * i];
+ out[i][j] = in[j][2*i];
}
EIGEN_UNROLL_LOOP
for (int j = 0; j < 4; ++j) {
- out[i][j + 4] = in[j][2 * i + 1];
+ out[i][j+4] = in[j][2*i+1];
}
}
diff --git a/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
index 72ce400..9db119b 100644
--- a/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
+++ b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
@@ -10,7 +10,7 @@
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
-namespace Eigen {
+namespace Eigen {
namespace internal {
@@ -25,16 +25,16 @@
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
-
+
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
-
+
std::memset(mask,0,sizeof(bool)*rows);
evaluator<Lhs> lhsEval(lhs);
evaluator<Rhs> rhsEval(rhs);
-
+
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
@@ -141,7 +141,7 @@
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrixAux;
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime,ColMajorMatrixAux::Flags>::type ColMajorMatrix;
-
+
// If the result is tall and thin (in the extreme case a column vector)
// then it is faster to sort the coefficients inplace instead of transposing twice.
// FIXME, the following heuristic is probably not very good.
@@ -155,7 +155,7 @@
else
{
ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
- // resort to transpose to sort the entries
+ // ressort to transpose to sort the entries
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
RowMajorMatrix resRow(resCol);
res = resRow.markAsRValue();
@@ -347,6 +347,6 @@
} // end namespace internal
-} // end namespace Eigen
+} // end namespace Eigen
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
diff --git a/test/bfloat16_float.cpp b/test/bfloat16_float.cpp
index ccea72d..09df2b2 100644
--- a/test/bfloat16_float.cpp
+++ b/test/bfloat16_float.cpp
@@ -13,10 +13,6 @@
#include <Eigen/src/Core/arch/Default/BFloat16.h>
-#define VERIFY_BFLOAT16_BITS_EQUAL(h, bits) \
- VERIFY_IS_EQUAL((numext::bit_cast<numext::uint16_t>(h)), \
- (static_cast<numext::uint16_t>(bits)))
-
// Make sure it's possible to forward declare Eigen::bfloat16
namespace Eigen {
struct bfloat16;
@@ -62,45 +58,31 @@
{
using Eigen::bfloat16_impl::__bfloat16_raw;
- // Round-trip casts
- VERIFY_IS_EQUAL(numext::bit_cast<bfloat16>(
- numext::bit_cast<numext::uint16_t>(bfloat16(1.0f))),
- bfloat16(1.0f));
- VERIFY_IS_EQUAL(numext::bit_cast<bfloat16>(
- numext::bit_cast<numext::uint16_t>(bfloat16(0.5f))),
- bfloat16(0.5f));
- VERIFY_IS_EQUAL(numext::bit_cast<bfloat16>(
- numext::bit_cast<numext::uint16_t>(bfloat16(-0.33333f))),
- bfloat16(-0.33333f));
- VERIFY_IS_EQUAL(numext::bit_cast<bfloat16>(
- numext::bit_cast<numext::uint16_t>(bfloat16(0.0f))),
- bfloat16(0.0f));
-
// Conversion from float.
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1.0f), 0x3f80);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f), 0x3f00);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.33333f), 0x3eab);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.38e38f), 0x7f7e);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.40e38f), 0x7f80); // Becomes infinity.
+ VERIFY_IS_EQUAL(bfloat16(1.0f).value, 0x3f80);
+ VERIFY_IS_EQUAL(bfloat16(0.5f).value, 0x3f00);
+ VERIFY_IS_EQUAL(bfloat16(0.33333f).value, 0x3eab);
+ VERIFY_IS_EQUAL(bfloat16(3.38e38f).value, 0x7f7e);
+ VERIFY_IS_EQUAL(bfloat16(3.40e38f).value, 0x7f80); // Becomes infinity.
// Verify round-to-nearest-even behavior.
float val1 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c00)));
float val2 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c01)));
float val3 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c02)));
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val1 + val2)), 0x3c00);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val2 + val3)), 0x3c02);
+ VERIFY_IS_EQUAL(bfloat16(0.5f * (val1 + val2)).value, 0x3c00);
+ VERIFY_IS_EQUAL(bfloat16(0.5f * (val2 + val3)).value, 0x3c02);
// Conversion from int.
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-1), 0xbf80);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0), 0x0000);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1), 0x3f80);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(2), 0x4000);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3), 0x4040);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(12), 0x4140);
+ VERIFY_IS_EQUAL(bfloat16(-1).value, 0xbf80);
+ VERIFY_IS_EQUAL(bfloat16(0).value, 0x0000);
+ VERIFY_IS_EQUAL(bfloat16(1).value, 0x3f80);
+ VERIFY_IS_EQUAL(bfloat16(2).value, 0x4000);
+ VERIFY_IS_EQUAL(bfloat16(3).value, 0x4040);
+ VERIFY_IS_EQUAL(bfloat16(12).value, 0x4140);
// Conversion from bool.
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(false), 0x0000);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(true), 0x3f80);
+ VERIFY_IS_EQUAL(bfloat16(false).value, 0x0000);
+ VERIFY_IS_EQUAL(bfloat16(true).value, 0x3f80);
// Conversion to bool
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(3)), true);
@@ -120,8 +102,8 @@
VERIFY_IS_EQUAL(bfloat16(0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(-0.0f));
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.0f), 0x0000);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-0.0f), 0x8000);
+ VERIFY_IS_EQUAL(bfloat16(0.0f).value, 0x0000);
+ VERIFY_IS_EQUAL(bfloat16(-0.0f).value, 0x8000);
// Flush denormals to zero
for (float denorm = -std::numeric_limits<float>::denorm_min();
@@ -135,16 +117,16 @@
VERIFY_IS_EQUAL(bfloat16(denorm), false);
if (std::signbit(denorm)) {
- VERIFY_BFLOAT16_BITS_EQUAL(bf_trunc, 0x8000);
+ VERIFY_IS_EQUAL(bf_trunc.value, 0x8000);
} else {
- VERIFY_BFLOAT16_BITS_EQUAL(bf_trunc, 0x0000);
+ VERIFY_IS_EQUAL(bf_trunc.value, 0x0000);
}
bfloat16 bf_round = Eigen::bfloat16_impl::float_to_bfloat16_rtne<false>(denorm);
VERIFY_IS_EQUAL(static_cast<float>(bf_round), 0.0f);
if (std::signbit(denorm)) {
- VERIFY_BFLOAT16_BITS_EQUAL(bf_round, 0x8000);
+ VERIFY_IS_EQUAL(bf_round.value, 0x8000);
} else {
- VERIFY_BFLOAT16_BITS_EQUAL(bf_round, 0x0000);
+ VERIFY_IS_EQUAL(bf_round.value, 0x0000);
}
}
@@ -249,72 +231,33 @@
VERIFY((numext::isinf)(bfloat16(__bfloat16_raw(0x7f80))));
VERIFY((numext::isnan)(bfloat16(__bfloat16_raw(0x7fc0))));
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x0, 0xff, 0x40, 0x0)),
- 0x7fc0);
- VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x1, 0xff, 0x40, 0x0)),
- 0xffc0);
- VERIFY_BFLOAT16_BITS_EQUAL(Eigen::bfloat16_impl::truncate_to_bfloat16(
- BinaryToFloat(0x0, 0xff, 0x40, 0x0)),
- 0x7fc0);
- VERIFY_BFLOAT16_BITS_EQUAL(Eigen::bfloat16_impl::truncate_to_bfloat16(
- BinaryToFloat(0x1, 0xff, 0x40, 0x0)),
- 0xffc0);
+ VERIFY_IS_EQUAL(bfloat16(BinaryToFloat(0x0, 0xff, 0x40, 0x0)).value, 0x7fc0);
+ VERIFY_IS_EQUAL(bfloat16(BinaryToFloat(0x1, 0xff, 0x40, 0x0)).value, 0xffc0);
+ VERIFY_IS_EQUAL(Eigen::bfloat16_impl::truncate_to_bfloat16(
+ BinaryToFloat(0x0, 0xff, 0x40, 0x0))
+ .value,
+ 0x7fc0);
+ VERIFY_IS_EQUAL(Eigen::bfloat16_impl::truncate_to_bfloat16(
+ BinaryToFloat(0x1, 0xff, 0x40, 0x0))
+ .value,
+ 0xffc0);
}
void test_numtraits()
{
- std::cout << "epsilon = " << NumTraits<bfloat16>::epsilon() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- NumTraits<bfloat16>::epsilon())
- << ")" << std::endl;
- std::cout << "highest = " << NumTraits<bfloat16>::highest() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- NumTraits<bfloat16>::highest())
- << ")" << std::endl;
- std::cout << "lowest = " << NumTraits<bfloat16>::lowest() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::lowest())
- << ")" << std::endl;
- std::cout << "min = " << (std::numeric_limits<bfloat16>::min)()
- << " (0x" << std::hex
- << numext::bit_cast<numext::uint16_t>(
- (std::numeric_limits<bfloat16>::min)())
- << ")" << std::endl;
- std::cout << "denorm min = "
- << (std::numeric_limits<bfloat16>::denorm_min)() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- (std::numeric_limits<bfloat16>::denorm_min)())
- << ")" << std::endl;
- std::cout << "infinity = " << NumTraits<bfloat16>::infinity() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- NumTraits<bfloat16>::infinity())
- << ")" << std::endl;
- std::cout << "quiet nan = " << NumTraits<bfloat16>::quiet_NaN() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- NumTraits<bfloat16>::quiet_NaN())
- << ")" << std::endl;
- std::cout << "signaling nan = "
- << std::numeric_limits<bfloat16>::signaling_NaN() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<bfloat16>::signaling_NaN())
- << ")" << std::endl;
+ std::cout << "epsilon = " << NumTraits<bfloat16>::epsilon() << " (0x" << std::hex << NumTraits<bfloat16>::epsilon().value << ")" << std::endl;
+ std::cout << "highest = " << NumTraits<bfloat16>::highest() << " (0x" << std::hex << NumTraits<bfloat16>::highest().value << ")" << std::endl;
+ std::cout << "lowest = " << NumTraits<bfloat16>::lowest() << " (0x" << std::hex << NumTraits<bfloat16>::lowest().value << ")" << std::endl;
+ std::cout << "min = " << (std::numeric_limits<bfloat16>::min)() << " (0x" << std::hex << (std::numeric_limits<bfloat16>::min)().value << ")" << std::endl;
+ std::cout << "denorm min = " << (std::numeric_limits<bfloat16>::denorm_min)() << " (0x" << std::hex << (std::numeric_limits<bfloat16>::denorm_min)().value << ")" << std::endl;
+ std::cout << "infinity = " << NumTraits<bfloat16>::infinity() << " (0x" << std::hex << NumTraits<bfloat16>::infinity().value << ")" << std::endl;
+ std::cout << "quiet nan = " << NumTraits<bfloat16>::quiet_NaN() << " (0x" << std::hex << NumTraits<bfloat16>::quiet_NaN().value << ")" << std::endl;
+ std::cout << "signaling nan = " << std::numeric_limits<bfloat16>::signaling_NaN() << " (0x" << std::hex << std::numeric_limits<bfloat16>::signaling_NaN().value << ")" << std::endl;
VERIFY(NumTraits<bfloat16>::IsSigned);
- VERIFY_IS_EQUAL(numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<bfloat16>::infinity()),
- numext::bit_cast<numext::uint16_t>(
- bfloat16(std::numeric_limits<float>::infinity())));
- VERIFY_IS_EQUAL(numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<bfloat16>::quiet_NaN()),
- numext::bit_cast<numext::uint16_t>(
- bfloat16(std::numeric_limits<float>::quiet_NaN())));
+ VERIFY_IS_EQUAL( std::numeric_limits<bfloat16>::infinity().value, bfloat16(std::numeric_limits<float>::infinity()).value );
+ VERIFY_IS_EQUAL( std::numeric_limits<bfloat16>::quiet_NaN().value, bfloat16(std::numeric_limits<float>::quiet_NaN()).value );
VERIFY( (std::numeric_limits<bfloat16>::min)() > bfloat16(0.f) );
VERIFY( (std::numeric_limits<bfloat16>::denorm_min)() > bfloat16(0.f) );
VERIFY_IS_EQUAL( (std::numeric_limits<bfloat16>::denorm_min)()/bfloat16(2), bfloat16(0.f) );
diff --git a/test/half_float.cpp b/test/half_float.cpp
index 09ce856..b301b37 100644
--- a/test/half_float.cpp
+++ b/test/half_float.cpp
@@ -11,10 +11,6 @@
#include <Eigen/src/Core/arch/Default/Half.h>
-#define VERIFY_HALF_BITS_EQUAL(h, bits) \
- VERIFY_IS_EQUAL((numext::bit_cast<numext::uint16_t>(h)), \
- (static_cast<numext::uint16_t>(bits)))
-
// Make sure it's possible to forward declare Eigen::half
namespace Eigen {
struct half;
@@ -26,51 +22,75 @@
{
using Eigen::half_impl::__half_raw;
- // Round-trip bit-cast with uint16.
- VERIFY_IS_EQUAL(
- numext::bit_cast<half>(numext::bit_cast<numext::uint16_t>(half(1.0f))),
- half(1.0f));
- VERIFY_IS_EQUAL(
- numext::bit_cast<half>(numext::bit_cast<numext::uint16_t>(half(0.5f))),
- half(0.5f));
- VERIFY_IS_EQUAL(numext::bit_cast<half>(
- numext::bit_cast<numext::uint16_t>(half(-0.33333f))),
- half(-0.33333f));
- VERIFY_IS_EQUAL(
- numext::bit_cast<half>(numext::bit_cast<numext::uint16_t>(half(0.0f))),
- half(0.0f));
-
+ // We don't use a uint16_t raw member x if the platform has native Arm __fp16
+ // support
+#if !defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
// Conversion from float.
- VERIFY_HALF_BITS_EQUAL(half(1.0f), 0x3c00);
- VERIFY_HALF_BITS_EQUAL(half(0.5f), 0x3800);
- VERIFY_HALF_BITS_EQUAL(half(0.33333f), 0x3555);
- VERIFY_HALF_BITS_EQUAL(half(0.0f), 0x0000);
- VERIFY_HALF_BITS_EQUAL(half(-0.0f), 0x8000);
- VERIFY_HALF_BITS_EQUAL(half(65504.0f), 0x7bff);
- VERIFY_HALF_BITS_EQUAL(half(65536.0f), 0x7c00); // Becomes infinity.
+ VERIFY_IS_EQUAL(half(1.0f).x, 0x3c00);
+ VERIFY_IS_EQUAL(half(0.5f).x, 0x3800);
+ VERIFY_IS_EQUAL(half(0.33333f).x, 0x3555);
+ VERIFY_IS_EQUAL(half(0.0f).x, 0x0000);
+ VERIFY_IS_EQUAL(half(-0.0f).x, 0x8000);
+ VERIFY_IS_EQUAL(half(65504.0f).x, 0x7bff);
+ VERIFY_IS_EQUAL(half(65536.0f).x, 0x7c00); // Becomes infinity.
// Denormals.
- VERIFY_HALF_BITS_EQUAL(half(-5.96046e-08f), 0x8001);
- VERIFY_HALF_BITS_EQUAL(half(5.96046e-08f), 0x0001);
- VERIFY_HALF_BITS_EQUAL(half(1.19209e-07f), 0x0002);
+ VERIFY_IS_EQUAL(half(-5.96046e-08f).x, 0x8001);
+ VERIFY_IS_EQUAL(half(5.96046e-08f).x, 0x0001);
+ VERIFY_IS_EQUAL(half(1.19209e-07f).x, 0x0002);
// Verify round-to-nearest-even behavior.
float val1 = float(half(__half_raw(0x3c00)));
float val2 = float(half(__half_raw(0x3c01)));
float val3 = float(half(__half_raw(0x3c02)));
- VERIFY_HALF_BITS_EQUAL(half(0.5f * (val1 + val2)), 0x3c00);
- VERIFY_HALF_BITS_EQUAL(half(0.5f * (val2 + val3)), 0x3c02);
+ VERIFY_IS_EQUAL(half(0.5f * (val1 + val2)).x, 0x3c00);
+ VERIFY_IS_EQUAL(half(0.5f * (val2 + val3)).x, 0x3c02);
// Conversion from int.
- VERIFY_HALF_BITS_EQUAL(half(-1), 0xbc00);
- VERIFY_HALF_BITS_EQUAL(half(0), 0x0000);
- VERIFY_HALF_BITS_EQUAL(half(1), 0x3c00);
- VERIFY_HALF_BITS_EQUAL(half(2), 0x4000);
- VERIFY_HALF_BITS_EQUAL(half(3), 0x4200);
+ VERIFY_IS_EQUAL(half(-1).x, 0xbc00);
+ VERIFY_IS_EQUAL(half(0).x, 0x0000);
+ VERIFY_IS_EQUAL(half(1).x, 0x3c00);
+ VERIFY_IS_EQUAL(half(2).x, 0x4000);
+ VERIFY_IS_EQUAL(half(3).x, 0x4200);
// Conversion from bool.
- VERIFY_HALF_BITS_EQUAL(half(false), 0x0000);
- VERIFY_HALF_BITS_EQUAL(half(true), 0x3c00);
+ VERIFY_IS_EQUAL(half(false).x, 0x0000);
+ VERIFY_IS_EQUAL(half(true).x, 0x3c00);
+#endif
+
+#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
+ // Conversion from float.
+ VERIFY_IS_EQUAL(half(1.0f).x, __fp16(1.0f));
+ VERIFY_IS_EQUAL(half(0.5f).x, __fp16(0.5f));
+ VERIFY_IS_EQUAL(half(0.33333f).x, __fp16(0.33333f));
+ VERIFY_IS_EQUAL(half(0.0f).x, __fp16(0.0f));
+ VERIFY_IS_EQUAL(half(-0.0f).x, __fp16(-0.0f));
+ VERIFY_IS_EQUAL(half(65504.0f).x, __fp16(65504.0f));
+ VERIFY_IS_EQUAL(half(65536.0f).x, __fp16(65536.0f)); // Becomes infinity.
+
+ // Denormals.
+ VERIFY_IS_EQUAL(half(-5.96046e-08f).x, __fp16(-5.96046e-08f));
+ VERIFY_IS_EQUAL(half(5.96046e-08f).x, __fp16(5.96046e-08f));
+ VERIFY_IS_EQUAL(half(1.19209e-07f).x, __fp16(1.19209e-07f));
+
+ // Verify round-to-nearest-even behavior.
+ float val1 = float(half(__half_raw(0x3c00)));
+ float val2 = float(half(__half_raw(0x3c01)));
+ float val3 = float(half(__half_raw(0x3c02)));
+ VERIFY_IS_EQUAL(half(0.5f * (val1 + val2)).x, __fp16(0.5f * (val1 + val2)));
+ VERIFY_IS_EQUAL(half(0.5f * (val2 + val3)).x, __fp16(0.5f * (val2 + val3)));
+
+ // Conversion from int.
+ VERIFY_IS_EQUAL(half(-1).x, __fp16(-1));
+ VERIFY_IS_EQUAL(half(0).x, __fp16(0));
+ VERIFY_IS_EQUAL(half(1).x, __fp16(1));
+ VERIFY_IS_EQUAL(half(2).x, __fp16(2));
+ VERIFY_IS_EQUAL(half(3).x, __fp16(3));
+
+ // Conversion from bool.
+ VERIFY_IS_EQUAL(half(false).x, __fp16(false));
+ VERIFY_IS_EQUAL(half(true).x, __fp16(true));
+#endif
// Conversion to float.
VERIFY_IS_EQUAL(float(half(__half_raw(0x0000))), 0.0f);
@@ -123,57 +143,24 @@
void test_numtraits()
{
- std::cout << "epsilon = " << NumTraits<half>::epsilon() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<half>::epsilon())
- << ")" << std::endl;
- std::cout << "highest = " << NumTraits<half>::highest() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<half>::highest())
- << ")" << std::endl;
- std::cout << "lowest = " << NumTraits<half>::lowest() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<half>::lowest())
- << ")" << std::endl;
- std::cout << "min = " << (std::numeric_limits<half>::min)()
- << " (0x" << std::hex
- << numext::bit_cast<numext::uint16_t>(
- half((std::numeric_limits<half>::min)()))
- << ")" << std::endl;
- std::cout << "denorm min = " << (std::numeric_limits<half>::denorm_min)()
- << " (0x" << std::hex
- << numext::bit_cast<numext::uint16_t>(
- half((std::numeric_limits<half>::denorm_min)()))
- << ")" << std::endl;
- std::cout << "infinity = " << NumTraits<half>::infinity() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<half>::infinity())
- << ")" << std::endl;
- std::cout << "quiet nan = " << NumTraits<half>::quiet_NaN() << " (0x"
- << std::hex
- << numext::bit_cast<numext::uint16_t>(NumTraits<half>::quiet_NaN())
- << ")" << std::endl;
- std::cout << "signaling nan = " << std::numeric_limits<half>::signaling_NaN()
- << " (0x" << std::hex
- << numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<half>::signaling_NaN())
- << ")" << std::endl;
+ std::cout << "epsilon = " << NumTraits<half>::epsilon() << " (0x" << std::hex << NumTraits<half>::epsilon().x << ")" << std::endl;
+ std::cout << "highest = " << NumTraits<half>::highest() << " (0x" << std::hex << NumTraits<half>::highest().x << ")" << std::endl;
+ std::cout << "lowest = " << NumTraits<half>::lowest() << " (0x" << std::hex << NumTraits<half>::lowest().x << ")" << std::endl;
+ std::cout << "min = " << (std::numeric_limits<half>::min)() << " (0x" << std::hex << half((std::numeric_limits<half>::min)()).x << ")" << std::endl;
+ std::cout << "denorm min = " << (std::numeric_limits<half>::denorm_min)() << " (0x" << std::hex << half((std::numeric_limits<half>::denorm_min)()).x << ")" << std::endl;
+ std::cout << "infinity = " << NumTraits<half>::infinity() << " (0x" << std::hex << NumTraits<half>::infinity().x << ")" << std::endl;
+ std::cout << "quiet nan = " << NumTraits<half>::quiet_NaN() << " (0x" << std::hex << NumTraits<half>::quiet_NaN().x << ")" << std::endl;
+ std::cout << "signaling nan = " << std::numeric_limits<half>::signaling_NaN() << " (0x" << std::hex << std::numeric_limits<half>::signaling_NaN().x << ")" << std::endl;
VERIFY(NumTraits<half>::IsSigned);
- VERIFY_IS_EQUAL(
- numext::bit_cast<numext::uint16_t>(std::numeric_limits<half>::infinity()),
- numext::bit_cast<numext::uint16_t>(
- half(std::numeric_limits<float>::infinity())));
- VERIFY_IS_EQUAL(numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<half>::quiet_NaN()),
- numext::bit_cast<numext::uint16_t>(
- half(std::numeric_limits<float>::quiet_NaN())));
- VERIFY_IS_EQUAL(numext::bit_cast<numext::uint16_t>(
- std::numeric_limits<half>::signaling_NaN()),
- numext::bit_cast<numext::uint16_t>(
- half(std::numeric_limits<float>::signaling_NaN())));
+ VERIFY_IS_EQUAL( std::numeric_limits<half>::infinity().x, half(std::numeric_limits<float>::infinity()).x );
+// If we have a native fp16 types this becomes a nan == nan comparision so we have to disable it
+#if !defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
+ VERIFY_IS_EQUAL( std::numeric_limits<half>::quiet_NaN().x, half(std::numeric_limits<float>::quiet_NaN()).x );
+ VERIFY_IS_EQUAL( std::numeric_limits<half>::signaling_NaN().x, half(std::numeric_limits<float>::signaling_NaN()).x );
+#endif
VERIFY( (std::numeric_limits<half>::min)() > half(0.f) );
VERIFY( (std::numeric_limits<half>::denorm_min)() > half(0.f) );
VERIFY( (std::numeric_limits<half>::min)()/half(2) > half(0.f) );
diff --git a/test/packetmath.cpp b/test/packetmath.cpp
index feef148..81425b8 100644
--- a/test/packetmath.cpp
+++ b/test/packetmath.cpp
@@ -1073,7 +1073,7 @@
CALL_SUBTEST_10(test::runner<uint64_t>::run());
CALL_SUBTEST_11(test::runner<std::complex<float> >::run());
CALL_SUBTEST_12(test::runner<std::complex<double> >::run());
- CALL_SUBTEST_13(test::runner<half>::run());
+ CALL_SUBTEST_13((packetmath<half, internal::packet_traits<half>::type>()));
CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>()));
CALL_SUBTEST_15(test::runner<bfloat16>::run());
g_first_pass = false;
diff --git a/test/sparse_product.cpp b/test/sparse_product.cpp
index 11310d6..c8caebe 100644
--- a/test/sparse_product.cpp
+++ b/test/sparse_product.cpp
@@ -100,7 +100,6 @@
VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
-#ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
// make sure the right product implementation is called:
if((!SparseMatrixType::IsRowMajor) && m2.rows()<=m3.cols())
{
@@ -108,7 +107,6 @@
VERIFY_EVALUATION_COUNT(m4 = (m2*m3).pruned(0), 1);
VERIFY_EVALUATION_COUNT(m4 = (m2*m3).eval().pruned(0), 4);
}
-#endif
// and that pruning is effective:
{
@@ -153,7 +151,7 @@
VERIFY_IS_APPROX(dm4.noalias()-=m2*refMat3, refMat4-=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
-
+
// sparse * dense vector
VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0));
VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0));
@@ -184,7 +182,7 @@
VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(dm4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
-
+
VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.middleCols(c,1).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
@@ -213,23 +211,23 @@
}
VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
-
+
// sparse matrix * sparse vector
ColSpVector cv0(cols), cv1;
DenseVector dcv0(cols), dcv1;
initSparse(2*density,dcv0, cv0);
-
+
RowSpVector rv0(depth), rv1;
RowDenseVector drv0(depth), drv1(rv1);
initSparse(2*density,drv0, rv0);
- VERIFY_IS_APPROX(cv1 = m3 * cv0, dcv1 = refMat3 * dcv0);
+ VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
}
-
+
// test matrix - diagonal product
{
DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
@@ -245,7 +243,7 @@
VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
-
+
// also check with a SparseWrapper:
DenseVector v1 = DenseVector::Random(cols);
DenseVector v2 = DenseVector::Random(rows);
@@ -254,12 +252,12 @@
VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
-
+
VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
VERIFY_IS_APPROX(v2=m2*v1.asDiagonal()*v1, refM2*v1.asDiagonal()*v1);
VERIFY_IS_APPROX(v3=v2.asDiagonal()*m2*v1, v2.asDiagonal()*refM2*v1);
-
+
// evaluate to a dense matrix to check the .row() and .col() iterator functions
VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
@@ -312,20 +310,20 @@
VERIFY_IS_APPROX(x.noalias()+=mUp.template selfadjointView<Upper>()*b, refX+=refS*b);
VERIFY_IS_APPROX(x.noalias()-=mLo.template selfadjointView<Lower>()*b, refX-=refS*b);
VERIFY_IS_APPROX(x.noalias()+=mS.template selfadjointView<Upper|Lower>()*b, refX+=refS*b);
-
+
// sparse selfadjointView with sparse matrices
SparseMatrixType mSres(rows,rows);
VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
refX = refLo.template selfadjointView<Lower>()*refS);
VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
refX = refS * refLo.template selfadjointView<Lower>());
-
+
// sparse triangularView with dense matrices
VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b);
VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b);
VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>());
VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>());
-
+
// sparse triangularView with sparse matrices
VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS, refX = refA.template triangularView<Lower>()*refS);
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>());
@@ -370,9 +368,9 @@
Vector d(1);
d[0] = 2;
-
+
double res = 2;
-
+
VERIFY_IS_APPROX( ( cmA*d.asDiagonal() ).eval().coeff(0,0), res );
VERIFY_IS_APPROX( ( d.asDiagonal()*rmA ).eval().coeff(0,0), res );
VERIFY_IS_APPROX( ( rmA*d.asDiagonal() ).eval().coeff(0,0), res );
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
index c413d65..ea286fe 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
@@ -91,22 +91,24 @@
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state, uint64_t stream) {
- // Generate 10 random bits for the mantissa, merge with exponent.
+ Eigen::half result;
+ // Generate 10 random bits for the mantissa
unsigned rnd = PCG_XSH_RS_generator(state, stream);
- const uint16_t half_bits =
- static_cast<uint16_t>(rnd & 0x3ffu) | (static_cast<uint16_t>(15) << 10);
- Eigen::half result = Eigen::numext::bit_cast<Eigen::half>(half_bits);
+ result.x = static_cast<uint16_t>(rnd & 0x3ffu);
+ // Set the exponent
+ result.x |= (static_cast<uint16_t>(15) << 10);
// Return the final result
return result - Eigen::half(1.0f);
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Eigen::bfloat16 RandomToTypeUniform<Eigen::bfloat16>(uint64_t* state, uint64_t stream) {
- // Generate 7 random bits for the mantissa, merge with exponent.
+ Eigen::bfloat16 result;
+ // Generate 7 random bits for the mantissa
unsigned rnd = PCG_XSH_RS_generator(state, stream);
- const uint16_t half_bits =
- static_cast<uint16_t>(rnd & 0x7fu) | (static_cast<uint16_t>(127) << 7);
- Eigen::bfloat16 result = Eigen::numext::bit_cast<Eigen::bfloat16>(half_bits);
+ result.value = static_cast<uint16_t>(rnd & 0x7fu);
+ // Set the exponent
+ result.value |= (static_cast<uint16_t>(127) << 7);
// Return the final result
return result - Eigen::bfloat16(1.0f);
}
@@ -167,24 +169,19 @@
uint64_t seed = 0) {
m_state = PCG_XSH_RS_state(seed);
#ifdef EIGEN_USE_SYCL
- // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
+ // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
// Therefor, we need two step to initializate the m_state.
// IN SYCL, the constructor of the functor is s called on the CPU
- // and we get the clock seed here from the CPU. However, This seed is
- // the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc
- // is not a global function.
- // and only available on the Operator() function (which is called on the
- // GPU). Thus for CUDA (((CLOCK + global_thread_id)*
- // 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread
- // but for SYCL ((CLOCK * 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL)
- // is passed to each thread and each thread adds the (global_thread_id*
- // 6364136223846793005ULL) for itself only once, in order to complete the
- // construction similar to CUDA Therefore, the thread Id injection is not
- // available at this stage.
- // However when the operator() is called the thread ID will be avilable. So
- // inside the opeator,
- // we add the thrreadID, BlockId,... (which is equivalent of i)
- // to the seed and construct the unique m_state per thead similar to cuda.
+ // and we get the clock seed here from the CPU. However, This seed is
+ //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function.
+ // and only available on the Operator() function (which is called on the GPU).
+ // Thus for CUDA (((CLOCK + global_thread_id)* 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread
+ // but for SYCL ((CLOCK * 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread and each thread adds
+ // the (global_thread_id* 6364136223846793005ULL) for itself only once, in order to complete the construction
+ // similar to CUDA Therefore, the thread Id injection is not available at this stage.
+ //However when the operator() is called the thread ID will be avilable. So inside the opeator,
+ // we add the thrreadID, BlockId,... (which is equivalent of i)
+ //to the seed and construct the unique m_state per thead similar to cuda.
m_exec_once =false;
#endif
}
@@ -285,18 +282,16 @@
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) {
m_state = PCG_XSH_RS_state(seed);
#ifdef EIGEN_USE_SYCL
- // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
+ // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
// Therefor, we need two steps to initializate the m_state.
// IN SYCL, the constructor of the functor is s called on the CPU
- // and we get the clock seed here from the CPU. However, This seed is
- // the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc
- // is not a global function.
- // and only available on the Operator() function (which is called on the
- // GPU). Therefore, the thread Id injection is not available at this stage.
- // However when the operator()
- // is called the thread ID will be avilable. So inside the opeator,
- // we add the thrreadID, BlockId,... (which is equivalent of i)
- // to the seed and construct the unique m_state per thead similar to cuda.
+ // and we get the clock seed here from the CPU. However, This seed is
+ //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function.
+ // and only available on the Operator() function (which is called on the GPU).
+ // Therefore, the thread Id injection is not available at this stage. However when the operator()
+ //is called the thread ID will be avilable. So inside the opeator,
+ // we add the thrreadID, BlockId,... (which is equivalent of i)
+ //to the seed and construct the unique m_state per thead similar to cuda.
m_exec_once =false;
#endif
}
diff --git a/unsupported/test/cxx11_tensor_random.cpp b/unsupported/test/cxx11_tensor_random.cpp
index 95dd614..4740d58 100644
--- a/unsupported/test/cxx11_tensor_random.cpp
+++ b/unsupported/test/cxx11_tensor_random.cpp
@@ -11,9 +11,9 @@
#include <Eigen/CXX11/Tensor>
-template <typename Scalar>
-static void test_default() {
- Tensor<Scalar, 1> vec(6);
+static void test_default()
+{
+ Tensor<float, 1> vec(6);
vec.setRandom();
// Fixme: we should check that the generated numbers follow a uniform
@@ -23,10 +23,10 @@
}
}
-template <typename Scalar>
-static void test_normal() {
- Tensor<Scalar, 1> vec(6);
- vec.template setRandom<Eigen::internal::NormalRandomGenerator<Scalar>>();
+static void test_normal()
+{
+ Tensor<float, 1> vec(6);
+ vec.setRandom<Eigen::internal::NormalRandomGenerator<float>>();
// Fixme: we should check that the generated numbers follow a gaussian
// distribution instead.
@@ -35,6 +35,7 @@
}
}
+
struct MyGenerator {
MyGenerator() { }
MyGenerator(const MyGenerator&) { }
@@ -71,13 +72,7 @@
EIGEN_DECLARE_TEST(cxx11_tensor_random)
{
- CALL_SUBTEST((test_default<float>()));
- CALL_SUBTEST((test_normal<float>()));
- CALL_SUBTEST((test_default<double>()));
- CALL_SUBTEST((test_normal<double>()));
- CALL_SUBTEST((test_default<Eigen::half>()));
- CALL_SUBTEST((test_normal<Eigen::half>()));
- CALL_SUBTEST((test_default<Eigen::bfloat16>()));
- CALL_SUBTEST((test_normal<Eigen::bfloat16>()));
+ CALL_SUBTEST(test_default());
+ CALL_SUBTEST(test_normal());
CALL_SUBTEST(test_custom());
}
diff --git a/unsupported/test/sparse_extra.cpp b/unsupported/test/sparse_extra.cpp
index cbb799a..b5d656f 100644
--- a/unsupported/test/sparse_extra.cpp
+++ b/unsupported/test/sparse_extra.cpp
@@ -22,9 +22,6 @@
#endif
#define EIGEN_NO_DEPRECATED_WARNING
-// Disable counting of temporaries, since sparse_product(DynamicSparseMatrix)
-// has an extra copy-assignment.
-#define EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
#include "sparse_product.cpp"
#if 0 // sparse_basic(DynamicSparseMatrix) does not compile at all -> disabled