2009-08-23  Ozkan Sezer  <sezeroz@gmail.com>

	* math/*.c: Many whitespace/indentation tidy-ups.
	 Replaced K&R declarations with ANSI ones. Fixed
	 double semicolons.

git-svn-id: svn+ssh://svn.code.sf.net/p/mingw-w64/code/trunk@1280 4407c894-4637-0410-b4f5-ada5f102cad1
diff --git a/mingw-w64-crt/math/cbrt.c b/mingw-w64-crt/math/cbrt.c
index 290bf62..56e9e46 100644
--- a/mingw-w64-crt/math/cbrt.c
+++ b/mingw-w64-crt/math/cbrt.c
@@ -12,104 +12,93 @@
 static const double CBRT4I = 0.62996052494743658238361;
 
 #ifndef __MINGW32__
-#ifdef ANSIPROT
 extern double frexp ( double, int * );
 extern double ldexp ( double, int );
 extern int isnan ( double );
 extern int isfinite ( double );
-#else
-double frexp(), ldexp();
-int isnan(), isfinite();
-#endif
 #endif
 
-double cbrt(x)
-double x;
+double cbrt(double x)
 {
-int e, rem, sign;
-double z;
+	int e, rem, sign;
+	double z;
 
 #ifdef __MINGW32__
-if (!isfinite (x) || x == 0 )
-  return x;
+	if (!isfinite (x) || x == 0)
+		return x;
 #else
-
 #ifdef NANS
-if( isnan(x) )
-  return x;
+	if (isnan(x))
+		return x;
 #endif
 #ifdef INFINITIES
-if( !isfinite(x) )
-  return x;
+	if (!isfinite(x))
+		return x;
 #endif
-if( x == 0 )
-	return( x );
-
+	if (x == 0)
+		return (x);
 #endif /* __MINGW32__ */
 
-if( x > 0 )
-	sign = 1;
-else
+	if (x > 0)
+		sign = 1;
+	else
 	{
-	sign = -1;
-	x = -x;
+		sign = -1;
+		x = -x;
 	}
 
-z = x;
-/* extract power of 2, leaving
- * mantissa between 0.5 and 1
- */
-x = frexp( x, &e );
+	z = x;
+	/* extract power of 2, leaving
+	 * mantissa between 0.5 and 1
+	 */
+	x = frexp(x, &e);
 
-/* Approximate cube root of number between .5 and 1,
- * peak relative error = 9.2e-6
- */
-x = (((-1.3466110473359520655053e-1  * x
-      + 5.4664601366395524503440e-1) * x
-      - 9.5438224771509446525043e-1) * x
-      + 1.1399983354717293273738e0 ) * x
-      + 4.0238979564544752126924e-1;
+	/* Approximate cube root of number between .5 and 1,
+	 * peak relative error = 9.2e-6
+	 */
+	x = (((-1.3466110473359520655053e-1  * x
+	      + 5.4664601366395524503440e-1) * x
+	      - 9.5438224771509446525043e-1) * x
+	      + 1.1399983354717293273738e0 ) * x
+	      + 4.0238979564544752126924e-1;
 
-/* exponent divided by 3 */
-if( e >= 0 )
+	/* exponent divided by 3 */
+	if (e >= 0)
 	{
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x *= CBRT2;
-	else if( rem == 2 )
-		x *= CBRT4;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x *= CBRT2;
+		else if (rem == 2)
+			x *= CBRT4;
+	}
+	/* argument less than 1 */
+	else
+	{
+		e = -e;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x *= CBRT2I;
+		else if (rem == 2)
+			x *= CBRT4I;
+		e = -e;
 	}
 
+	/* multiply by power of 2 */
+	x = ldexp(x, e);
 
-/* argument less than 1 */
-
-else
-	{
-	e = -e;
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x *= CBRT2I;
-	else if( rem == 2 )
-		x *= CBRT4I;
-	e = -e;
-	}
-
-/* multiply by power of 2 */
-x = ldexp( x, e );
-
-/* Newton iteration */
-x -= ( x - (z/(x*x)) )*0.33333333333333333333;
+	/* Newton iteration */
+	x -= ( x - (z/(x*x)) )*0.33333333333333333333;
 #ifdef DEC
-x -= ( x - (z/(x*x)) )/3.0;
+	x -= ( x - (z/(x*x)) )/3.0;
 #else
-x -= ( x - (z/(x*x)) )*0.33333333333333333333;
+	x -= ( x - (z/(x*x)) )*0.33333333333333333333;
 #endif
 
-if( sign < 0 )
-	x = -x;
-return(x);
+	if (sign < 0)
+		x = -x;
+	return (x);
 }
diff --git a/mingw-w64-crt/math/cbrtf.c b/mingw-w64-crt/math/cbrtf.c
index cb3d59b..03c285e 100644
--- a/mingw-w64-crt/math/cbrtf.c
+++ b/mingw-w64-crt/math/cbrtf.c
@@ -11,68 +11,65 @@
 
 float cbrtf (float x)
 {
-int e, rem, sign;
-float z;
-if (!isfinite (x) || x == 0.0F )
-  return x;
-if( x > 0 )
-	sign = 1;
-else
+	int e, rem, sign;
+	float z;
+	if (!isfinite (x) || x == 0.0F)
+		return x;
+	if (x > 0)
+		sign = 1;
+	else
 	{
-	sign = -1;
-	x = -x;
+		sign = -1;
+		x = -x;
 	}
 
-z = x;
-/* extract power of 2, leaving
- * mantissa between 0.5 and 1
- */
-x = frexpf( x, &e );
+	z = x;
+	/* extract power of 2, leaving
+	 * mantissa between 0.5 and 1
+	 */
+	x = frexpf(x, &e);
 
-/* Approximate cube root of number between .5 and 1,
- * peak relative error = 9.2e-6
- */
-x = (((-0.13466110473359520655053  * x
-      + 0.54664601366395524503440 ) * x
-      - 0.95438224771509446525043 ) * x
-      + 1.1399983354717293273738  ) * x
-      + 0.40238979564544752126924;
+	/* Approximate cube root of number between .5 and 1,
+	 * peak relative error = 9.2e-6
+	 */
+	x = (((-0.13466110473359520655053  * x
+	      + 0.54664601366395524503440 ) * x
+	      - 0.95438224771509446525043 ) * x
+	      + 1.1399983354717293273738  ) * x
+	      + 0.40238979564544752126924;
 
-/* exponent divided by 3 */
-if( e >= 0 )
+	/* exponent divided by 3 */
+	if (e >= 0)
 	{
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x *= CBRT2;
-	else if( rem == 2 )
-		x *= CBRT4;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x *= CBRT2;
+		else if (rem == 2)
+			x *= CBRT4;
 	}
-
-
 /* argument less than 1 */
-
-else
+	else
 	{
-	e = -e;
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x /= CBRT2;
-	else if( rem == 2 )
-		x /= CBRT4;
-	e = -e;
+		e = -e;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x /= CBRT2;
+		else if (rem == 2)
+			x /= CBRT4;
+		e = -e;
 	}
 
-/* multiply by power of 2 */
-x = ldexpf( x, e );
+	/* multiply by power of 2 */
+	x = ldexpf(x, e);
 
-/* Newton iteration */
-x -= ( x - (z/(x*x)) ) * 0.333333333333;
+	/* Newton iteration */
+	x -= ( x - (z/(x*x)) ) * 0.333333333333;
 
-if( sign < 0 )
-	x = -x;
-return(x);
+	if (sign < 0)
+		x = -x;
+	return (x);
 }
diff --git a/mingw-w64-crt/math/cbrtl.c b/mingw-w64-crt/math/cbrtl.c
index dc7bae4..3841032 100644
--- a/mingw-w64-crt/math/cbrtl.c
+++ b/mingw-w64-crt/math/cbrtl.c
@@ -12,72 +12,71 @@
 
 extern long double ldexpl(long double,int);
 
-long double cbrtl(x)
-long double x;
+long double cbrtl(long double x)
 {
-int e, rem, sign;
-long double z;
+	int e, rem, sign;
+	long double z;
 
-if (!isfinite (x) || x == 0.0L)
-	return(x);
+	if (!isfinite (x) || x == 0.0L)
+		return (x);
 
-if( x > 0 )
-	sign = 1;
-else
+	if (x > 0)
+		sign = 1;
+	else
 	{
-	sign = -1;
-	x = -x;
+		sign = -1;
+		x = -x;
 	}
 
-z = x;
-/* extract power of 2, leaving
- * mantissa between 0.5 and 1
- */
-x = frexpl( x, &e );
+	z = x;
+	/* extract power of 2, leaving
+	 * mantissa between 0.5 and 1
+	 */
+	x = frexpl(x, &e);
 
-/* Approximate cube root of number between .5 and 1,
- * peak relative error = 1.2e-6
- */
-x = (((( 1.3584464340920900529734e-1L * x
-       - 6.3986917220457538402318e-1L) * x
-       + 1.2875551670318751538055e0L) * x
-       - 1.4897083391357284957891e0L) * x
-       + 1.3304961236013647092521e0L) * x
-       + 3.7568280825958912391243e-1L;
+	/* Approximate cube root of number between .5 and 1,
+	 * peak relative error = 1.2e-6
+	 */
+	x = (((( 1.3584464340920900529734e-1L * x
+	       - 6.3986917220457538402318e-1L) * x
+	       + 1.2875551670318751538055e0L) * x
+	       - 1.4897083391357284957891e0L) * x
+	       + 1.3304961236013647092521e0L) * x
+	       + 3.7568280825958912391243e-1L;
 
-/* exponent divided by 3 */
-if( e >= 0 )
+	/* exponent divided by 3 */
+	if (e >= 0)
 	{
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x *= CBRT2;
-	else if( rem == 2 )
-		x *= CBRT4;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x *= CBRT2;
+		else if (rem == 2)
+			x *= CBRT4;
 	}
-else
+	else
 	{ /* argument less than 1 */
-	e = -e;
-	rem = e;
-	e /= 3;
-	rem -= 3*e;
-	if( rem == 1 )
-		x *= CBRT2I;
-	else if( rem == 2 )
-		x *= CBRT4I;
-	e = -e;
+		e = -e;
+		rem = e;
+		e /= 3;
+		rem -= 3*e;
+		if (rem == 1)
+			x *= CBRT2I;
+		else if (rem == 2)
+			x *= CBRT4I;
+		e = -e;
 	}
 
-/* multiply by power of 2 */
-x = ldexpl( x, e );
+	/* multiply by power of 2 */
+	x = ldexpl(x, e);
 
-/* Newton iteration */
+	/* Newton iteration */
 
-x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
-x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
+	x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
+	x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
 
-if( sign < 0 )
-	x = -x;
-return(x);
+	if (sign < 0)
+		x = -x;
+	return (x);
 }
diff --git a/mingw-w64-crt/math/coshf.c b/mingw-w64-crt/math/coshf.c
index 32e3534..14ebf0b 100644
--- a/mingw-w64-crt/math/coshf.c
+++ b/mingw-w64-crt/math/coshf.c
@@ -5,4 +5,6 @@
  */
 #include <math.h>
 float coshf (float x)
-  {return (float) cosh (x);}
+{
+  return (float) cosh (x);
+}
diff --git a/mingw-w64-crt/math/coshl.c b/mingw-w64-crt/math/coshl.c
index c3fb112..fee84e5 100644
--- a/mingw-w64-crt/math/coshl.c
+++ b/mingw-w64-crt/math/coshl.c
@@ -9,37 +9,36 @@
 #define _SET_ERRNO(x)
 #endif
 
-long double coshl(x)
-long double x;
+long double coshl(long double x)
 {
-long double y;
+	long double y;
 
 #ifdef NANS
-if( isnanl(x) )
+	if (isnanl(x))
 	{
-	_SET_ERRNO(EDOM);
-	return(x);
+		_SET_ERRNO(EDOM);
+		return (x);
   	}
 #endif
-if( x < 0 )
-	x = -x;
-if( x > (MAXLOGL + LOGE2L) )
+	if (x < 0)
+		x = -x;
+	if (x > (MAXLOGL + LOGE2L))
 	{
-	mtherr( "coshl", OVERFLOW );
-	_SET_ERRNO(ERANGE);
+		mtherr( "coshl", OVERFLOW );
+		_SET_ERRNO(ERANGE);
 #ifdef INFINITIES
-	return( INFINITYL );
+		return (INFINITYL);
 #else
-	return( MAXNUML );
+		return (MAXNUML);
 #endif
-	}	
-if( x >= (MAXLOGL - LOGE2L) )
-	{
-	y = expl(0.5L * x);
-	y = (0.5L * y) * y;
-	return(y);
 	}
-y = expl(x);
-y = 0.5L * (y + 1.0L / y);
-return( y );
+	if (x >= (MAXLOGL - LOGE2L))
+	{
+		y = expl(0.5L * x);
+		y = (0.5L * y) * y;
+		return (y);
+	}
+	y = expl(x);
+	y = 0.5L * (y + 1.0L / y);
+	return (y);
 }
diff --git a/mingw-w64-crt/math/erfl.c b/mingw-w64-crt/math/erfl.c
index 165062f..61d39c8 100644
--- a/mingw-w64-crt/math/erfl.c
+++ b/mingw-w64-crt/math/erfl.c
@@ -44,7 +44,7 @@
  *    IEEE      0,1         50000       2.0e-19     5.7e-20
  *
  */
-
+
 /*							erfcl.c
  *
  *	Complementary error function
@@ -95,7 +95,7 @@
  *
  *
  */
-
+
 
 /*
 Modified from file ndtrl.c
@@ -215,89 +215,89 @@
 
 static long double expx2l (long double x)
 {
-  long double u, u1, m, f;
+	long double u, u1, m, f;
 
-  x = fabsl (x);
-  /* Represent x as an exact multiple of M plus a residual.
-     M is a power of 2 chosen so that exp(m * m) does not overflow
-     or underflow and so that |x - m| is small.  */
-  m = MINV * floorl(M * x + 0.5L);
-  f = x - m;
+	x = fabsl (x);
+	/* Represent x as an exact multiple of M plus a residual.
+	   M is a power of 2 chosen so that exp(m * m) does not overflow
+	   or underflow and so that |x - m| is small.  */
+	m = MINV * floorl(M * x + 0.5L);
+	f = x - m;
 
-  /* x^2 = m^2 + 2mf + f^2 */
-  u = m * m;
-  u1 = 2 * m * f  +  f * f;
+	/* x^2 = m^2 + 2mf + f^2 */
+	u = m * m;
+	u1 = 2 * m * f  +  f * f;
 
-  if ((u+u1) > MAXLOGL)
-    return (INFINITYL);
+	if ((u + u1) > MAXLOGL)
+		return (INFINITYL);
 
-  /* u is exact, u1 is small.  */
-  u = expl(u) * expl(u1);
-  return(u);
+	/* u is exact, u1 is small.  */
+	u = expl(u) * expl(u1);
+	return (u);
 }
 
 long double erfcl(long double a)
 {
-long double p,q,x,y,z;
+	long double p, q, x, y, z;
 
-if (isinf (a))
-	return (signbit (a) ? 2.0 : 0.0);
+	if (isinf (a))
+		return (signbit(a) ? 2.0 : 0.0);
 
-x = fabsl (a);
+	x = fabsl (a);
 
-if (x < 1.0L)
-	return (1.0L - erfl(a));
+	if (x < 1.0L)
+		return (1.0L - erfl(a));
 
-z = a * a;
+	z = a * a;
 
-if( z  > MAXLOGL )
+	if (z  > MAXLOGL)
 	{
 under:
-	mtherr( "erfcl", UNDERFLOW );
-        errno = ERANGE;
-	return (signbit (a) ? 2.0 : 0.0);
+		mtherr("erfcl", UNDERFLOW);
+		errno = ERANGE;
+		return (signbit(a) ? 2.0 : 0.0);
 	}
 
-/* Compute z = expl(a * a).  */
-z = expx2l (a);
-y = 1.0L/x;
+	/* Compute z = expl(a * a).  */
+	z = expx2l(a);
+	y = 1.0L/x;
 
-if (x < 8.0L)
+	if (x < 8.0L)
 	{
-	p = polevll (y, P, 9);
-	q = p1evll (y, Q, 10);
+		p = polevll(y, P, 9);
+		q = p1evll(y, Q, 10);
 	}
-else
+	else
 	{
-	q = y * y;
-	p = y * polevll (q, R, 4);
-	q = p1evll (q, S, 5);
+		q = y * y;
+		p = y * polevll(q, R, 4);
+		q = p1evll(q, S, 5);
 	}
-y = p/(q * z);
+	y = p/(q * z);
 
-if (a < 0.0L)
-	y = 2.0L - y;
+	if (a < 0.0L)
+		y = 2.0L - y;
 
-if (y == 0.0L)
-	goto under;
+	if (y == 0.0L)
+		goto under;
 
-return (y);
+	return (y);
 }
 
 long double erfl(long double x)
 {
-long double y, z;
+	long double y, z;
 
-if( x == 0.0L )
-	return (x);
+	if (x == 0.0L)
+		return (x);
 
-if (isinf (x))
-	return (signbit (x) ?  -1.0L : 1.0L);
+	if (isinf (x))
+		return (signbit(x) ?  -1.0L : 1.0L);
 
-if (fabsl(x) > 1.0L)
-	return (1.0L - erfcl (x));
+	if (fabsl(x) > 1.0L)
+		return (1.0L - erfcl(x));
 
-z = x * x;
-y = x * polevll( z, T, 6 ) / p1evll( z, U, 6 );
-return( y );
+	z = x * x;
+	y = x * polevll(z, T, 6) / p1evll(z, U, 6);
+	return (y);
 }
diff --git a/mingw-w64-crt/math/expf.c b/mingw-w64-crt/math/expf.c
index 593050a..926dae8 100644
--- a/mingw-w64-crt/math/expf.c
+++ b/mingw-w64-crt/math/expf.c
@@ -5,4 +5,6 @@
  */
 #include <math.h>
 float expf (float x)
-  {return (float) exp (x);}
+{
+  return (float) exp (x);
+}
diff --git a/mingw-w64-crt/math/fp_consts.c b/mingw-w64-crt/math/fp_consts.c
index eea647b..bae4167 100644
--- a/mingw-w64-crt/math/fp_consts.c
+++ b/mingw-w64-crt/math/fp_consts.c
@@ -6,7 +6,7 @@
 #include "fp_consts.h"
 const union _ieee_rep __QNAN = { __DOUBLE_QNAN_REP };
 const union _ieee_rep __SNAN = { __DOUBLE_SNAN_REP };
-const union _ieee_rep __INF = { __DOUBLE_INF_REP };
+const union _ieee_rep __INF =  { __DOUBLE_INF_REP };
 const union _ieee_rep __DENORM = { __DOUBLE_DENORM_REP };
 
 /* ISO C99 */
@@ -14,6 +14,7 @@
 /* FIXME */
 double nan (const char *);
 double nan (const char * tagp __attribute__((unused)) )
-	{ return __QNAN.double_val; } 
-
+{
+	return __QNAN.double_val;
+}
 
diff --git a/mingw-w64-crt/math/fp_consts.h b/mingw-w64-crt/math/fp_consts.h
index fa8305e..5fe2cc7 100644
--- a/mingw-w64-crt/math/fp_consts.h
+++ b/mingw-w64-crt/math/fp_consts.h
@@ -1,53 +1,54 @@
-/**

- * This file has no copyright assigned and is placed in the Public Domain.

- * This file is part of the w64 mingw-runtime package.

- * No warranty is given; refer to the file DISCLAIMER within this package.

- */

-#ifndef _FP_CONSTS_H

-#define _FP_CONSTS_H

-

-/*

-According to IEEE 754 a QNaN has exponent bits of all 1 values and

-initial significand bit of 1.  A SNaN has has an exponent of all 1

-values and initial significand bit of 0 (with one or more other

-significand bits of 1). An Inf has significand of 0 and

-exponent of all 1 values. A denormal value has all exponent bits of 0.

-

-The following does _not_ follow those rules, but uses values

-equal to those exported from MS C++ runtime lib, msvcprt.dll

-for float and double. MSVC however, does not have long doubles.

-*/

-

-

-#define __DOUBLE_INF_REP { 0, 0, 0, 0x7ff0 }

-#define __DOUBLE_QNAN_REP { 0, 0, 0, 0xfff8 }  /* { 0, 0, 0, 0x7ff8 }  */

-#define __DOUBLE_SNAN_REP { 0, 0, 0, 0xfff0 }  /* { 1, 0, 0, 0x7ff0 }  */

-#define __DOUBLE_DENORM_REP {1, 0, 0, 0}

-

-#define D_NAN_MASK 0x7ff0000000000000LL /* this will mask NaN's and Inf's */

-

-#define __FLOAT_INF_REP { 0, 0x7f80 }

-#define __FLOAT_QNAN_REP { 0, 0xffc0 }  /* { 0, 0x7fc0 }  */

-#define __FLOAT_SNAN_REP { 0, 0xff80 }  /* { 1, 0x7f80 }  */

-#define __FLOAT_DENORM_REP {1,0}

-

-#define F_NAN_MASK 0x7f800000

-

-/*

-   This assumes no implicit (hidden) bit in extended mode.

-   Padded to 96 bits

- */

-#define __LONG_DOUBLE_INF_REP { 0, 0, 0, 0x8000, 0x7fff, 0 }

-#define __LONG_DOUBLE_QNAN_REP { 0, 0, 0, 0xc000, 0xffff, 0 } 

-#define __LONG_DOUBLE_SNAN_REP { 0, 0, 0, 0x8000, 0xffff, 0 }

-#define __LONG_DOUBLE_DENORM_REP {1, 0, 0, 0, 0, 0}

-

-union _ieee_rep

-{

-  unsigned short rep[6];

-  float float_val;

-  double double_val;

-  long double ldouble_val;

-} ;

-

-#endif

+/**
+ * This file has no copyright assigned and is placed in the Public Domain.
+ * This file is part of the w64 mingw-runtime package.
+ * No warranty is given; refer to the file DISCLAIMER within this package.
+ */
+#ifndef _FP_CONSTS_H
+#define _FP_CONSTS_H
+
+/*
+According to IEEE 754 a QNaN has exponent bits of all 1 values and
+initial significand bit of 1.  A SNaN has has an exponent of all 1
+values and initial significand bit of 0 (with one or more other
+significand bits of 1). An Inf has significand of 0 and
+exponent of all 1 values. A denormal value has all exponent bits of 0.
+
+The following does _not_ follow those rules, but uses values
+equal to those exported from MS C++ runtime lib, msvcprt.dll
+for float and double. MSVC however, does not have long doubles.
+*/
+
+
+#define __DOUBLE_INF_REP { 0, 0, 0, 0x7ff0 }
+#define __DOUBLE_QNAN_REP { 0, 0, 0, 0xfff8 }  /* { 0, 0, 0, 0x7ff8 }  */
+#define __DOUBLE_SNAN_REP { 0, 0, 0, 0xfff0 }  /* { 1, 0, 0, 0x7ff0 }  */
+#define __DOUBLE_DENORM_REP {1, 0, 0, 0}
+
+#define D_NAN_MASK 0x7ff0000000000000LL /* this will mask NaN's and Inf's */
+
+#define __FLOAT_INF_REP { 0, 0x7f80 }
+#define __FLOAT_QNAN_REP { 0, 0xffc0 }  /* { 0, 0x7fc0 }  */
+#define __FLOAT_SNAN_REP { 0, 0xff80 }  /* { 1, 0x7f80 }  */
+#define __FLOAT_DENORM_REP {1,0}
+
+#define F_NAN_MASK 0x7f800000
+
+/*
+   This assumes no implicit (hidden) bit in extended mode.
+   Padded to 96 bits
+ */
+#define __LONG_DOUBLE_INF_REP { 0, 0, 0, 0x8000, 0x7fff, 0 }
+#define __LONG_DOUBLE_QNAN_REP { 0, 0, 0, 0xc000, 0xffff, 0 }
+#define __LONG_DOUBLE_SNAN_REP { 0, 0, 0, 0x8000, 0xffff, 0 }
+#define __LONG_DOUBLE_DENORM_REP {1, 0, 0, 0, 0, 0}
+
+union _ieee_rep
+{
+	unsigned short rep[6];
+	float float_val;
+	double double_val;
+	long double ldouble_val;
+};
+
+#endif	/* _FP_CONSTS_H */
+
diff --git a/mingw-w64-crt/math/fp_constsf.c b/mingw-w64-crt/math/fp_constsf.c
index 7f1f847..1f88b47 100644
--- a/mingw-w64-crt/math/fp_constsf.c
+++ b/mingw-w64-crt/math/fp_constsf.c
@@ -5,10 +5,10 @@
  */
 #include "fp_consts.h"
 
-const union _ieee_rep __QNANF = { __FLOAT_QNAN_REP };   
-const union _ieee_rep __SNANF = { __FLOAT_SNAN_REP };   
-const union _ieee_rep __INFF = { __FLOAT_INF_REP };   
-const union _ieee_rep __DENORMF = { __FLOAT_DENORM_REP };   
+const union _ieee_rep __QNANF = { __FLOAT_QNAN_REP };
+const union _ieee_rep __SNANF = { __FLOAT_SNAN_REP };
+const union _ieee_rep __INFF  = { __FLOAT_INF_REP };
+const union _ieee_rep __DENORMF = { __FLOAT_DENORM_REP };
 
 /* ISO C99 */
 #undef nanf
@@ -16,4 +16,7 @@
 float nanf(const char *);
 
 float nanf(const char * tagp __attribute__((unused)) )
-  { return __QNANF.float_val;}
+{
+  return __QNANF.float_val;
+}
+
diff --git a/mingw-w64-crt/math/fp_constsl.c b/mingw-w64-crt/math/fp_constsl.c
index 06d23ef..63fbbab 100644
--- a/mingw-w64-crt/math/fp_constsl.c
+++ b/mingw-w64-crt/math/fp_constsl.c
@@ -6,13 +6,15 @@
 #include "fp_consts.h"
 
 const union _ieee_rep __QNANL = { __LONG_DOUBLE_QNAN_REP };
-const union _ieee_rep __SNANL  = { __LONG_DOUBLE_SNAN_REP };
-const union _ieee_rep __INFL = { __LONG_DOUBLE_INF_REP };
+const union _ieee_rep __SNANL = { __LONG_DOUBLE_SNAN_REP };
+const union _ieee_rep __INFL  = { __LONG_DOUBLE_INF_REP };
 const union _ieee_rep __DENORML = { __LONG_DOUBLE_DENORM_REP };
 
-
 #undef nanl
 /* FIXME */
 long double nanl (const char *);
 long double nanl (const char * tagp __attribute__((unused)) )
-  { return __QNANL.ldouble_val; } 
+{
+  return __QNANL.ldouble_val;
+}
+
diff --git a/mingw-w64-crt/math/frexpf.c b/mingw-w64-crt/math/frexpf.c
index b3ce1f8..4c4f189 100644
--- a/mingw-w64-crt/math/frexpf.c
+++ b/mingw-w64-crt/math/frexpf.c
@@ -4,7 +4,10 @@
  * No warranty is given; refer to the file DISCLAIMER within this package.
  */
 extern double __cdecl frexp(double _X,int *_Y);
-float frexpf (float, int *);
 
+float frexpf (float, int *);
 float frexpf (float x, int *expn)
-  {return (float)frexp(x, expn);}
+{
+  return (float)frexp(x, expn);
+}
+
diff --git a/mingw-w64-crt/math/hypotf.c b/mingw-w64-crt/math/hypotf.c
index 9bbd2a7..a5e7f37 100644
--- a/mingw-w64-crt/math/hypotf.c
+++ b/mingw-w64-crt/math/hypotf.c
@@ -6,4 +6,7 @@
 #include <math.h>
 
 float hypotf (float x, float y)
-  { return (float) _hypot (x, y);}
+{
+  return (float) _hypot (x, y);
+}
+
diff --git a/mingw-w64-crt/math/ldexpf.c b/mingw-w64-crt/math/ldexpf.c
index 67ecbe6..0510fd5 100644
--- a/mingw-w64-crt/math/ldexpf.c
+++ b/mingw-w64-crt/math/ldexpf.c
@@ -4,7 +4,10 @@
  * No warranty is given; refer to the file DISCLAIMER within this package.
  */
 extern double __cdecl ldexp(double _X,int _Y);
-float ldexpf (float x, int expn);
 
+float ldexpf (float x, int expn);
 float ldexpf (float x, int expn)
-  {return (float) ldexp (x, expn);}
+{
+  return (float) ldexp (x, expn);
+}
+
diff --git a/mingw-w64-crt/math/lgamma.c b/mingw-w64-crt/math/lgamma.c
index c8f4cf8..04e8097 100644
--- a/mingw-w64-crt/math/lgamma.c
+++ b/mingw-w64-crt/math/lgamma.c
@@ -10,11 +10,11 @@
  */
 #ifdef UNK
 static uD A[] = {
-  { { 8.11614167470508450300E-4 } },
+  { {  8.11614167470508450300E-4 } },
   { { -5.95061904284301438324E-4 } },
-  { { 7.93650340457716943945E-4 } },
+  { {  7.93650340457716943945E-4 } },
   { { -2.77777777730099687205E-3 } },
-  { { 8.33333333333331927722E-2 } }
+  { {  8.33333333333331927722E-2 } }
 };
 static uD B[] = {
   { { -1.37825152569120859100E3 } },
@@ -160,118 +160,118 @@
 
 double __lgamma_r(double x, int* sgngam)
 {
-double p, q, u, w, z;
-int i;
+	double p, q, u, w, z;
+	int i;
 
-*sgngam = 1;
+	*sgngam = 1;
 #ifdef NANS
-if( isnan(x) )
-	return(x);
+	if (isnan(x))
+		return (x);
 #endif
 
 #ifdef INFINITIES
-if( !isfinite(x) )
-	return(INFINITY);
+	if (!isfinite(x))
+		return (INFINITY);
 #endif
 
-if( x < -34.0 )
+	if (x < -34.0)
 	{
-	q = -x;
-	w = __lgamma_r(q, sgngam); /* note this modifies sgngam! */
-	p = floor(q);
-	if( p == q )
+		q = -x;
+		w = __lgamma_r(q, sgngam); /* note this modifies sgngam! */
+		p = floor(q);
+		if (p == q)
 		{
 lgsing:
-		_SET_ERRNO(EDOM);
-		mtherr( "lgam", SING );
+			_SET_ERRNO(EDOM);
+			mtherr( "lgam", SING );
 #ifdef INFINITIES
-		return (INFINITY);
+			return (INFINITY);
 #else
-		return (MAXNUM);
+			return (MAXNUM);
 #endif
 		}
-	i = p;
-	if( (i & 1) == 0 )
-		*sgngam = -1;
-	else
-		*sgngam = 1;
-	z = q - p;
-	if( z > 0.5 )
+		i = p;
+		if ((i & 1) == 0)
+			*sgngam = -1;
+		else
+			*sgngam = 1;
+		z = q - p;
+		if (z > 0.5)
 		{
-		p += 1.0;
-		z = p - q;
+			p += 1.0;
+			z = p - q;
 		}
-	z = q * sin( PI * z );
-	if( z == 0.0 )
-		goto lgsing;
-/*	z = log(PI) - log( z ) - w;*/
-	z = LOGPI - log( z ) - w;
-	return( z );
-	}
-
-if( x < 13.0 )
-	{
-	z = 1.0;
-	p = 0.0;
-	u = x;
-	while( u >= 3.0 )
-		{
-		p -= 1.0;
-		u = x + p;
-		z *= u;
-		}
-	while( u < 2.0 )
-		{
-		if( u == 0.0 )
+		z = q * sin( PI * z );
+		if (z == 0.0)
 			goto lgsing;
-		z /= u;
-		p += 1.0;
-		u = x + p;
-		}
-	if( z < 0.0 )
-		{
-		*sgngam = -1;
-		z = -z;
-		}
-	else
-		*sgngam = 1;
-	if( u == 2.0 )
-		return( log(z) );
-	p -= 2.0;
-	x = x + p;
-	p = x * polevl( x, B, 5 ) / p1evl( x, C, 6);
-	return( log(z) + p );
+	/*	z = log(PI) - log( z ) - w;*/
+		z = LOGPI - log( z ) - w;
+		return (z);
 	}
 
-if( x > MAXLGM )
+	if (x < 13.0)
 	{
-	_SET_ERRNO(ERANGE);
-	mtherr( "lgamma", OVERFLOW );
+		z = 1.0;
+		p = 0.0;
+		u = x;
+		while (u >= 3.0)
+		{
+			p -= 1.0;
+			u = x + p;
+			z *= u;
+		}
+		while (u < 2.0)
+		{
+			if (u == 0.0)
+				goto lgsing;
+			z /= u;
+			p += 1.0;
+			u = x + p;
+		}
+		if (z < 0.0)
+		{
+			*sgngam = -1;
+			z = -z;
+		}
+		else
+			*sgngam = 1;
+		if (u == 2.0)
+			return ( log(z) );
+		p -= 2.0;
+		x = x + p;
+		p = x * polevl(x, B, 5) / p1evl(x, C, 6);
+		return ( log(z) + p );
+	}
+
+	if (x > MAXLGM)
+	{
+		_SET_ERRNO(ERANGE);
+		mtherr("lgamma", OVERFLOW);
 #ifdef INFINITIES
-	return( *sgngam * INFINITY );
+		return (*sgngam * INFINITY);
 #else
-	return( *sgngam * MAXNUM );
+		return (*sgngam * MAXNUM);
 #endif
 	}
 
-q = ( x - 0.5 ) * log(x) - x + LS2PI;
-if( x > 1.0e8 )
-	return( q );
+	q = (x - 0.5) * log(x) - x + LS2PI;
+	if (x > 1.0e8)
+		return (q);
 
-p = 1.0/(x*x);
-if( x >= 1000.0 )
-	q += ((   7.9365079365079365079365e-4 * p
-		- 2.7777777777777777777778e-3) *p
-		+ 0.0833333333333333333333) / x;
-else
-	q += polevl( p, A, 4 ) / x;
-return( q );
+	p = 1.0/(x*x);
+	if (x >= 1000.0)
+		q += ((   7.9365079365079365079365e-4 * p
+			- 2.7777777777777777777778e-3) *p
+			+ 0.0833333333333333333333) / x;
+	else
+		q += polevl( p, A, 4 ) / x;
+	return (q);
 }
 
 /* This is the C99 version */
-
 double lgamma(double x)
 {
-  int local_sgngam=0;
-  return (__lgamma_r(x, &local_sgngam));
+	int local_sgngam = 0;
+	return (__lgamma_r(x, &local_sgngam));
 }
+
diff --git a/mingw-w64-crt/math/lgammaf.c b/mingw-w64-crt/math/lgammaf.c
index a3b187f..042f8d1 100644
--- a/mingw-w64-crt/math/lgammaf.c
+++ b/mingw-w64-crt/math/lgammaf.c
@@ -5,26 +5,26 @@
  */
 /* log gamma(x+2), -.5 < x < .5 */
 static const float B[] = {
- 6.055172732649237E-004,
--1.311620815545743E-003,
- 2.863437556468661E-003,
--7.366775108654962E-003,
- 2.058355474821512E-002,
--6.735323259371034E-002,
- 3.224669577325661E-001,
- 4.227843421859038E-001
+   6.055172732649237E-004,
+  -1.311620815545743E-003,
+   2.863437556468661E-003,
+  -7.366775108654962E-003,
+   2.058355474821512E-002,
+  -6.735323259371034E-002,
+   3.224669577325661E-001,
+   4.227843421859038E-001
 };
 
 /* log gamma(x+1), -.25 < x < .25 */
 static const float C[] = {
- 1.369488127325832E-001,
--1.590086327657347E-001,
- 1.692415923504637E-001,
--2.067882815621965E-001,
- 2.705806208275915E-001,
--4.006931650563372E-001,
- 8.224670749082976E-001,
--5.772156501719101E-001
+   1.369488127325832E-001,
+  -1.590086327657347E-001,
+   1.692415923504637E-001,
+  -2.067882815621965E-001,
+   2.705806208275915E-001,
+  -4.006931650563372E-001,
+   8.224670749082976E-001,
+  -5.772156501719101E-001
 };
 
 /* log( sqrt( 2*pi ) ) */
@@ -36,154 +36,153 @@
 
 /* Reentrant version */ 
 /* Logarithm of gamma function */
-float __lgammaf_r( float x, int* sgngamf );
+float __lgammaf_r(float x, int* sgngamf);
 
-float __lgammaf_r( float x, int* sgngamf )
+float __lgammaf_r(float x, int* sgngamf)
 {
-float p, q, w, z;
-float nx, tx;
-int i, direction;
+	float p, q, w, z;
+	float nx, tx;
+	int i, direction;
 
-*sgngamf = 1;
+	*sgngamf = 1;
 #ifdef NANS
-if( isnan(x) )
-	return(x);
+	if (isnan(x))
+		return (x);
 #endif
 
 #ifdef INFINITIES
-if( !isfinite(x) )
-	return(x);
+	if (!isfinite(x))
+		return (x);
 #endif
 
-
-if( x < 0.0 )
+	if (x < 0.0)
 	{
-	q = -x;
-	w = __lgammaf_r(q, sgngamf); /* note this modifies sgngam! */
-	p = floorf(q);
-	if( p == q )
+		q = -x;
+		w = __lgammaf_r(q, sgngamf); /* note this modifies sgngam! */
+		p = floorf(q);
+		if (p == q)
 		{
 lgsing:
-		_SET_ERRNO(EDOM);
-		mtherr( "lgamf", SING );
+			_SET_ERRNO(EDOM);
+			mtherr("lgamf", SING);
 #ifdef INFINITIES
-		return (INFINITYF);
+			return (INFINITYF);
 #else
-	return( *sgngamf * MAXNUMF );
+			return( *sgngamf * MAXNUMF );
 #endif
 		}
-	i = p;
-	if( (i & 1) == 0 )
-		*sgngamf = -1;
-	else
-		*sgngamf = 1;
-	z = q - p;
-	if( z > 0.5 )
+		i = p;
+		if ((i & 1) == 0)
+			*sgngamf = -1;
+		else
+			*sgngamf = 1;
+		z = q - p;
+		if (z > 0.5)
 		{
-		p += 1.0;
-		z = p - q;
+			p += 1.0;
+			z = p - q;
 		}
-	z = q * sinf( PIF * z );
-	if( z == 0.0 )
-		goto lgsing;
-	z = -logf( PIINV*z ) - w;
-	return( z );
+		z = q * sinf(PIF * z);
+		if (z == 0.0)
+			goto lgsing;
+		z = -logf(PIINV * z) - w;
+		return (z);
 	}
 
-if( x < 6.5 )
+	if (x < 6.5)
 	{
-	direction = 0;
-	z = 1.0;
-	tx = x;
-	nx = 0.0;
-	if( x >= 1.5 )
+		direction = 0;
+		z = 1.0;
+		tx = x;
+		nx = 0.0;
+		if (x >= 1.5)
 		{
-		while( tx > 2.5 )
+			while (tx > 2.5)
 			{
-			nx -= 1.0;
-			tx = x + nx;
-			z *=tx;
+				nx -= 1.0;
+				tx = x + nx;
+				z *=tx;
 			}
-		x += nx - 2.0;
+			x += nx - 2.0;
 iv1r5:
-		p = x * polevlf( x, B, 7 );
-		goto cont;
+			p = x * polevlf( x, B, 7 );
+			goto cont;
 		}
-	if( x >= 1.25 )
+		if (x >= 1.25)
 		{
-		z *= x;
-		x -= 1.0; /* x + 1 - 2 */
+			z *= x;
+			x -= 1.0; /* x + 1 - 2 */
+			direction = 1;
+			goto iv1r5;
+		}
+		if (x >= 0.75)
+		{
+			x -= 1.0;
+			p = x * polevlf( x, C, 7 );
+			q = 0.0;
+			goto contz;
+		}
+		while (tx < 1.5)
+		{
+			if (tx == 0.0)
+				goto lgsing;
+			z *=tx;
+			nx += 1.0;
+			tx = x + nx;
+		}
 		direction = 1;
-		goto iv1r5;
-		}
-	if( x >= 0.75 )
-		{
-		x -= 1.0;
-		p = x * polevlf( x, C, 7 );
-		q = 0.0;
-		goto contz;
-		}
-	while( tx < 1.5 )
-		{
-		if( tx == 0.0 )
-			goto lgsing;
-		z *=tx;
-		nx += 1.0;
-		tx = x + nx;
-		}
-	direction = 1;
-	x += nx - 2.0;
-	p = x * polevlf( x, B, 7 );
+		x += nx - 2.0;
+		p = x * polevlf(x, B, 7);
 
 cont:
-	if( z < 0.0 )
+		if (z < 0.0)
 		{
-		*sgngamf = -1;
-		z = -z;
+			*sgngamf = -1;
+			z = -z;
 		}
-	else
+		else
 		{
-		*sgngamf = 1;
+			*sgngamf = 1;
 		}
-	q = logf(z);
-	if( direction )
-		q = -q;
+		q = logf(z);
+		if (direction)
+			q = -q;
 contz:
-	return( p + q );
+		return( p + q );
 	}
 
-if( x > MAXLGM )
+	if (x > MAXLGM)
 	{
-	_SET_ERRNO(ERANGE);
-	mtherr( "lgamf", OVERFLOW );
+		_SET_ERRNO(ERANGE);
+		mtherr("lgamf", OVERFLOW);
 #ifdef INFINITIES
-	return( *sgngamf * INFINITYF );
+		return (*sgngamf * INFINITYF);
 #else
-	return( *sgngamf * MAXNUMF );
+		return (*sgngamf * MAXNUMF);
 #endif
 
 	}
 
 /* Note, though an asymptotic formula could be used for x >= 3,
  * there is cancellation error in the following if x < 6.5.  */
-q = LS2PI - x;
-q += ( x - 0.5 ) * logf(x);
+	q = LS2PI - x;
+	q += (x - 0.5) * logf(x);
 
-if( x <= 1.0e4 )
+	if (x <= 1.0e4)
 	{
-	z = 1.0/x;
-	p = z * z;
-	q += ((    6.789774945028216E-004 * p
-		 - 2.769887652139868E-003 ) * p
-		+  8.333316229807355E-002 ) * z;
+		z = 1.0/x;
+		p = z * z;
+		q += ((    6.789774945028216E-004 * p
+			 - 2.769887652139868E-003 ) * p
+			+  8.333316229807355E-002 ) * z;
 	}
-return( q );
+	return (q);
 }
 
 /* This is the C99 version */
-
 float lgammaf(float x)
 {
-  int local_sgngamf=0;
-  return (__lgammaf_r(x, &local_sgngamf));
+	int local_sgngamf = 0;
+	return (__lgammaf_r(x, &local_sgngamf));
 }
+
diff --git a/mingw-w64-crt/math/lgammal.c b/mingw-w64-crt/math/lgammal.c
index da2affe..7fdf6ee 100644
--- a/mingw-w64-crt/math/lgammal.c
+++ b/mingw-w64-crt/math/lgammal.c
@@ -8,14 +8,14 @@
 #if UNK
 static uLD S[9] = {
   { { -1.193945051381510095614E-3L } },
-  { { 7.220599478036909672331E-3L } },
+  { {  7.220599478036909672331E-3L } },
   { { -9.622023360406271645744E-3L } },
   { { -4.219773360705915470089E-2L } },
-  { { 1.665386113720805206758E-1L } },
+  { {  1.665386113720805206758E-1L } },
   { { -4.200263503403344054473E-2L } },
   { { -6.558780715202540684668E-1L } },
-  { { 5.772156649015328608253E-1L } },
-  { { 1.000000000000000000000E0L } }
+  { {  5.772156649015328608253E-1L } },
+  { {  1.000000000000000000000E0L } }
 };
 #endif
 #if IBMPC
@@ -47,14 +47,14 @@
 
 #if UNK
 static uLD SN[9] = {
-  { { 1.133374167243894382010E-3L } },
-  { { 7.220837261893170325704E-3L } },
-  { { 9.621911155035976733706E-3L } },
+  { {  1.133374167243894382010E-3L } },
+  { {  7.220837261893170325704E-3L } },
+  { {  9.621911155035976733706E-3L } },
   { { -4.219773343731191721664E-2L } },
   { { -1.665386113944413519335E-1L } },
   { { -4.200263503402112910504E-2L } },
-  { { 6.558780715202536547116E-1L } },
-  { { 5.772156649015328608727E-1L } },
+  { {  6.558780715202536547116E-1L } },
+  { {  5.772156649015328608727E-1L } },
   { { -1.000000000000000000000E0L } }
 };
 #endif
@@ -98,13 +98,13 @@
  */
 #if UNK
 static uLD A[7] = {
-  { { 4.885026142432270781165E-3L } },
+  { {  4.885026142432270781165E-3L } },
   { { -1.880801938119376907179E-3L } },
-  { { 8.412723297322498080632E-4L } },
+  { {  8.412723297322498080632E-4L } },
   { { -5.952345851765688514613E-4L } },
-  { { 7.936507795855070755671E-4L } },
+  { {  7.936507795855070755671E-4L } },
   { { -2.777777777750349603440E-3L } },
-  { { 8.333333333333331447505E-2L } }
+  { {  8.333333333333331447505E-2L } }
 };
 #endif
 #if IBMPC
@@ -207,130 +207,129 @@
 
 long double __lgammal_r(long double x, int* sgngaml)
 {
-  long double p, q, w, z, f, nx;
-  int i;
+	long double p, q, w, z, f, nx;
+	int i;
 
-  *sgngaml = 1;
+	*sgngaml = 1;
 #ifdef NANS
-  if( isnanl(x) )
-    return(NANL);
+	if (isnanl(x))
+		return(NANL);
 #endif
 #ifdef INFINITIES
-  if( !isfinitel(x) )
-    return(INFINITYL);
+	if (!isfinitel(x))
+		return (INFINITYL);
 #endif
-  if( x < -34.0L )
-  {
-    q = -x;
-    w = __lgammal_r(q, sgngaml); /* note this modifies sgngam! */
-    p = floorl(q);
-    if( p == q )
-    {
+	if (x < -34.0L)
+	{
+		q = -x;
+		w = __lgammal_r(q, sgngaml); /* note this modifies sgngam! */
+		p = floorl(q);
+		if (p == q)
+		{
 lgsing:
-      _SET_ERRNO(EDOM);
-      mtherr( "lgammal", SING );
+			_SET_ERRNO(EDOM);
+			mtherr( "lgammal", SING );
 #ifdef INFINITIES
-      return (INFINITYL);
+			return (INFINITYL);
 #else
-      return (MAXNUML);
+			return (MAXNUML);
 #endif
-    }
-    i = p;
-    if( (i & 1) == 0 )
-      *sgngaml = -1;
-    else
-      *sgngaml = 1;
-    z = q - p;
-    if( z > 0.5L )
-    {
-      p += 1.0L;
-      z = p - q;
-    }
-    z = q * sinl( PIL * z );
-    if( z == 0.0L )
-      goto lgsing;
-    /*	z = LOGPI - logl( z ) - w; */
-    z = logl( PIL/z ) - w;
-    return( z );
-  }
+		}
+		i = p;
+		if ((i & 1) == 0)
+			*sgngaml = -1;
+		else
+			*sgngaml = 1;
+		z = q - p;
+		if (z > 0.5L)
+		{
+			p += 1.0L;
+			z = p - q;
+		}
+		z = q * sinl(PIL * z);
+		if (z == 0.0L)
+			goto lgsing;
+	/*	z = LOGPI - logl( z ) - w; */
+		z = logl(PIL/z) - w;
+		return (z);
+	}
 
-  if( x < 13.0L )
-  {
-    z = 1.0L;
-    nx = floorl( x +  0.5L );
-    f = x - nx;
-    while( x >= 3.0L )
-    {
-      nx -= 1.0L;
-      x = nx + f;
-      z *= x;
-    }
-    while( x < 2.0L )
-    {
-      if( fabsl(x) <= 0.03125 )
-	goto lsmall;
-      z /= nx +  f;
-      nx += 1.0L;
-      x = nx + f;
-    }
-    if( z < 0.0L )
-    {
-      *sgngaml = -1;
-      z = -z;
-    }
-    else
-      *sgngaml = 1;
-    if( x == 2.0L )
-      return( logl(z) );
-    x = (nx - 2.0L) + f;
-    p = x * polevll( x, B, 6 ) / p1evll( x, C, 7);
-    return( logl(z) + p );
-  }
+	if (x < 13.0L)
+	{
+		z = 1.0L;
+		nx = floorl(x +  0.5L);
+		f = x - nx;
+		while (x >= 3.0L)
+		{
+			nx -= 1.0L;
+			x = nx + f;
+			z *= x;
+		}
+		while (x < 2.0L)
+		{
+			if (fabsl(x) <= 0.03125)
+				goto lsmall;
+			z /= nx +  f;
+			nx += 1.0L;
+			x = nx + f;
+		}
+		if (z < 0.0L)
+		{
+			*sgngaml = -1;
+			z = -z;
+		}
+		else
+			*sgngaml = 1;
+		if (x == 2.0L)
+			return ( logl(z) );
+		x = (nx - 2.0L) + f;
+		p = x * polevll(x, B, 6) / p1evll(x, C, 7);
+		return ( logl(z) + p );
+	}
 
-  if( x > MAXLGM )
-  {
-    _SET_ERRNO(ERANGE);
-    mtherr( "lgammal", OVERFLOW );
+	if (x > MAXLGM)
+	{
+		_SET_ERRNO(ERANGE);
+		mtherr("lgammal", OVERFLOW);
 #ifdef INFINITIES
-    return( *sgngaml * INFINITYL );
+		return (*sgngaml * INFINITYL);
 #else
-    return( *sgngaml * MAXNUML );
+		return (*sgngaml * MAXNUML);
 #endif
-  }
+	}
 
-  q = ( x - 0.5L ) * logl(x) - x + LS2PI;
-  if( x > 1.0e10L )
-    return(q);
-  p = 1.0L/(x*x);
-  q += polevll( p, A, 6 ) / x;
-  return( q );
-
+	q = (x - 0.5L) * logl(x) - x + LS2PI;
+	if (x > 1.0e10L)
+		return(q);
+	p = 1.0L/(x*x);
+	q += polevll(p, A, 6) / x;
+	return (q);
 
 lsmall:
-  if( x == 0.0L )
-    goto lgsing;
-  if( x < 0.0L )
-  {
-    x = -x;
-    q = z / (x * polevll( x, SN, 8 ));
-  }
-  else
-    q = z / (x * polevll( x, S, 8 ));
-  if( q < 0.0L )
-  {
-    *sgngaml = -1;
-    q = -q;
-  }
-  else
-    *sgngaml = 1;
-  q = logl( q );
-  return(q);
+	if (x == 0.0L)
+		goto lgsing;
+	if (x < 0.0L)
+	{
+		x = -x;
+		q = z / (x * polevll(x, SN, 8));
+	}
+	else
+		q = z / (x * polevll(x, S, 8));
+	if (q < 0.0L)
+	{
+		*sgngaml = -1;
+		q = -q;
+	}
+	else
+		*sgngaml = 1;
+	q = logl(q);
+	return (q);
 }
 
 /* This is the C99 version */
-
 long double lgammal(long double x)
 {
-  int local_sgngaml=0;
-  return (__lgammal_r(x, &local_sgngaml));
+	int local_sgngaml = 0;
+	return (__lgammal_r(x, &local_sgngaml));
 }
+
diff --git a/mingw-w64-crt/math/llround.c b/mingw-w64-crt/math/llround.c
index 769cbb9..99efaa2 100644
--- a/mingw-w64-crt/math/llround.c
+++ b/mingw-w64-crt/math/llround.c
@@ -11,27 +11,28 @@
 llround (double x)
 {
   double res;
-  
+
   if (x >= 0.0)
     {
 	  res = ceil (x);
 	  if (res - x > 0.5)
- 	    res -= 1.0;
+	    res -= 1.0;
      }
    else
      {
        res = ceil (-x);
        if (res + x > 0.5)
- 	     res -= 1.0;
-       res = -res;;
+	     res -= 1.0;
+       res = -res;
      }
    if (!isfinite (res) 
        || res > (double) LONG_LONG_MAX
        || res < (double) LONG_LONG_MIN)
-     { 
+     {
        errno = ERANGE;
-       /* Undefined behaviour, so we could return anything.  */
+       /* Undefined behaviour, so we could return anything. */
        /* return res > 0.0 ? LONG_LONG_MAX : LONG_LONG_MIN; */
      }
    return (long long) res;
 }
+
diff --git a/mingw-w64-crt/math/llroundf.c b/mingw-w64-crt/math/llroundf.c
index 8277c18..3c449e6 100644
--- a/mingw-w64-crt/math/llroundf.c
+++ b/mingw-w64-crt/math/llroundf.c
@@ -11,7 +11,7 @@
 llroundf (float x)
 {
   float res;
-  
+
   if (x >= 0.0F)
     {
       res = ceilf (x);
@@ -34,4 +34,5 @@
       /* return res > 0.0F ? LONG_LONG_MAX : LONG_LONG_MIN; */
     }
   return (long long) res;
-}  
+}
+
diff --git a/mingw-w64-crt/math/llroundl.c b/mingw-w64-crt/math/llroundl.c
index b39de26..b8aad25 100644
--- a/mingw-w64-crt/math/llroundl.c
+++ b/mingw-w64-crt/math/llroundl.c
@@ -11,7 +11,7 @@
 llroundl (long double x)
 {
   long double res;
-  
+
   if (x >= 0.0L)
     {
       res = ceill (x);
@@ -35,3 +35,4 @@
     }
   return (long long) res;
 }
+
diff --git a/mingw-w64-crt/math/lroundf.c b/mingw-w64-crt/math/lroundf.c
index d6475be..d03b352 100644
--- a/mingw-w64-crt/math/lroundf.c
+++ b/mingw-w64-crt/math/lroundf.c
@@ -34,4 +34,4 @@
       /* return res > 0.0F ? LONG_MAX : LONG_MIN; */
     }
   return (long) res;
-}  
+}
diff --git a/mingw-w64-crt/math/lroundl.c b/mingw-w64-crt/math/lroundl.c
index 64303b1..633d382 100644
--- a/mingw-w64-crt/math/lroundl.c
+++ b/mingw-w64-crt/math/lroundl.c
@@ -23,7 +23,7 @@
       res = ceill (-x);
       if (res + x > 0.5L)
 	res -= 1.0L;
-      res = -res;;
+      res = -res;
     }
   if (!isfinite (res)
       || res > (long double)LONG_MAX
diff --git a/mingw-w64-crt/math/nextafterl.c b/mingw-w64-crt/math/nextafterl.c
index 1a4bbf7..3d320c9 100644
--- a/mingw-w64-crt/math/nextafterl.c
+++ b/mingw-w64-crt/math/nextafterl.c
@@ -59,7 +59,6 @@
 
   /* If we have updated the expn of a normal number,
      or moved from denormal to normal, [re]set the normal bit.  */ 
-     
   if (u.parts.expn & 0x7fff)
     u.parts.mantissa |=  normal_bit;
 
@@ -69,3 +68,4 @@
 /* nexttowardl is the same function with a different name.  */
 long double
 nexttowardl (long double, long double) __attribute__ ((alias("nextafterl")));
+
diff --git a/mingw-w64-crt/math/pow.c b/mingw-w64-crt/math/pow.c
index 4a60550..92874e1 100644
--- a/mingw-w64-crt/math/pow.c
+++ b/mingw-w64-crt/math/pow.c
@@ -276,7 +276,6 @@
 
 #else /* __MINGW32__ */
 
-#ifdef ANSIPROT
 extern double floor ( double );
 extern double fabs ( double );
 extern double frexp ( double, int * );
@@ -288,12 +287,6 @@
 extern int isnan ( double );
 extern int isfinite ( double );
 static double reduc ( double );
-#else
-double floor(), fabs(), frexp(), ldexp();
-double polevl(), p1evl(), __powi();
-int signbit(), isnan(), isfinite();
-static double reduc();
-#endif
 extern double MAXNUM;
 #ifdef INFINITIES
 extern double INFINITY;
@@ -307,397 +300,390 @@
 
 #endif /* __MINGW32__ */
 
-double pow( x, y )
-double x, y;
+double pow(double x, double y)
 {
-double w, z, W, Wa, Wb, ya, yb, u;
-/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
-double aw, ay, wy;
-int e, i, nflg, iyflg, yoddint;
+	double w, z, W, Wa, Wb, ya, yb, u;
+/*	double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
+	double aw, ay, wy;
+	int e, i, nflg, iyflg, yoddint;
 
-if( y == 0.0 )
-	return( 1.0 );
+	if (y == 0.0)
+		return (1.0);
 #ifdef NANS
-if( isnan(x) || isnan(y) )
+	if (isnan(x) || isnan(y))
 	{
-	_SET_ERRNO (EDOM);
-	return( x + y );
+		_SET_ERRNO (EDOM);
+		return (x + y);
 	}
 #endif
-if( y == 1.0 )
-	return( x );
-
+	if (y == 1.0)
+		return (x);
 
 #ifdef INFINITIES
-if( !isfinite(y) && (x == 1.0 || x == -1.0) )
+	if (!isfinite(y) && (x == 1.0 || x == -1.0))
 	{
-	mtherr( "pow", DOMAIN );
+		mtherr( "pow", DOMAIN );
 #ifdef NANS
-	return( NAN );
+		return( NAN );
 #else
-	return( INFINITY );
-#endif
-	}
-#endif
-
-if( x == 1.0 )
-	return( 1.0 );
-
-if( y >= MAXNUM )
-	{
-	_SET_ERRNO (ERANGE);
-#ifdef INFINITIES
-	if( x > 1.0 )
 		return( INFINITY );
-#else
-	if( x > 1.0 )
-		return( MAXNUM );
 #endif
-	if( x > 0.0 && x < 1.0 )
-		return( 0.0);
-	if( x < -1.0 )
+	}
+#endif
+
+	if (x == 1.0)
+		return (1.0);
+
+	if (y >= MAXNUM)
+	{
+		_SET_ERRNO (ERANGE);
+#ifdef INFINITIES
+		if (x > 1.0)
+			return (INFINITY);
+#else
+		if (x > 1.0)
+			return (MAXNUM);
+#endif
+		if (x > 0.0 && x < 1.0)
+			return (0.0);
+		if (x < -1.0)
 		{
 #ifdef INFINITIES
-		return( INFINITY );
+			return (INFINITY);
 #else
-		return( MAXNUM );
+			return (MAXNUM);
 #endif
 		}
-	if( x > -1.0 && x < 0.0 )
-		return( 0.0 );
+		if (x > -1.0 && x < 0.0)
+			return (0.0);
 	}
-if( y <= -MAXNUM )
+	if (y <= -MAXNUM)
 	{
-	_SET_ERRNO (ERANGE);
-	if( x > 1.0 )
-		return( 0.0 );
+		_SET_ERRNO (ERANGE);
+		if (x > 1.0)
+		return (0.0);
 #ifdef INFINITIES
-	if( x > 0.0 && x < 1.0 )
-		return( INFINITY );
+		if (x > 0.0 && x < 1.0)
+			return (INFINITY);
 #else
-	if( x > 0.0 && x < 1.0 )
-		return( MAXNUM );
+		if (x > 0.0 && x < 1.0)
+			return (MAXNUM);
 #endif
-	if( x < -1.0 )
-		return( 0.0 );
+		if (x < -1.0)
+			return (0.0);
 #ifdef INFINITIES
-	if( x > -1.0 && x < 0.0 )
-		return( INFINITY );
+		if (x > -1.0 && x < 0.0)
+			return (INFINITY);
 #else
-	if( x > -1.0 && x < 0.0 )
-		return( MAXNUM );
+		if (x > -1.0 && x < 0.0)
+			return (MAXNUM);
 #endif
 	}
-if( x >= MAXNUM )
+	if (x >= MAXNUM)
 	{
 #if INFINITIES
-	if( y > 0.0 )
-		return( INFINITY );
+		if (y > 0.0)
+			return (INFINITY);
 #else
-	if( y > 0.0 )
-		return( MAXNUM );
+		if (y > 0.0)
+			return (MAXNUM);
 #endif
-	return(0.0);
+		return (0.0);
 	}
-/* Set iyflg to 1 if y is an integer.  */
-iyflg = 0;
-w = floor(y);
-if( w == y )
-	iyflg = 1;
+	/* Set iyflg to 1 if y is an integer.  */
+	iyflg = 0;
+	w = floor(y);
+	if (w == y)
+		iyflg = 1;
 
 /* Test for odd integer y.  */
-yoddint = 0;
-if( iyflg )
+	yoddint = 0;
+	if (iyflg)
 	{
-	ya = fabs(y);
-	ya = floor(0.5 * ya);
-	yb = 0.5 * fabs(w);
-	if( ya != yb )
-		yoddint = 1;
+		ya = fabs(y);
+		ya = floor(0.5 * ya);
+		yb = 0.5 * fabs(w);
+		if (ya != yb)
+			yoddint = 1;
 	}
 
-if( x <= -MAXNUM )
+	if (x <= -MAXNUM)
 	{
-	if( y > 0.0 )
+		if (y > 0.0)
 		{
 #ifdef INFINITIES
-		if( yoddint )
-			return( -INFINITY );
-		return( INFINITY );
+			if (yoddint)
+				return (-INFINITY);
+			return (INFINITY);
 #else
-		if( yoddint )
-			return( -MAXNUM );
-		return( MAXNUM );
+			if (yoddint)
+				return (-MAXNUM);
+			return (MAXNUM);
 #endif
 		}
-	if( y < 0.0 )
+		if (y < 0.0)
 		{
 #ifdef MINUSZERO
-		if( yoddint )
-			return( NEGZERO );
+			if (yoddint)
+				return (NEGZERO);
 #endif
-		return( 0.0 );
+			return (0.0);
 		}
  	}
 
-nflg = 0;	/* flag = 1 if x<0 raised to integer power */
-if( x <= 0.0 )
+	nflg = 0;	/* flag = 1 if x<0 raised to integer power */
+	if (x <= 0.0)
 	{
-	if( x == 0.0 )
+		if (x == 0.0)
 		{
-		if( y < 0.0 )
+			if (y < 0.0)
 			{
 #ifdef MINUSZERO
-			if( signbit(x) && yoddint )
-				return( -INFINITY );
+				if (signbit(x) && yoddint)
+					return (-INFINITY);
 #endif
 #ifdef INFINITIES
-			return( INFINITY );
+				return (INFINITY);
 #else
-			return( MAXNUM );
+				return (MAXNUM);
 #endif
 			}
-		if( y > 0.0 )
+			if (y > 0.0)
 			{
 #ifdef MINUSZERO
-			if( signbit(x) && yoddint )
-				return( NEGZERO );
+				if (signbit(x) && yoddint)
+					return (NEGZERO);
 #endif
-			return( 0.0 );
+				return (0.0);
 			}
-		return( 1.0 );
+			return (1.0);
 		}
-	else
+		else
 		{
-		if( iyflg == 0 )
+			if (iyflg == 0)
 			{ /* noninteger power of negative number */
-			mtherr( fname, DOMAIN );
-			_SET_ERRNO (EDOM);
+				mtherr(fname, DOMAIN);
+				_SET_ERRNO (EDOM);
 #ifdef NANS
-			return(NAN);
+				return (NAN);
 #else
-			return(0.0L);
+				return (0.0L);
 #endif
 			}
-		nflg = 1;
+			nflg = 1;
 		}
 	}
 
-/* Integer power of an integer.  */
+	/* Integer power of an integer.  */
 
-if( iyflg )
+	if (iyflg)
 	{
-	i = w;
-	w = floor(x);
-	if( (w == x) && (fabs(y) < 32768.0) )
+		i = w;
+		w = floor(x);
+		if( (w == x) && (fabs(y) < 32768.0) )
 		{
-		w = __powi( x, (int) y );
-		return( w );
+			w = __powi(x, (int) y);
+			return (w);
 		}
 	}
 
-if( nflg )
-	x = fabs(x);
+	if (nflg)
+		x = fabs(x);
 
-/* For results close to 1, use a series expansion.  */
-w = x - 1.0;
-aw = fabs(w);
-ay = fabs(y);
-wy = w * y;
-ya = fabs(wy);
-if((aw <= 1.0e-3 && ay <= 1.0)
-   || (ya <= 1.0e-3 && ay >= 1.0))
+	/* For results close to 1, use a series expansion.  */
+	w = x - 1.0;
+	aw = fabs(w);
+	ay = fabs(y);
+	wy = w * y;
+	ya = fabs(wy);
+	if ((aw <= 1.0e-3 && ay <= 1.0)
+	   || (ya <= 1.0e-3 && ay >= 1.0))
 	{
-	z = (((((w*(y-5.)/720. + 1./120.)*w*(y-4.) + 1./24.)*w*(y-3.)
-		+ 1./6.)*w*(y-2.) + 0.5)*w*(y-1.) )*wy + wy + 1.;
-	goto done;
+		z = (((((w*(y-5.)/720. + 1./120.)*w*(y-4.) + 1./24.)*w*(y-3.)
+			+ 1./6.)*w*(y-2.) + 0.5)*w*(y-1.) )*wy + wy + 1.;
+		goto done;
 	}
-/* These are probably too much trouble.  */
+	/* These are probably too much trouble.  */
 #if 0
-w = y * log(x);
-if (aw > 1.0e-3 && fabs(w) < 1.0e-3)
-  {
-    z = ((((((
-    w/7. + 1.)*w/6. + 1.)*w/5. + 1.)*w/4. + 1.)*w/3. + 1.)*w/2. + 1.)*w + 1.;
-    goto done;
-  }
+	w = y * log(x);
+	if (aw > 1.0e-3 && fabs(w) < 1.0e-3)
+	{
+		z = ((((((w/7. + 1.)*w/6. + 1.)*w/5. + 1.)*w/4. + 1.)*w/3. + 1.)*w/2. + 1.)*w + 1.;
+		goto done;
+	}
 
-if(ya <= 1.0e-3 && aw <= 1.0e-4)
-  {
-    z = (((((
-	     wy*1./720.
-	     + (-w*1./48. + 1./120.) )*wy
-	    + ((w*17./144. - 1./12.)*w + 1./24.) )*wy
-	   + (((-w*5./16. + 7./24.)*w - 1./4.)*w + 1./6.) )*wy
-	  + ((((w*137./360. - 5./12.)*w + 11./24.)*w - 1./2.)*w + 1./2.) )*wy
-	 + (((((-w*1./6. + 1./5.)*w - 1./4)*w + 1./3.)*w -1./2.)*w ) )*wy
-	   + wy + 1.0;
-    goto done;
-  }
+	if (ya <= 1.0e-3 && aw <= 1.0e-4)
+	{
+		z = (((((wy*1./720.
+				    + (-w*1./48. + 1./120.) )*wy
+				   + ((w*17./144. - 1./12.)*w + 1./24.) )*wy
+				  + (((-w*5./16. + 7./24.)*w - 1./4.)*w + 1./6.) )*wy
+				 + ((((w*137./360. - 5./12.)*w + 11./24.)*w - 1./2.)*w + 1./2.) )*wy
+				+ (((((-w*1./6. + 1./5.)*w - 1./4)*w + 1./3.)*w -1./2.)*w ) )*wy
+				+ wy + 1.0;
+		goto done;
+	}
 #endif
 
-/* separate significand from exponent */
-x = frexp( x, &e );
+	/* separate significand from exponent */
+	x = frexp(x, &e);
 
 #if 0
-/* For debugging, check for gross overflow. */
-if( (e * y)  > (MEXP + 1024) )
-	goto overflow;
+	/* For debugging, check for gross overflow. */
+	if ((e * y)  > (MEXP + 1024))
+		goto overflow;
 #endif
 
-/* Find significand of x in antilog table A[]. */
-i = 1;
-if( x <= douba(9) )
-	i = 9;
-if( x <= douba(i+4) )
-	i += 4;
-if( x <= douba(i+2) )
-	i += 2;
-if( x >= douba(1) )
-	i = -1;
-i += 1;
+	/* Find significand of x in antilog table A[]. */
+	i = 1;
+	if (x <= douba(9))
+		i = 9;
+	if (x <= douba(i + 4))
+		i += 4;
+	if (x <= douba(i + 2))
+		i += 2;
+	if (x >= douba(1))
+		i = -1;
+	i += 1;
 
+	/* Find (x - A[i])/A[i]
+	 * in order to compute log(x/A[i]):
+	 *
+	 * log(x) = log( a x/a ) = log(a) + log(x/a)
+	 *
+	 * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
+	 */
+	x -= douba(i);
+	x -= doubb(i/2);
+	x /= douba(i);
 
-/* Find (x - A[i])/A[i]
- * in order to compute log(x/A[i]):
- *
- * log(x) = log( a x/a ) = log(a) + log(x/a)
- *
- * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
- */
-x -= douba(i);
-x -= doubb(i/2);
-x /= douba(i);
+	/* rational approximation for log(1+v):
+	 *
+	 * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
+	 */
+	z = x*x;
+	w = x * ( z * polevl( x, P, 3 ) / p1evl( x, Q, 4 ) );
+	w = w - ldexp( z, -1 );   /*  w - 0.5 * z  */
 
+	/* Convert to base 2 logarithm:
+	 * multiply by log2(e)
+	 */
+	w = w + LOG2EA * w;
+	/* Note x was not yet added in
+	 * to above rational approximation,
+	 * so do it now, while multiplying
+	 * by log2(e).
+	 */
+	z = w + LOG2EA * x;
+	z = z + x;
 
-/* rational approximation for log(1+v):
- *
- * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
- */
-z = x*x;
-w = x * ( z * polevl( x, P, 3 ) / p1evl( x, Q, 4 ) );
-w = w - ldexp( z, -1 );   /*  w - 0.5 * z  */
+	/* Compute exponent term of the base 2 logarithm. */
+	w = -i;
+	w = ldexp( w, -4 );	/* divide by 16 */
+	w += e;
+	/* Now base 2 log of x is w + z. */
 
-/* Convert to base 2 logarithm:
- * multiply by log2(e)
- */
-w = w + LOG2EA * w;
-/* Note x was not yet added in
- * to above rational approximation,
- * so do it now, while multiplying
- * by log2(e).
- */
-z = w + LOG2EA * x;
-z = z + x;
+	/* Multiply base 2 log by y, in extended precision. */
 
-/* Compute exponent term of the base 2 logarithm. */
-w = -i;
-w = ldexp( w, -4 );	/* divide by 16 */
-w += e;
-/* Now base 2 log of x is w + z. */
+	/* separate y into large part ya
+	 * and small part yb less than 1/16
+	 */
+	ya = reduc(y);
+	yb = y - ya;
 
-/* Multiply base 2 log by y, in extended precision. */
+	F = z * y  +  w * yb;
+	Fa = reduc(F);
+	Fb = F - Fa;
 
-/* separate y into large part ya
- * and small part yb less than 1/16
- */
-ya = reduc(y);
-yb = y - ya;
+	G = Fa + w * ya;
+	Ga = reduc(G);
+	Gb = G - Ga;
 
+	H = Fb + Gb;
+	Ha = reduc(H);
+	w = ldexp(Ga + Ha, 4);
 
-F = z * y  +  w * yb;
-Fa = reduc(F);
-Fb = F - Fa;
-
-G = Fa + w * ya;
-Ga = reduc(G);
-Gb = G - Ga;
-
-H = Fb + Gb;
-Ha = reduc(H);
-w = ldexp( Ga+Ha, 4 );
-
-/* Test the power of 2 for overflow */
-if( w > MEXP )
+	/* Test the power of 2 for overflow */
+	if (w > MEXP)
 	{
 #ifndef INFINITIES
-	mtherr( fname, OVERFLOW );
+		mtherr(fname, OVERFLOW);
 #endif
 #ifdef INFINITIES
-	if( nflg && yoddint )
-	  return( -INFINITY );
-	return( INFINITY );
+		if (nflg && yoddint)
+			return (-INFINITY);
+		return (INFINITY);
 #else
-	if( nflg && yoddint )
-	  return( -MAXNUM );
-	return( MAXNUM );
+		if (nflg && yoddint)
+			return (-MAXNUM);
+		return (MAXNUM);
 #endif
 	}
 
-if( w < (MNEXP - 1) )
+	if (w < (MNEXP - 1))
 	{
 #ifndef DENORMAL
-	mtherr( fname, UNDERFLOW );
+		mtherr(fname, UNDERFLOW);
 #endif
 #ifdef MINUSZERO
-	if( nflg && yoddint )
-	  return( NEGZERO );
+		if (nflg && yoddint)
+			return (NEGZERO);
 #endif
-	return( 0.0 );
+		return (0.0);
 	}
 
-e = w;
-Hb = H - Ha;
+	e = w;
+	Hb = H - Ha;
 
-if( Hb > 0.0 )
+	if (Hb > 0.0)
 	{
-	e += 1;
-	Hb -= 0.0625;
+		e += 1;
+		Hb -= 0.0625;
 	}
 
-/* Now the product y * log2(x)  =  Hb + e/16.0.
- *
- * Compute base 2 exponential of Hb,
- * where -0.0625 <= Hb <= 0.
- */
-z = Hb * polevl( Hb, R, 6 );  /*    z  =  2**Hb - 1    */
+	/* Now the product y * log2(x)  =  Hb + e/16.0.
+	 *
+	 * Compute base 2 exponential of Hb,
+	 * where -0.0625 <= Hb <= 0.
+	 */
+	z = Hb * polevl(Hb, R, 6);  /*    z  =  2**Hb - 1    */
 
-/* Express e/16 as an integer plus a negative number of 16ths.
- * Find lookup table entry for the fractional power of 2.
- */
-if( e < 0 )
-	i = 0;
-else
-	i = 1;
-i = e/16 + i;
-e = 16*i - e;
-w = douba( e );
-z = w + w * z;      /*    2**-e * ( 1 + (2**Hb-1) )    */
-z = ldexp( z, i );  /* multiply by integer power of 2 */
+	/* Express e/16 as an integer plus a negative number of 16ths.
+	 * Find lookup table entry for the fractional power of 2.
+	 */
+	if (e < 0)
+		i = 0;
+	else
+		i = 1;
+	i = e/16 + i;
+	e = 16*i - e;
+	w = douba(e);
+	z = w + w * z;      /*    2**-e * ( 1 + (2**Hb-1) )    */
+	z = ldexp(z, i);  /* multiply by integer power of 2 */
 
 done:
-
-/* Negate if odd integer power of negative number */
-if( nflg && yoddint )
+	/* Negate if odd integer power of negative number */
+	if (nflg && yoddint)
 	{
 #ifdef MINUSZERO
-	if( z == 0.0 )
-		z = NEGZERO;
-	else
+		if (z == 0.0)
+			z = NEGZERO;
+		else
 #endif
-		z = -z;
+			z = -z;
 	}
-return( z );
+	return (z);
 }
 
 
 /* Find a multiple of 1/16 that is within 1/16 of x. */
 static double reduc(double x)
 {
-double t;
+	double t;
 
-t = ldexp( x, 4 );
-t = floor( t );
-t = ldexp( t, -4 );
-return(t);
+	t = ldexp(x, 4);
+	t = floor(t);
+	t = ldexp(t, -4);
+	return (t);
 }
+
diff --git a/mingw-w64-crt/math/powi.c b/mingw-w64-crt/math/powi.c
index d8c521c..ee2dce8 100644
--- a/mingw-w64-crt/math/powi.c
+++ b/mingw-w64-crt/math/powi.c
@@ -12,130 +12,128 @@
 
 double __powi (double x,int nn)
 {
-int n, e, sign, asign, lx;
-double w, y, s;
+	int n, e, sign, asign, lx;
+	double w, y, s;
 
-/* See pow.c for these tests.  */
-if( x == 0.0 )
+	/* See pow.c for these tests.  */
+	if (x == 0.0)
 	{
-	if( nn == 0 )
-		return( 1.0 );
-	else if( nn < 0 )
-	    return( INFINITY );
+		if (nn == 0)
+			return (1.0);
+		else if (nn < 0)
+			return (INFINITY);
+		else
+		{
+			if (nn & 1)
+				return (x);
+			else
+				return (0.0);
+		}
+	}
+
+	if (nn == 0)
+		return (1.0);
+
+	if (nn == -1)
+		return (1.0/x);
+
+	if (x < 0.0)
+	{
+		asign = -1;
+		x = -x;
+	}
 	else
-	  {
-	    if( nn & 1 )
-	      return( x );
-	    else
-	      return( 0.0 );
-	  }
+		asign = 0;
+
+	if (nn < 0)
+	{
+		sign = -1;
+		n = -nn;
+	}
+	else
+	{
+		sign = 1;
+		n = nn;
 	}
 
-if( nn == 0 )
-	return( 1.0 );
+	/* Even power will be positive. */
+	if ((n & 1) == 0)
+		asign = 0;
 
-if( nn == -1 )
-	return( 1.0/x );
+	/* Overflow detection */
 
-if( x < 0.0 )
+	/* Calculate approximate logarithm of answer */
+	s = frexp(x, &lx);
+	e = (lx - 1)*n;
+	if ((e == 0) || (e > 64) || (e < -64))
 	{
-	asign = -1;
-	x = -x;
+		s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);
+		s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;
 	}
-else
-	asign = 0;
-
-
-if( nn < 0 )
+	else
 	{
-	sign = -1;
-	n = -nn;
-	}
-else
-	{
-	sign = 1;
-	n = nn;
+		s = LOGE2 * e;
 	}
 
-/* Even power will be positive. */
-if( (n & 1) == 0 )
-	asign = 0;
-
-/* Overflow detection */
-
-/* Calculate approximate logarithm of answer */
-s = frexp( x, &lx );
-e = (lx - 1)*n;
-if( (e == 0) || (e > 64) || (e < -64) )
+	if (s > MAXLOG)
 	{
-	s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);
-	s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;
-	}
-else
-	{
-	s = LOGE2 * e;
-	}
-
-if( s > MAXLOG )
-	{
-	mtherr( "powi", OVERFLOW );
-	_SET_ERRNO(ERANGE);
-	y = INFINITY;
-	goto done;
+		mtherr("powi", OVERFLOW);
+		_SET_ERRNO(ERANGE);
+		y = INFINITY;
+		goto done;
 	}
 
 #if DENORMAL
-if( s < MINLOG )
+	if (s < MINLOG)
 	{
-	y = 0.0;
-	goto done;
+		y = 0.0;
+		goto done;
 	}
 
-/* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
-if( (s < (-MAXLOG+2.0)) && (sign < 0) )
+	/* Handle tiny denormal answer, but with less accuracy
+	 * since roundoff error in 1.0/x will be amplified.
+	 * The precise demarcation should be the gradual underflow threshold.
+	 */
+	if ((s < (-MAXLOG+2.0)) && (sign < 0))
 	{
-	x = 1.0/x;
-	sign = -sign;
+		x = 1.0/x;
+		sign = -sign;
 	}
 #else
-/* do not produce denormal answer */
-if( s < -MAXLOG )
-	return(0.0);
+	/* do not produce denormal answer */
+	if (s < -MAXLOG)
+		return (0.0);
 #endif
 
-
 /* First bit of the power */
-if( n & 1 )
-	y = x;
-		
-else
-	y = 1.0;
+	if (n & 1)
+		y = x;
+	else
+		y = 1.0;
 
-w = x;
-n >>= 1;
-while( n )
-	{
-	w = w * w;	/* arg to the 2-to-the-kth power */
-	if( n & 1 )	/* if that bit is set, then include in product */
-		y *= w;
+	w = x;
 	n >>= 1;
+	while (n)
+	{
+		w = w * w;	/* arg to the 2-to-the-kth power */
+		if (n & 1)	/* if that bit is set, then include in product */
+			y *= w;
+		n >>= 1;
 	}
 
-if( sign < 0 )
-	y = 1.0/y;
+	if (sign < 0)
+		y = 1.0/y;
 
 done:
 
-if( asign )
+	if (asign)
 	{
-	/* odd power of negative number */
-	if( y == 0.0 )
-		y = NEGZERO;
-	else
-		y = -y;
+		/* odd power of negative number */
+		if (y == 0.0)
+			y = NEGZERO;
+		else
+			y = -y;
 	}
-return(y);
+	return (y);
 }
+
diff --git a/mingw-w64-crt/math/powif.c b/mingw-w64-crt/math/powif.c
index a0fb1eb..4a72acb 100644
--- a/mingw-w64-crt/math/powif.c
+++ b/mingw-w64-crt/math/powif.c
@@ -12,130 +12,128 @@
 
 float __powif (float x, int nn)
 {
-int n, e, sign, asign, lx;
-float w, y, s;
+	int n, e, sign, asign, lx;
+	float w, y, s;
 
-/* See pow.c for these tests.  */
-if( x == 0.0F )
+	/* See pow.c for these tests.  */
+	if (x == 0.0F)
 	{
-	if( nn == 0 )
-		return( 1.0F );
-	else if( nn < 0 )
-	    return( INFINITYF );
+		if (nn == 0)
+			return (1.0F );
+		else if (nn < 0)
+			return (INFINITYF);
+		else
+		{
+			if (nn & 1)
+				return (x);
+			else
+				return (0.0);
+		}
+	}
+
+	if (nn == 0)
+		return (1.0);
+
+	if (nn == -1)
+		return (1.0/x);
+
+	if (x < 0.0)
+	{
+		asign = -1;
+		x = -x;
+	}
 	else
-	  {
-	    if( nn & 1 )
-	      return( x );
-	    else
-	      return( 0.0 );
-	  }
+		asign = 0;
+
+	if (nn < 0)
+	{
+		sign = -1;
+		n = -nn;
+	}
+	else
+	{
+		sign = 1;
+		n = nn;
 	}
 
-if( nn == 0 )
-	return( 1.0 );
+	/* Even power will be positive. */
+	if ((n & 1) == 0)
+		asign = 0;
 
-if( nn == -1 )
-	return( 1.0/x );
+	/* Overflow detection */
 
-if( x < 0.0 )
+	/* Calculate approximate logarithm of answer */
+	s = frexpf(x, &lx);
+	e = (lx - 1)*n;
+	if ((e == 0) || (e > 64) || (e < -64))
 	{
-	asign = -1;
-	x = -x;
+		s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);
+		s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F;
 	}
-else
-	asign = 0;
-
-
-if( nn < 0 )
+	else
 	{
-	sign = -1;
-	n = -nn;
-	}
-else
-	{
-	sign = 1;
-	n = nn;
+		s = LOGE2F * e;
 	}
 
-/* Even power will be positive. */
-if( (n & 1) == 0 )
-	asign = 0;
-
-/* Overflow detection */
-
-/* Calculate approximate logarithm of answer */
-s = frexpf( x, &lx );
-e = (lx - 1)*n;
-if( (e == 0) || (e > 64) || (e < -64) )
+	if (s > MAXLOGF)
 	{
-	s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);
-	s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F;
-	}
-else
-	{
-	s = LOGE2F * e;
-	}
-
-if( s > MAXLOGF )
-	{
-	mtherr( "__powif", OVERFLOW );
-	_SET_ERRNO(ERANGE);
-	y = INFINITYF;
-	goto done;
+		mtherr("__powif", OVERFLOW);
+		_SET_ERRNO(ERANGE);
+		y = INFINITYF;
+		goto done;
 	}
 
 #if DENORMAL
-if( s < MINLOGF )
+	if (s < MINLOGF)
 	{
-	y = 0.0;
-	goto done;
+		y = 0.0;
+		goto done;
 	}
 
-/* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
-if( (s < (-MAXLOGF+2.0)) && (sign < 0) )
+	/* Handle tiny denormal answer, but with less accuracy
+	 * since roundoff error in 1.0/x will be amplified.
+	 * The precise demarcation should be the gradual underflow threshold.
+	 */
+	if ((s < (-MAXLOGF+2.0)) && (sign < 0))
 	{
-	x = 1.0/x;
-	sign = -sign;
+		x = 1.0/x;
+		sign = -sign;
 	}
 #else
-/* do not produce denormal answer */
-if( s < -MAXLOGF )
-	return(0.0);
+	/* do not produce denormal answer */
+	if (s < -MAXLOGF)
+		return (0.0);
 #endif
 
+	/* First bit of the power */
+	if (n & 1)
+		y = x;
+	else
+		y = 1.0;
 
-/* First bit of the power */
-if( n & 1 )
-	y = x;
-		
-else
-	y = 1.0;
-
-w = x;
-n >>= 1;
-while( n )
-	{
-	w = w * w;	/* arg to the 2-to-the-kth power */
-	if( n & 1 )	/* if that bit is set, then include in product */
-		y *= w;
+	w = x;
 	n >>= 1;
+	while (n)
+	{
+		w = w * w;	/* arg to the 2-to-the-kth power */
+		if (n & 1)	/* if that bit is set, then include in product */
+			y *= w;
+		n >>= 1;
 	}
 
-if( sign < 0 )
-	y = 1.0/y;
+	if (sign < 0)
+		y = 1.0/y;
 
 done:
 
-if( asign )
+	if (asign)
 	{
-	/* odd power of negative number */
-	if( y == 0.0 )
-		y = NEGZEROF;
-	else
-		y = -y;
+		/* odd power of negative number */
+		if (y == 0.0)
+			y = NEGZEROF;
+		else
+			y = -y;
 	}
-return(y);
+	return (y);
 }
+
diff --git a/mingw-w64-crt/math/powil.c b/mingw-w64-crt/math/powil.c
index 790e629..1e1e510 100644
--- a/mingw-w64-crt/math/powil.c
+++ b/mingw-w64-crt/math/powil.c
@@ -12,110 +12,107 @@
 
 long double __powil (long double x,int nn)
 {
-long double w, y;
-long double s;
-int n, e, sign, asign, lx;
+	long double w, y;
+	long double s;
+	int n, e, sign, asign, lx;
 
-if( x == 0.0L )
+	if (x == 0.0L)
 	{
-	if( nn == 0 )
-		return( 1.0L );
-	else if( nn < 0 )
-		return( INFINITYL );
+		if (nn == 0)
+			return (1.0L);
+		else if (nn < 0)
+			return (INFINITYL);
+		else
+			return (0.0L);
+	}
+
+	if (nn == 0)
+		return (1.0L);
+
+	if (x < 0.0L)
+	{
+		asign = -1;
+		x = -x;
+	}
 	else
-		return( 0.0L );
+		asign = 0;
+
+	if (nn < 0)
+	{
+		sign = -1;
+		n = -nn;
+	}
+	else
+	{
+		sign = 1;
+		n = nn;
 	}
 
-if( nn == 0 )
-	return( 1.0L );
+	/* Overflow detection */
 
-
-if( x < 0.0L )
+	/* Calculate approximate logarithm of answer */
+	s = x;
+	s = frexpl(s, &lx);
+	e = (lx - 1)*n;
+	if ((e == 0) || (e > 64) || (e < -64))
 	{
-	asign = -1;
-	x = -x;
+		s = (s - 7.0710678118654752e-1L) / (s +  7.0710678118654752e-1L);
+		s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
 	}
-else
-	asign = 0;
-
-
-if( nn < 0 )
+	else
 	{
-	sign = -1;
-	n = -nn;
-	}
-else
-	{
-	sign = 1;
-	n = nn;
+		s = LOGE2L * e;
 	}
 
-/* Overflow detection */
-
-/* Calculate approximate logarithm of answer */
-s = x;
-s = frexpl( s, &lx );
-e = (lx - 1)*n;
-if( (e == 0) || (e > 64) || (e < -64) )
+	if (s > MAXLOGL)
 	{
-	s = (s - 7.0710678118654752e-1L) / (s +  7.0710678118654752e-1L);
-	s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
-	}
-else
-	{
-	s = LOGE2L * e;
+		mtherr("__powil", OVERFLOW);
+		_SET_ERRNO(ERANGE);
+		y = INFINITYL;
+		goto done;
 	}
 
-if( s > MAXLOGL )
+	if (s < MINLOGL)
 	{
-	mtherr( "__powil", OVERFLOW );
-	_SET_ERRNO(ERANGE);
-	y = INFINITYL;
-	goto done;
+		mtherr("__powil", UNDERFLOW);
+		_SET_ERRNO(ERANGE);
+		return (0.0L);
+	}
+	/* Handle tiny denormal answer, but with less accuracy
+	 * since roundoff error in 1.0/x will be amplified.
+	 * The precise demarcation should be the gradual underflow threshold.
+	 */
+	if (s < (-MAXLOGL+2.0L))
+	{
+		x = 1.0L/x;
+		sign = -sign;
 	}
 
-if( s < MINLOGL )
+	/* First bit of the power */
+	if (n & 1)
+		y = x;
+	else
 	{
-	mtherr( "__powil", UNDERFLOW );
-	_SET_ERRNO(ERANGE);
-	return(0.0L);
-	}
-/* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
-if( s < (-MAXLOGL+2.0L) )
-	{
-	x = 1.0L/x;
-	sign = -sign;
+		y = 1.0L;
+		asign = 0;
 	}
 
-/* First bit of the power */
-if( n & 1 )
-	y = x;
-		
-else
-	{
-	y = 1.0L;
-	asign = 0;
-	}
-
-w = x;
-n >>= 1;
-while( n )
-	{
-	w = w * w;	/* arg to the 2-to-the-kth power */
-	if( n & 1 )	/* if that bit is set, then include in product */
-		y *= w;
+	w = x;
 	n >>= 1;
+	while (n)
+	{
+		w = w * w;	/* arg to the 2-to-the-kth power */
+		if (n & 1)	/* if that bit is set, then include in product */
+			y *= w;
+		n >>= 1;
 	}
 
-
 done:
 
-if( asign )
-	y = -y; /* odd power of negative number */
-if( sign < 0 )
-	y = 1.0L/y;
-return(y);
+	if (asign)
+		y = -y; /* odd power of negative number */
+	if (sign < 0)
+		y = 1.0L/y;
+	return (y);
 }
+
diff --git a/mingw-w64-crt/math/powl.c b/mingw-w64-crt/math/powl.c
index 6030465..09a5780 100644
--- a/mingw-w64-crt/math/powl.c
+++ b/mingw-w64-crt/math/powl.c
@@ -314,9 +314,9 @@
 static VOLATILE long double z;
 static long double w, W, Wa, Wb, ya, yb, u;
 
-static __inline__ long double reducl( long double );
-extern long double __powil ( long double, int );
-extern long double powl ( long double x, long double y);
+static __inline__ long double reducl(long double);
+extern long double __powil(long double, int);
+extern long double powl(long double, long double);
 
 /* No error checking. We handle Infs and zeros ourselves.  */
 static __inline__ long double
@@ -331,358 +331,355 @@
 
 #define ldexpl  __fast_ldexpl
 
-long double powl( x, y )
-long double x, y;
+long double powl(long double x, long doubley)
 {
-/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
-int i, nflg, iyflg, yoddint;
-long e;
+/*	double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
+	int i, nflg, iyflg, yoddint;
+	long e;
 
-if( y == 0.0L )
-	return( 1.0L );
+	if (y == 0.0L)
+		return (1.0L);
 
 #ifdef NANS
-if( isnanl(x) )
+	if (isnanl(x))
 	{
-	_SET_ERRNO (EDOM);
-	return( x );
+		_SET_ERRNO (EDOM);
+		return (x);
 	}
-if( isnanl(y) )
+	if (isnanl(y))
 	{
-	_SET_ERRNO (EDOM);
-	return( y );
+		_SET_ERRNO (EDOM);
+		return (y);
 	}
 #endif
 
-if( y == 1.0L )
-	return( x );
+	if (y == 1.0L)
+		return (x);
 
-if( isinfl(y) && (x == -1.0L || x == 1.0L) )
-	return( y );
+	if (isinfl(y) && (x == -1.0L || x == 1.0L))
+		return (y);
 
-if( x == 1.0L )
-	return( 1.0L );
+	if (x == 1.0L)
+		return (1.0L);
 
-if( y >= MAXNUML )
+	if (y >= MAXNUML)
 	{
-	_SET_ERRNO (ERANGE);
+		_SET_ERRNO (ERANGE);
 #ifdef INFINITIES
-	if( x > 1.0L )
-		return( INFINITYL );
+		if (x > 1.0L)
+			return (INFINITYL);
 #else
-	if( x > 1.0L )
-		return( MAXNUML );
+		if (x > 1.0L)
+			return (MAXNUML);
 #endif
-	if( x > 0.0L && x < 1.0L )
-		return( 0.0L );
+		if (x > 0.0L && x < 1.0L)
+			return (0.0L);
 #ifdef INFINITIES
-	if( x < -1.0L )
-		return( INFINITYL );
+		if (x < -1.0L)
+			return (INFINITYL);
 #else
-	if( x < -1.0L )
-		return( MAXNUML );
+		if (x < -1.0L)
+			return (MAXNUML);
 #endif
-	if( x > -1.0L && x < 0.0L )
-		return( 0.0L );
+		if (x > -1.0L && x < 0.0L)
+			return (0.0L);
 	}
-if( y <= -MAXNUML )
+	if (y <= -MAXNUML)
 	{
-	_SET_ERRNO (ERANGE);
-	if( x > 1.0L )
-		return( 0.0L );
+		_SET_ERRNO (ERANGE);
+		if (x > 1.0L)
+			return (0.0L);
 #ifdef INFINITIES
-	if( x > 0.0L && x < 1.0L )
-		return( INFINITYL );
+		if (x > 0.0L && x < 1.0L)
+			return (INFINITYL);
 #else
-	if( x > 0.0L && x < 1.0L )
-		return( MAXNUML );
+		if (x > 0.0L && x < 1.0L)
+			return (MAXNUML);
 #endif
-	if( x < -1.0L )
-		return( 0.0L );
+		if (x < -1.0L)
+			return (0.0L);
 #ifdef INFINITIES
-	if( x > -1.0L && x < 0.0L )
-		return( INFINITYL );
+		if (x > -1.0L && x < 0.0L)
+			return (INFINITYL);
 #else
-	if( x > -1.0L && x < 0.0L )
-		return( MAXNUML );
+		if (x > -1.0L && x < 0.0L)
+			return (MAXNUML);
 #endif
 	}
-if( x >= MAXNUML )
+	if (x >= MAXNUML)
 	{
 #if INFINITIES
-	if( y > 0.0L )
-		return( INFINITYL );
+		if (y > 0.0L)
+			return (INFINITYL);
 #else
-	if( y > 0.0L )
-		return( MAXNUML );
+		if (y > 0.0L)
+			return (MAXNUML);
 #endif
-	return( 0.0L );
+		return (0.0L);
 	}
 
-w = floorl(y);
-/* Set iyflg to 1 if y is an integer.  */
-iyflg = 0;
-if( w == y )
-	iyflg = 1;
+	w = floorl(y);
+	/* Set iyflg to 1 if y is an integer.  */
+	iyflg = 0;
+	if (w == y)
+		iyflg = 1;
 
-/* Test for odd integer y.  */
-yoddint = 0;
-if( iyflg )
+	/* Test for odd integer y.  */
+	yoddint = 0;
+	if (iyflg)
 	{
-	ya = fabsl(y);
-	ya = floorl(0.5L * ya);
-	yb = 0.5L * fabsl(w);
-	if( ya != yb )
-		yoddint = 1;
+		ya = fabsl(y);
+		ya = floorl(0.5L * ya);
+		yb = 0.5L * fabsl(w);
+		if (ya != yb)
+			yoddint = 1;
 	}
 
-if( x <= -MAXNUML )
+	if (x <= -MAXNUML)
 	{
-	if( y > 0.0L )
+		if (y > 0.0L)
 		{
 #ifdef INFINITIES
-		if( yoddint )
-			return( -INFINITYL );
-		return( INFINITYL );
+			if (yoddint)
+				return (-INFINITYL);
+			return (INFINITYL);
 #else
-		if( yoddint )
-			return( -MAXNUML );
-		return( MAXNUML );
+			if (yoddint)
+				return (-MAXNUML);
+			return (MAXNUML);
 #endif
 		}
-	if( y < 0.0L )
+		if (y < 0.0L)
 		{
 #ifdef MINUSZERO
-		if( yoddint )
-			return( NEGZEROL );
+			if (yoddint)
+				return (NEGZEROL);
 #endif
-		return( 0.0 );
+			return (0.0);
 		}
- 	}
+	}
 
 
-nflg = 0;	/* flag = 1 if x<0 raised to integer power */
-if( x <= 0.0L )
+	nflg = 0;	/* flag = 1 if x<0 raised to integer power */
+	if (x <= 0.0L)
 	{
-	if( x == 0.0L )
+		if (x == 0.0L)
 		{
-		if( y < 0.0 )
+			if (y < 0.0)
 			{
 #ifdef MINUSZERO
-			if( signbitl(x) && yoddint )
-				return( -INFINITYL );
+				if (signbitl(x) && yoddint)
+					return (-INFINITYL);
 #endif
 #ifdef INFINITIES
-			return( INFINITYL );
+				return (INFINITYL);
 #else
-			return( MAXNUML );
+				return (MAXNUML);
 #endif
 			}
-		if( y > 0.0 )
+			if (y > 0.0)
 			{
 #ifdef MINUSZERO
-			if( signbitl(x) && yoddint )
-				return( NEGZEROL );
+				if (signbitl(x) && yoddint)
+					return (NEGZEROL);
 #endif
-			return( 0.0 );
+				return (0.0);
 			}
-		if( y == 0.0L )
-			return( 1.0L );  /*   0**0   */
-		else  
-			return( 0.0L );  /*   0**y   */
+			if (y == 0.0L)
+				return (1.0L);  /*   0**0   */
+			else
+				return (0.0L);  /*   0**y   */
 		}
-	else
+		else
 		{
-		if( iyflg == 0 )
+			if (iyflg == 0)
 			{ /* noninteger power of negative number */
-			mtherr( fname, DOMAIN );
-			_SET_ERRNO (EDOM);
+				mtherr(fname, DOMAIN);
+				_SET_ERRNO (EDOM);
 #ifdef NANS
-			return(NANL);
+				return (NANL);
 #else
-			return(0.0L);
+				return (0.0L);
 #endif
 			}
-		nflg = 1;
+			nflg = 1;
 		}
 	}
 
 /* Integer power of an integer.  */
 
-if( iyflg )
+	if (iyflg)
 	{
-	i = w;
-	w = floorl(x);
-	if( (w == x) && (fabsl(y) < 32768.0) )
+		i = w;
+		w = floorl(x);
+		if ((w == x) && (fabsl(y) < 32768.0))
 		{
-		w = __powil( x, (int) y );
-		return( w );
+			w = __powil(x, (int) y);
+			return (w);
 		}
 	}
 
+	if (nflg)
+		x = fabsl(x);
 
-if( nflg )
-	x = fabsl(x);
+	/* separate significand from exponent */
+	x = frexpl( x, &i );
+	e = i;
 
-/* separate significand from exponent */
-x = frexpl( x, &i );
-e = i;
-
-/* find significand in antilog table A[] */
-i = 1;
-if( x <= douba(17) )
-	i = 17;
-if( x <= douba(i+8) )
-	i += 8;
-if( x <= douba(i+4) )
-	i += 4;
-if( x <= douba(i+2) )
-	i += 2;
-if( x >= douba(1) )
-	i = -1;
-i += 1;
-
-
-/* Find (x - A[i])/A[i]
- * in order to compute log(x/A[i]):
- *
- * log(x) = log( a x/a ) = log(a) + log(x/a)
- *
- * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
- */
-x -= douba(i);
-x -= doubb(i/2);
-x /= douba(i);
-
-
-/* rational approximation for log(1+v):
- *
- * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
- */
-z = x*x;
-w = x * ( z * polevll( x, P, 3 ) / p1evll( x, Q, 3 ) );
-w = w - ldexpl( z, -1 );   /*  w - 0.5 * z  */
-
-/* Convert to base 2 logarithm:
- * multiply by log2(e) = 1 + LOG2EA
- */
-z = LOG2EA * w;
-z += w;
-z += LOG2EA * x;
-z += x;
-
-/* Compute exponent term of the base 2 logarithm. */
-w = -i;
-w = ldexpl( w, -LNXT );	/* divide by NXT */
-w += e;
-/* Now base 2 log of x is w + z. */
-
-/* Multiply base 2 log by y, in extended precision. */
-
-/* separate y into large part ya
- * and small part yb less than 1/NXT
- */
-ya = reducl(y);
-yb = y - ya;
-
-/* (w+z)(ya+yb)
- * = w*ya + w*yb + z*y
- */
-F = z * y  +  w * yb;
-Fa = reducl(F);
-Fb = F - Fa;
-
-G = Fa + w * ya;
-Ga = reducl(G);
-Gb = G - Ga;
-
-H = Fb + Gb;
-Ha = reducl(H);
-w = ldexpl( Ga + Ha, LNXT );
-
-/* Test the power of 2 for overflow */
-if( w > MEXP )
-	{
-	_SET_ERRNO (ERANGE);
-	mtherr( fname, OVERFLOW );
-	return( MAXNUML );
-	}
-
-if( w < MNEXP )
-	{
-	_SET_ERRNO (ERANGE);
-	mtherr( fname, UNDERFLOW );
-	return( 0.0L );
-	}
-
-e = w;
-Hb = H - Ha;
-
-if( Hb > 0.0L )
-	{
-	e += 1;
-	Hb -= (1.0L/NXT);  /*0.0625L;*/
-	}
-
-/* Now the product y * log2(x)  =  Hb + e/NXT.
- *
- * Compute base 2 exponential of Hb,
- * where -0.0625 <= Hb <= 0.
- */
-z = Hb * polevll( Hb, R, 6 );  /*    z  =  2**Hb - 1    */
-
-/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
- * Find lookup table entry for the fractional power of 2.
- */
-if( e < 0 )
-	i = 0;
-else
+	/* find significand in antilog table A[] */
 	i = 1;
-i = e/NXT + i;
-e = NXT*i - e;
-w = douba( e );
-z = w * z;      /*    2**-e * ( 1 + (2**Hb-1) )    */
-z = z + w;
-z = ldexpl( z, i );  /* multiply by integer power of 2 */
+	if (x <= douba(17))
+		i = 17;
+	if (x <= douba(i + 8))
+		i += 8;
+	if (x <= douba(i + 4))
+		i += 4;
+	if (x <= douba(i + 2))
+		i += 2;
+	if (x >= douba(1))
+		i = -1;
+	i += 1;
 
-if( nflg )
+	/* Find (x - A[i])/A[i]
+	 * in order to compute log(x/A[i]):
+	 *
+	 * log(x) = log( a x/a ) = log(a) + log(x/a)
+	 *
+	 * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
+	 */
+	x -= douba(i);
+	x -= doubb(i/2);
+	x /= douba(i);
+
+
+	/* rational approximation for log(1+v):
+	 *
+	 * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
+	 */
+	z = x*x;
+	w = x * ( z * polevll(x, P, 3) / p1evll(x, Q, 3) );
+	w = w - ldexpl(z, -1);   /*  w - 0.5 * z  */
+
+	/* Convert to base 2 logarithm:
+	 * multiply by log2(e) = 1 + LOG2EA
+	 */
+	z = LOG2EA * w;
+	z += w;
+	z += LOG2EA * x;
+	z += x;
+
+	/* Compute exponent term of the base 2 logarithm. */
+	w = -i;
+	w = ldexpl(w, -LNXT);	/* divide by NXT */
+	w += e;
+	/* Now base 2 log of x is w + z. */
+
+	/* Multiply base 2 log by y, in extended precision. */
+
+	/* separate y into large part ya
+	 * and small part yb less than 1/NXT
+	 */
+	ya = reducl(y);
+	yb = y - ya;
+
+	/* (w+z)(ya+yb)
+	 * = w*ya + w*yb + z*y
+	 */
+	F = z * y  +  w * yb;
+	Fa = reducl(F);
+	Fb = F - Fa;
+
+	G = Fa + w * ya;
+	Ga = reducl(G);
+	Gb = G - Ga;
+
+	H = Fb + Gb;
+	Ha = reducl(H);
+	w = ldexpl(Ga + Ha, LNXT);
+
+	/* Test the power of 2 for overflow */
+	if (w > MEXP)
 	{
-/* For negative x,
- * find out if the integer exponent
- * is odd or even.
- */
-	w = ldexpl( y, -1 );
-	w = floorl(w);
-	w = ldexpl( w, 1 );
-	if( w != y )
-		z = -z; /* odd exponent */
+		_SET_ERRNO (ERANGE);
+		mtherr(fname, OVERFLOW);
+		return (MAXNUML);
 	}
 
-return( z );
+	if (w < MNEXP)
+	{
+		_SET_ERRNO (ERANGE);
+		mtherr(fname, UNDERFLOW);
+		return (0.0L);
+	}
+
+	e = w;
+	Hb = H - Ha;
+
+	if (Hb > 0.0L)
+	{
+		e += 1;
+		Hb -= (1.0L/NXT);  /*0.0625L;*/
+	}
+
+	/* Now the product y * log2(x)  =  Hb + e/NXT.
+	 *
+	 * Compute base 2 exponential of Hb,
+	 * where -0.0625 <= Hb <= 0.
+	 */
+	z = Hb * polevll(Hb, R, 6);  /*    z  =  2**Hb - 1    */
+
+	/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
+	 * Find lookup table entry for the fractional power of 2.
+	 */
+	if (e < 0)
+		i = 0;
+	else
+		i = 1;
+	i = e/NXT + i;
+	e = NXT*i - e;
+	w = douba(e);
+	z = w * z;      /*    2**-e * ( 1 + (2**Hb-1) )    */
+	z = z + w;
+	z = ldexpl(z, i);  /* multiply by integer power of 2 */
+
+	if (nflg)
+	{
+	/* For negative x,
+	 * find out if the integer exponent
+	 * is odd or even.
+	 */
+		w = ldexpl(y, -1);
+		w = floorl(w);
+		w = ldexpl(w, 1);
+		if (w != y)
+			z = -z; /* odd exponent */
+	}
+
+	return (z);
 }
 
-static __inline__ long double 
+static __inline__ long double
 __convert_inf_to_maxnum(long double x)
 {
-  if (isinf(x))
-    return (x > 0.0L ? MAXNUML : -MAXNUML);
-  else
-    return x;
+	if (isinf(x))
+		return (x > 0.0L ? MAXNUML : -MAXNUML);
+	else
+		return x;
 }
 
-
 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
 static long double reducl(long double x)
 {
-long double t;
+	long double t;
 
-/* If the call to ldexpl overflows, set it to MAXNUML.
-   This avoids Inf - Inf = Nan result when calculating the 'small'
-   part of a reduction.  Instead, the small part becomes Inf,
-   causing under/overflow when adding it to the 'large' part.
-   There must be a cleaner way of doing this. */
-t =  __convert_inf_to_maxnum (ldexpl( x, LNXT ));
-t = floorl( t );
-t = ldexpl( t, -LNXT );
-return(t);
+	/* If the call to ldexpl overflows, set it to MAXNUML.
+	   This avoids Inf - Inf = Nan result when calculating the 'small'
+	   part of a reduction.  Instead, the small part becomes Inf,
+	   causing under/overflow when adding it to the 'large' part.
+	   There must be a cleaner way of doing this. */
+	t =  __convert_inf_to_maxnum (ldexpl( x, LNXT ));
+	t = floorl(t);
+	t = ldexpl(t, -LNXT);
+	return (t);
 }
+
diff --git a/mingw-w64-crt/math/rint.c b/mingw-w64-crt/math/rint.c
index 6134e2c..c797506 100644
--- a/mingw-w64-crt/math/rint.c
+++ b/mingw-w64-crt/math/rint.c
@@ -4,7 +4,7 @@
  * No warranty is given; refer to the file DISCLAIMER within this package.
  */
 #include <math.h>
-double rint (double x){
+double rint (double x) {
   double retval = 0.0;
   __asm__ ("frndint;" : "=t" (retval) : "0" (x));
   return retval;
diff --git a/mingw-w64-crt/math/rintf.c b/mingw-w64-crt/math/rintf.c
index 74da29f..9db9d33 100644
--- a/mingw-w64-crt/math/rintf.c
+++ b/mingw-w64-crt/math/rintf.c
@@ -5,7 +5,7 @@
  */
 #include <math.h>
 
-float rintf (float x){
+float rintf (float x) {
   float retval = 0.0F;
   __asm__ ("frndint;": "=t" (retval) : "0" (x));
   return retval;
diff --git a/mingw-w64-crt/math/rintl.c b/mingw-w64-crt/math/rintl.c
index 2a3aa52..05dd5cc 100644
--- a/mingw-w64-crt/math/rintl.c
+++ b/mingw-w64-crt/math/rintl.c
@@ -5,7 +5,7 @@
  */
 #include <math.h>
 
-long double rintl (long double x){
+long double rintl (long double x) {
   long double retval = 0.0L;
   __asm__ ("frndint;": "=t" (retval) : "0" (x));
   return retval;
diff --git a/mingw-w64-crt/math/roundl.c b/mingw-w64-crt/math/roundl.c
index aaf3273..df7b843 100644
--- a/mingw-w64-crt/math/roundl.c
+++ b/mingw-w64-crt/math/roundl.c
@@ -20,7 +20,7 @@
       res = ceill (-x);
       if (res + x > 0.5L)
 	res -= 1.0L;
-      res = -res;;
+      res = -res;
     }
   return res;
 }
diff --git a/mingw-w64-crt/math/s_erf.c b/mingw-w64-crt/math/s_erf.c
index e19da83..384f898 100644
--- a/mingw-w64-crt/math/s_erf.c
+++ b/mingw-w64-crt/math/s_erf.c
@@ -37,7 +37,6 @@
  *	   Q is an odd poly of degree 10.
  *						 -57.90
  *			| R - (erf(x)-x)/x | <= 2
- *	
  *
  *	   Remark. The formula is derived by noting
  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
@@ -46,14 +45,14 @@
  *	   is close to one. The interval is chosen because the fix
  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
- * 	   guarantee the error is less than one ulp for erf.
+ *	   guarantee the error is less than one ulp for erf.
  *
- *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ *	2. For |x| in [0.84375,1.25], let s = |x| - 1, and
  *         c = 0.84506291151 rounded to single (24 bits)
- *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
- *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
+ *		erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
+ *		erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
  *			  1+(c+P1(s)/Q1(s))    if x < 0
- *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ *		|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
  *	   Remark: here we use the taylor series expansion at x=1.
  *		erf(1+s) = erf(1) + s*Poly(s)
  *			 = 0.845.. + P1(s)/Q1(s)
@@ -64,49 +63,49 @@
  *		P1(s) = degree 6 poly in s
  *		Q1(s) = degree 6 poly in s
  *
- *      3. For x in [1.25,1/0.35(~2.857143)], 
- *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
- *         	erf(x)  = 1 - erfc(x)
+ *	3. For x in [1.25,1/0.35(~2.857143)], 
+ *		erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ *		erf(x)  = 1 - erfc(x)
  *	   where 
  *		R1(z) = degree 7 poly in z, (z=1/x^2)
  *		S1(z) = degree 8 poly in z
  *
- *      4. For x in [1/0.35,28]
- *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ *	4. For x in [1/0.35,28]
+ *		erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
  *			= 2.0 - tiny		(if x <= -6)
- *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
- *         	erf(x)  = sign(x)*(1.0 - tiny)
+ *		erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ *		erf(x)  = sign(x)*(1.0 - tiny)
  *	   where
  *		R2(z) = degree 6 poly in z, (z=1/x^2)
  *		S2(z) = degree 7 poly in z
  *
- *      Note1:
+ *	Note1:
  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
  *	   precision number and s := x; then
  *		-x*x = -s*s + (s-x)*(s+x)
- *	        exp(-x*x-0.5626+R/S) = 
+ *		exp(-x*x-0.5626+R/S) = 
  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
- *      Note2:
+ *	Note2:
  *	   Here 4 and 5 make use of the asymptotic series
  *			  exp(-x*x)
  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
  *			  x*sqrt(pi)
  *	   We use rational approximation to approximate
- *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ *		g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
  *	   Here is the error bound for R1/S1 and R2/S2
- *      	|R1/S1 - f(x)|  < 2**(-62.57)
- *      	|R2/S2 - f(x)|  < 2**(-61.52)
+ *		|R1/S1 - f(x)|  < 2**(-62.57)
+ *		|R2/S2 - f(x)|  < 2**(-61.52)
  *
- *      5. For inf > x >= 28
- *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
- *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
+ *	5. For inf > x >= 28
+ *		erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
+ *		erfc(x) = tiny*tiny (raise underflow) if x > 0
  *			= 2 - tiny if x<0
  *
- *      7. Special case:
- *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
- *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 
- *	   	erfc/erf(NaN) is NaN
+ *	7. Special case:
+ *		erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
+ *		erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 
+ *		erfc/erf(NaN) is NaN
  */
 
 
@@ -118,10 +117,10 @@
 
 #define __ieee754_exp exp
 
-typedef union 
+typedef union
 {
   double value;
-  struct 
+  struct
   {
     uint32_t lsw;
     uint32_t msw;
@@ -145,103 +144,95 @@
 }
 
 
-#ifdef __STDC__
 static const double
-#else
-static double
-#endif
-tiny	    = 1e-300,
-half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
-	/* c = (float)0.84506291151 */
-erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
-efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
-pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
-pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
-pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
-pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
-pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
-qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
-qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
-qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
-qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
-qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25] 
- */
-pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
-pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
-pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
-pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
-pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
-pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
-pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
-qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
-qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
-qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
-qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
-qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
-qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
-ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
-ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
-ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
-ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
-ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
-ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
-ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
-sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
-sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
-sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
-sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
-sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
-sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
-sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
-sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
-/*
- * Coefficients for approximation to  erfc in [1/.35,28]
- */
-rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
-rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
-rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
-rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
-rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
-rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
-rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
-sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
-sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
-sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
-sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
-sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
-sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
-sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+  tiny=  1e-300,
+  half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+  one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+  two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+  /* c = (float)0.84506291151 */
+  erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+  /*
+   * Coefficients for approximation to  erf on [0,0.84375]
+   */
+  efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
+  efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+  pp0 =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+  pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+  pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+  pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+  pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
+  qq1 =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+  qq2 =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+  qq3 =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+  qq4 =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+  qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
+  /*
+   * Coefficients for approximation to  erf  in [0.84375,1.25] 
+   */
+  pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+  pa1 =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+  pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+  pa3 =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+  pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+  pa5 =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+  pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
+  qa1 =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+  qa2 =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+  qa3 =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+  qa4 =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+  qa5 =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+  qa6 =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
+  /*
+   * Coefficients for approximation to  erfc in [1.25,1/0.35]
+   */
+  ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+  ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+  ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+  ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+  ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+  ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+  ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+  ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
+  sa1 =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+  sa2 =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+  sa3 =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+  sa4 =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+  sa5 =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+  sa6 =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+  sa7 =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+  sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
+  /*
+   * Coefficients for approximation to  erfc in [1/.35,28]
+   */
+  rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+  rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+  rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+  rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+  rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+  rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+  rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
+  sb1 =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+  sb2 =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+  sb3 =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+  sb4 =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+  sb5 =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+  sb6 =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+  sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
 
-#ifdef __STDC__
-	double erf(double x) 
-#else
-	double erf(x) 
-	double x;
-#endif
+
+double erf(double x)
 {
-	int hx,ix,i;
-	double R,S,P,Q,s,y,z,r;
+	int hx, ix, i;
+	double R, S, P, Q, s, y, z, r;
 	hx = __get_hi_word(x);
-	ix = hx&0x7fffffff;
-	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
+	ix = hx & 0x7fffffff;
+	if (ix >= 0x7ff00000) {		/* erf(nan)=nan */
 	    i = ((unsigned)hx>>31)<<1;
 	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
 	}
 
-	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
-	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
+	if (ix < 0x3feb0000) {		/* |x|<0.84375 */
+	    if (ix < 0x3e300000) {	/* |x|<2**-28 */
 	        if (ix < 0x00800000) 
 		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
 		return x + efx*x;
@@ -252,58 +243,62 @@
 	    y = r/s;
 	    return x + x*y;
 	}
-	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
+	if (ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
 	    s = fabs(x)-one;
 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+	    if (hx >= 0)
+	      return erx + P/Q;
+	    else
+	      return -erx - P/Q;
 	}
 	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
-	    if(hx>=0) return one-tiny; else return tiny-one;
+	    if (hx >= 0)
+	      return one-tiny;
+	    else
+	      return tiny-one;
 	}
 	x = fabs(x);
  	s = one/(x*x);
-	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
-	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+	if (ix < 0x4006DB6E) {	/* |x| < 1/0.35 */
+	    R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
 				ra5+s*(ra6+s*ra7))))));
-	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+	    S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
 	} else {	/* |x| >= 1/0.35 */
-	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+	    R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
 				rb5+s*rb6)))));
-	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+	    S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
 				sb5+s*(sb6+s*sb7))))));
 	}
-	z  = x;  
+	z = x;
 	__trunc_lo_word(&z);
-	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
-	if(hx>=0) return one-r/x; else return  r/x-one;
+	r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
+	if (hx >= 0)
+	  return one-r/x;
+	else
+	  return  r/x-one;
 }
 
-#ifdef __STDC__
-	double erfc(double x) 
-#else
-	double erfc(x) 
-	double x;
-#endif
+double erfc(double x)
 {
 	int hx,ix;
 	double R,S,P,Q,s,y,z,r;
 	hx = __get_hi_word(x);
 	ix = hx&0x7fffffff;
-	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
+	if (ix >= 0x7ff00000) {			/* erfc(nan)=nan */
 						/* erfc(+-inf)=0,2 */
 	    return (double)(((unsigned)hx>>31)<<1)+one/x;
 	}
 
-	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
-	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
+	if (ix < 0x3feb0000) {		/* |x|<0.84375 */
+	    if (ix < 0x3c700000)	/* |x|<2**-56 */
 		return one-x;
 	    z = x*x;
 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
 	    y = r/s;
-	    if(hx < 0x3fd00000) {  	/* x<1/4 */
+	    if (hx < 0x3fd00000) {	/* x<1/4 */
 		return one-(x+x*y);
 	    } else {
 		r = x*y;
@@ -311,11 +306,11 @@
 	        return half - r ;
 	    }
 	}
-	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
+	if (ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
 	    s = fabs(x)-one;
 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	    if(hx>=0) {
+	    if (hx >= 0) {
 	        z  = one-erx; return z - P/Q; 
 	    } else {
 		z = erx+P/Q; return one+z;
@@ -324,26 +319,34 @@
 	if (ix < 0x403c0000) {		/* |x|<28 */
 	    x = fabs(x);
  	    s = one/(x*x);
-	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
-	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+	    if (ix < 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
+		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
 				ra5+s*(ra6+s*ra7))))));
-	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+		S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
-		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
-	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+		if (hx < 0 && ix >= 0x40180000)
+		  return two-tiny; /* x < -6 */
+		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
 				rb5+s*rb6)))));
-	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+		S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
 				sb5+s*(sb6+s*sb7))))));
 	    }
-	    z  = x;
+	    z = x;
 	    __trunc_lo_word(&z);
-	    r  =  __ieee754_exp(-z*z-0.5625)*
+	    r = __ieee754_exp(-z*z-0.5625)*
 			__ieee754_exp((z-x)*(z+x)+R/S);
-	    if(hx>0) return r/x; else return two-r/x;
+	    if (hx > 0)
+	      return r/x;
+	    else
+	      return two-r/x;
 	} else {
 	    /* set range error */
             errno = ERANGE;
-	    if(hx>0) return tiny*tiny; else return two-tiny;
+	    if (hx > 0)
+	      return tiny*tiny;
+	    else
+	      return two-tiny;
 	}
 }
+
diff --git a/mingw-w64-crt/math/sf_erf.c b/mingw-w64-crt/math/sf_erf.c
index 5b3ff40..f0e8f03 100644
--- a/mingw-w64-crt/math/sf_erf.c
+++ b/mingw-w64-crt/math/sf_erf.c
@@ -27,8 +27,6 @@
 
 #define __ieee754_expf expf
 
-
-
 typedef union
 {
   float value;
@@ -47,17 +45,17 @@
 
 /* Set a float from a 32 bit int.  */
 
-#define SET_FLOAT_WORD(d,i)					\
-do {								\
-  ieee_float_shape_type sf_u;					\
-  sf_u.word = (i);						\
-  (d) = sf_u.value;						\
+#define SET_FLOAT_WORD(d,i)			\
+do {						\
+  ieee_float_shape_type sf_u;			\
+  sf_u.word = (i);				\
+  (d) = sf_u.value;				\
 } while (0)
 
 static inline void __trunc_float_word(float * x)
 {
   ieee_float_shape_type u;
-  u.value = * x;	  
+  u.value = * x;
   u.word &= 0xfffff000;
 }
 
@@ -65,104 +63,95 @@
 #define const
 #endif
 
-#ifdef __STDC__
 static const float
-#else
-static float
-#endif
-tiny	    = 1e-30,
-half=  5.0000000000e-01, /* 0x3F000000 */
-one =  1.0000000000e+00, /* 0x3F800000 */
-two =  2.0000000000e+00, /* 0x40000000 */
+  tiny= 1e-30,
+  half=  5.0000000000e-01, /* 0x3F000000 */
+  one =  1.0000000000e+00, /* 0x3F800000 */
+  two =  2.0000000000e+00, /* 0x40000000 */
 	/* c = (subfloat)0.84506291151 */
-erx =  8.4506291151e-01, /* 0x3f58560b */
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-efx =  1.2837916613e-01, /* 0x3e0375d4 */
-efx8=  1.0270333290e+00, /* 0x3f8375d4 */
-pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
-pp1  = -3.2504209876e-01, /* 0xbea66beb */
-pp2  = -2.8481749818e-02, /* 0xbce9528f */
-pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
-pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
-qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
-qq2  =  6.5022252500e-02, /* 0x3d852a63 */
-qq3  =  5.0813062117e-03, /* 0x3ba68116 */
-qq4  =  1.3249473704e-04, /* 0x390aee49 */
-qq5  = -3.9602282413e-06, /* 0xb684e21a */
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25] 
- */
-pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
-pa1  =  4.1485610604e-01, /* 0x3ed46805 */
-pa2  = -3.7220788002e-01, /* 0xbebe9208 */
-pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
-pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
-pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
-pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
-qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
-qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
-qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
-qa4  =  1.2617121637e-01, /* 0x3e013307 */
-qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
-qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-ra0  = -9.8649440333e-03, /* 0xbc21a093 */
-ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
-ra2  = -1.0558626175e+01, /* 0xc128f022 */
-ra3  = -6.2375331879e+01, /* 0xc2798057 */
-ra4  = -1.6239666748e+02, /* 0xc322658c */
-ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
-ra6  = -8.1287437439e+01, /* 0xc2a2932b */
-ra7  = -9.8143291473e+00, /* 0xc11d077e */
-sa1  =  1.9651271820e+01, /* 0x419d35ce */
-sa2  =  1.3765776062e+02, /* 0x4309a863 */
-sa3  =  4.3456588745e+02, /* 0x43d9486f */
-sa4  =  6.4538726807e+02, /* 0x442158c9 */
-sa5  =  4.2900814819e+02, /* 0x43d6810b */
-sa6  =  1.0863500214e+02, /* 0x42d9451f */
-sa7  =  6.5702495575e+00, /* 0x40d23f7c */
-sa8  = -6.0424413532e-02, /* 0xbd777f97 */
-/*
- * Coefficients for approximation to  erfc in [1/.35,28]
- */
-rb0  = -9.8649431020e-03, /* 0xbc21a092 */
-rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
-rb2  = -1.7757955551e+01, /* 0xc18e104b */
-rb3  = -1.6063638306e+02, /* 0xc320a2ea */
-rb4  = -6.3756646729e+02, /* 0xc41f6441 */
-rb5  = -1.0250950928e+03, /* 0xc480230b */
-rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
-sb1  =  3.0338060379e+01, /* 0x41f2b459 */
-sb2  =  3.2579251099e+02, /* 0x43a2e571 */
-sb3  =  1.5367296143e+03, /* 0x44c01759 */
-sb4  =  3.1998581543e+03, /* 0x4547fdbb */
-sb5  =  2.5530502930e+03, /* 0x451f90ce */
-sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
-sb7  = -2.2440952301e+01; /* 0xc1b38712 */
+  erx =  8.4506291151e-01, /* 0x3f58560b */
+  /*
+   * Coefficients for approximation to  erf on [0,0.84375]
+   */
+  efx =  1.2837916613e-01, /* 0x3e0375d4 */
+  efx8=  1.0270333290e+00, /* 0x3f8375d4 */
+  pp0 =  1.2837916613e-01, /* 0x3e0375d4 */
+  pp1 = -3.2504209876e-01, /* 0xbea66beb */
+  pp2 = -2.8481749818e-02, /* 0xbce9528f */
+  pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
+  pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
+  qq1 =  3.9791721106e-01, /* 0x3ecbbbce */
+  qq2 =  6.5022252500e-02, /* 0x3d852a63 */
+  qq3 =  5.0813062117e-03, /* 0x3ba68116 */
+  qq4 =  1.3249473704e-04, /* 0x390aee49 */
+  qq5 = -3.9602282413e-06, /* 0xb684e21a */
+  /*
+   * Coefficients for approximation to  erf  in [0.84375,1.25] 
+   */
+  pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
+  pa1 =  4.1485610604e-01, /* 0x3ed46805 */
+  pa2 = -3.7220788002e-01, /* 0xbebe9208 */
+  pa3 =  3.1834661961e-01, /* 0x3ea2fe54 */
+  pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
+  pa5 =  3.5478305072e-02, /* 0x3d1151b3 */
+  pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
+  qa1 =  1.0642088205e-01, /* 0x3dd9f331 */
+  qa2 =  5.4039794207e-01, /* 0x3f0a5785 */
+  qa3 =  7.1828655899e-02, /* 0x3d931ae7 */
+  qa4 =  1.2617121637e-01, /* 0x3e013307 */
+  qa5 =  1.3637083583e-02, /* 0x3c5f6e13 */
+  qa6 =  1.1984500103e-02, /* 0x3c445aa3 */
+  /*
+   * Coefficients for approximation to  erfc in [1.25,1/0.35]
+   */
+  ra0 = -9.8649440333e-03, /* 0xbc21a093 */
+  ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
+  ra2 = -1.0558626175e+01, /* 0xc128f022 */
+  ra3 = -6.2375331879e+01, /* 0xc2798057 */
+  ra4 = -1.6239666748e+02, /* 0xc322658c */
+  ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
+  ra6 = -8.1287437439e+01, /* 0xc2a2932b */
+  ra7 = -9.8143291473e+00, /* 0xc11d077e */
+  sa1 =  1.9651271820e+01, /* 0x419d35ce */
+  sa2 =  1.3765776062e+02, /* 0x4309a863 */
+  sa3 =  4.3456588745e+02, /* 0x43d9486f */
+  sa4 =  6.4538726807e+02, /* 0x442158c9 */
+  sa5 =  4.2900814819e+02, /* 0x43d6810b */
+  sa6 =  1.0863500214e+02, /* 0x42d9451f */
+  sa7 =  6.5702495575e+00, /* 0x40d23f7c */
+  sa8 = -6.0424413532e-02, /* 0xbd777f97 */
+  /*
+   * Coefficients for approximation to  erfc in [1/.35,28]
+   */
+  rb0 = -9.8649431020e-03, /* 0xbc21a092 */
+  rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
+  rb2 = -1.7757955551e+01, /* 0xc18e104b */
+  rb3 = -1.6063638306e+02, /* 0xc320a2ea */
+  rb4 = -6.3756646729e+02, /* 0xc41f6441 */
+  rb5 = -1.0250950928e+03, /* 0xc480230b */
+  rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
+  sb1 =  3.0338060379e+01, /* 0x41f2b459 */
+  sb2 =  3.2579251099e+02, /* 0x43a2e571 */
+  sb3 =  1.5367296143e+03, /* 0x44c01759 */
+  sb4 =  3.1998581543e+03, /* 0x4547fdbb */
+  sb5 =  2.5530502930e+03, /* 0x451f90ce */
+  sb6 =  4.7452853394e+02, /* 0x43ed43a7 */
+  sb7 = -2.2440952301e+01; /* 0xc1b38712 */
 
-#ifdef __STDC__
-	float erff(float x) 
-#else
-	float erff(x) 
-	float x;
-#endif
+float erff(float x)
 {
-	int32_t hx,ix,i;
-	float R,S,P,Q,s,y,z,r;
+	int32_t hx, ix, i;
+	float R, S, P, Q, s, y, z, r;
 	hx = __get_float_word(x);
-	ix = hx&0x7fffffff;
-	if(!(ix<0x7f800000L)) {		/* erf(nan)=nan */
+	ix = hx & 0x7fffffff;
+	if (!(ix<0x7f800000L)) {	/* erf(nan)=nan */
 	    i = ((uint32_t)hx>>31)<<1;
 	    return (float)(1-i)+one/x;	/* erf(+-inf)=+-1 */
 	}
 
-	if(ix < 0x3f580000) {		/* |x|<0.84375 */
-	    if(ix < 0x31800000) { 	/* |x|<2**-28 */
-	        if (ix < 0x04000000) 
+	if (ix < 0x3f580000) {		/* |x|<0.84375 */
+	    if (ix < 0x31800000) {	/* |x|<2**-28 */
+		if (ix < 0x04000000)
 		    /*avoid underflow */
 		    return (float)0.125*((float)8.0*x+efx8*x);
 		return x + efx*x;
@@ -173,71 +162,75 @@
 	    y = r/s;
 	    return x + x*y;
 	}
-	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
+	if (ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
 	    s = fabsf(x)-one;
 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+	    if (hx >= 0)
+	      return erx + P/Q;
+	    else
+	      return -erx - P/Q;
 	}
 	if (ix >= 0x40c00000) {		/* inf>|x|>=6 */
-	    if(hx>=0) return one-tiny; else return tiny-one;
+	    if (hx >= 0)
+	      return one-tiny;
+	    else
+	      return tiny-one;
 	}
 	x = fabsf(x);
  	s = one/(x*x);
-	if(ix< 0x4036DB6E) {	/* |x| < 1/0.35 */
-	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+	if (ix< 0x4036DB6E) {	/* |x| < 1/0.35 */
+	    R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
 				ra5+s*(ra6+s*ra7))))));
-	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+	    S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
 	} else {	/* |x| >= 1/0.35 */
-	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+	    R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
 				rb5+s*rb6)))));
-	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+	    S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
 				sb5+s*(sb6+s*sb7))))));
 	}
 
 	z = x;
 	__trunc_float_word (&z);
-	r  =  __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
-	if(hx>=0) return one-r/x; else return  r/x-one;
+	r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
+	if (hx >= 0)
+	  return one-r/x;
+	else
+	  return  r/x-one;
 }
 
-#ifdef __STDC__
-	float erfcf(float x) 
-#else
-	float erfcf(x) 
-	float x;
-#endif
+float erfcf(float x)
 {
-	int32_t hx,ix;
-	float R,S,P,Q,s,y,z,r;
+	int32_t hx, ix;
+	float R, S, P, Q, s, y, z, r;
 	hx = __get_float_word(x);
-	ix = hx&0x7fffffff;
-	if(!(ix<0x7f800000L)) {			/* erfc(nan)=nan */
+	ix = hx & 0x7fffffff;
+	if (!(ix < 0x7f800000L)) {		/* erfc(nan)=nan */
 						/* erfc(+-inf)=0,2 */
 	    return (float)(((uint32_t)hx>>31)<<1)+one/x;
 	}
 
-	if(ix < 0x3f580000) {		/* |x|<0.84375 */
-	    if(ix < 0x23800000)  	/* |x|<2**-56 */
+	if (ix < 0x3f580000) {		/* |x|<0.84375 */
+	    if (ix < 0x23800000)  	/* |x|<2**-56 */
 		return one-x;
 	    z = x*x;
 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
 	    y = r/s;
-	    if(hx < 0x3e800000) {  	/* x<1/4 */
+	    if (hx < 0x3e800000) {  	/* x<1/4 */
 		return one-(x+x*y);
 	    } else {
 		r = x*y;
 		r += (x-half);
-	        return half - r ;
+		return half - r ;
 	    }
 	}
-	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
+	if (ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
 	    s = fabsf(x)-one;
 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	    if(hx>=0) {
+	    if (hx >= 0) {
 	        z  = one-erx; return z - P/Q; 
 	    } else {
 		z = erx+P/Q; return one+z;
@@ -247,27 +240,34 @@
 	if (ix < 0x41e00000) {		/* |x|<28 */
 	    x = fabsf(x);
  	    s = one/(x*x);
-	    if(ix< 0x4036DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
-	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+	    if (ix< 0x4036DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
+	        R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
 				ra5+s*(ra6+s*ra7))))));
-	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+	        S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
-		if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
-	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+		if (hx < 0 && ix >= 0x40c00000)
+		  return two-tiny;/* x < -6 */
+		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
 				rb5+s*rb6)))));
-	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+		S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
 				sb5+s*(sb6+s*sb7))))));
 	    }
 
 	    z = x;
 	    __trunc_float_word (&z);
-	    r  =  __ieee754_expf(-z*z-(float)0.5625)*
+	    r = __ieee754_expf(-z*z-(float)0.5625)*
 			__ieee754_expf((z-x)*(z+x)+R/S);
-	    if(hx>0) return r/x; else return two-r/x;
+	    if (hx > 0)
+	      return r/x;
+	    else
+	      return two-r/x;
 	} else {
 	    /* set range error */
             errno = ERANGE;
-	    if(hx>0) return tiny*tiny; else return two-tiny;
+	    if (hx > 0)
+	      return tiny*tiny;
+	    else
+	      return two-tiny;
 	}
 }
diff --git a/mingw-w64-crt/math/sinhf.c b/mingw-w64-crt/math/sinhf.c
index 4fde4e6..81afd18 100644
--- a/mingw-w64-crt/math/sinhf.c
+++ b/mingw-w64-crt/math/sinhf.c
@@ -5,4 +5,6 @@
  */
 #include <math.h>
 float sinhf (float x)
-  {return (float) sinh (x);}
+{
+  return (float) sinh (x);
+}
diff --git a/mingw-w64-crt/math/sinhl.c b/mingw-w64-crt/math/sinhl.c
index 7d51fb2..a3da29c 100644
--- a/mingw-w64-crt/math/sinhl.c
+++ b/mingw-w64-crt/math/sinhl.c
@@ -62,8 +62,8 @@
   long double a;
 
 #ifdef MINUSZERO
-  if( x == 0.0 )
-    return(x);
+  if (x == 0.0)
+    return (x);
 #endif
 #ifdef NANS
   if (isnanl(x))
@@ -72,39 +72,40 @@
   }
 #endif
   a = fabsl(x);
-  if( (x > (MAXLOGL + LOGE2L)) || (x > -(MINLOGL-LOGE2L) ) )
+  if ((x > (MAXLOGL + LOGE2L)) || (x > -(MINLOGL-LOGE2L)))
   {
-    mtherr( "sinhl", DOMAIN );
+    mtherr("sinhl", DOMAIN);
     _SET_ERRNO(ERANGE);
 #ifdef INFINITIES
-    if( x > 0.0L )
-      return( INFINITYL );
+    if (x > 0.0L)
+      return (INFINITYL);
     else
-      return( -INFINITYL );
+      return (-INFINITYL);
 #else
-    if( x > 0.0L )
-      return( MAXNUML );
+    if (x > 0.0L)
+      return (MAXNUML);
     else
-      return( -MAXNUML );
+      return (-MAXNUML);
 #endif
   }
-  if( a > 1.0L )
+  if (a > 1.0L)
   {
-    if( a >= (MAXLOGL - LOGE2L) )
+    if (a >= (MAXLOGL - LOGE2L))
     {
       a = expl(0.5L*a);
       a = (0.5L * a) * a;
-      if( x < 0.0L )
+      if (x < 0.0L)
 	a = -a;
-      return(a);
+      return (a);
     }
     a = expl(a);
     a = 0.5L*a - (0.5L/a);
-    if( x < 0.0L )
+    if (x < 0.0L)
       a = -a;
-    return(a);
+    return (a);
   }
 
   a *= a;
-  return( x + x * a * (polevll(a,P,3)/polevll(a,Q,4)) );
+  return (x + x * a * (polevll(a,P,3)/polevll(a,Q,4)));
 }
+
diff --git a/mingw-w64-crt/math/tanhf.c b/mingw-w64-crt/math/tanhf.c
index 738ed12..6a5f9d8 100644
--- a/mingw-w64-crt/math/tanhf.c
+++ b/mingw-w64-crt/math/tanhf.c
@@ -5,4 +5,6 @@
  */
 #include <math.h>
 float tanhf (float x)
-  {return (float) tanh (x);}
+{
+  return (float) tanh (x);
+}
diff --git a/mingw-w64-crt/math/tanhl.c b/mingw-w64-crt/math/tanhl.c
index 2b6da46..d22a3b7 100644
--- a/mingw-w64-crt/math/tanhl.c
+++ b/mingw-w64-crt/math/tanhl.c
@@ -55,8 +55,8 @@
   long double s, z;
 
 #ifdef MINUSZERO
-  if( x == 0.0L )
-    return(x);
+  if (x == 0.0L)
+    return (x);
 #endif
   if (isnanl(x))
   {
@@ -65,19 +65,19 @@
   }
 
   z = fabsl(x);
-  if( z > 0.5L * MAXLOGL )
+  if (z > 0.5L * MAXLOGL)
   {
     _SET_ERRNO (ERANGE);
-    if( x > 0 )
-      return( 1.0L );
+    if (x > 0)
+      return (1.0L);
     else
-      return( -1.0L );
+      return (-1.0L);
   }
-  if( z >= 0.625L )
+  if (z >= 0.625L)
   {
     s = expl(2.0*z);
     z =  1.0L  - 2.0/(s + 1.0L);
-    if( x < 0 )
+    if (x < 0)
       z = -z;
   }
   else
@@ -87,5 +87,6 @@
     z = x * s * z;
     z = x + z;
   }
-  return( z );
+  return (z);
 }
+
diff --git a/mingw-w64-crt/math/tgamma.c b/mingw-w64-crt/math/tgamma.c
index c93fbed..55c33dc 100644
--- a/mingw-w64-crt/math/tgamma.c
+++ b/mingw-w64-crt/math/tgamma.c
@@ -119,29 +119,29 @@
 #define SQTPI SQT.d
 #endif
 
-static double stirf ( double );
+static double stirf (double);
 
 /* Gamma function computed by Stirling's formula.
  * The polynomial STIR is valid for 33 <= x <= 172.
  */
 static double stirf(double x)
 {
-  double y, w, v;
+	double y, w, v;
 
-  w = 1.0/x;
-  w = 1.0 + w * polevl( w, STIR, 4 );
-  y = exp(x);
-  if( x > MAXSTIR )
-  { /* Avoid overflow in pow() */
-    v = pow( x, 0.5 * x - 0.25 );
-    y = v * (v / y);
-  }
-  else
-  {
-    y = pow( x, x - 0.5 ) / y;
-  }
-  y = SQTPI * y * w;
-  return( y );
+	w = 1.0/x;
+	w = 1.0 + w * polevl(w, STIR, 4);
+	y = exp(x);
+	if (x > MAXSTIR)
+	{ /* Avoid overflow in pow() */
+		v = pow(x, 0.5 * x - 0.25);
+		y = v * (v / y);
+	}
+	else
+	{
+		y = pow(x, x - 0.5) / y;
+	}
+	y = SQTPI * y * w;
+	return (y);
 }
 
 
@@ -149,117 +149,117 @@
 
 double __tgamma_r(double x, int *sgngam)
 {
-  double p, q, z;
-  int i;
+	double p, q, z;
+	int i;
 
-  *sgngam = 1;
+	*sgngam = 1;
 #ifdef NANS
-  if( isnan(x) )
-    return(x);
+	if (isnan(x))
+		return (x);
 #endif
 #ifdef INFINITIES
 #ifdef NANS
-  if( x == INFINITY )
-    return(x);
-  if( x == -INFINITY )
-    return(NAN);
+	if (x == INFINITY)
+		return (x);
+	if (x == -INFINITY)
+		return (NAN);
 #else
-  if( !isfinite(x) )
-    return(x);
+	if (!isfinite(x))
+		return (x);
 #endif
 #endif
-  q = fabs(x);
+	q = fabs(x);
 
-  if( q > 33.0 )
-  {
-    if( x < 0.0 )
-    {
-      p = floor(q);
-      if( p == q )
-      {
+	if (q > 33.0)
+	{
+		if (x < 0.0)
+		{
+			p = floor(q);
+			if (p == q)
+			{
 gsing:
-	_SET_ERRNO(EDOM);
-	mtherr( "tgamma", SING );
+				_SET_ERRNO(EDOM);
+				mtherr("tgamma", SING);
 #ifdef INFINITIES
-	return (INFINITY);
+				return (INFINITY);
 #else
-	return (MAXNUM);
+				return (MAXNUM);
 #endif
-      }
-      i = p;
-      if( (i & 1) == 0 )
-	*sgngam = -1;
-      z = q - p;
-      if( z > 0.5 )
-      {
-	p += 1.0;
-	z = q - p;
-      }
-      z = q * sin( PI * z );
-      if( z == 0.0 )
-      {
-	_SET_ERRNO(ERANGE);
-	mtherr( "tgamma", OVERFLOW );
+			}
+			i = p;
+			if ((i & 1) == 0)
+				*sgngam = -1;
+			z = q - p;
+			if (z > 0.5)
+			{
+				p += 1.0;
+				z = q - p;
+			}
+			z = q * sin(PI * z);
+			if (z == 0.0)
+			{
+				_SET_ERRNO(ERANGE);
+				mtherr("tgamma", OVERFLOW);
 #ifdef INFINITIES
-	return( *sgngam * INFINITY);
+				return (*sgngam * INFINITY);
 #else
-	return( *sgngam * MAXNUM);
+				return (*sgngam * MAXNUM);
 #endif
-      }
-      z = fabs(z);
-      z = PI/(z * stirf(q) );
-    }
-    else
-    {
-      z = stirf(x);
-    }
-    return( *sgngam * z );
-  }
+			}
+			z = fabs(z);
+			z = PI/(z * stirf(q));
+		}
+		else
+		{
+			z = stirf(x);
+		}
+		return (*sgngam * z);
+	}
 
-  z = 1.0;
-  while( x >= 3.0 )
-  {
-    x -= 1.0;
-    z *= x;
-  }
+	z = 1.0;
+	while (x >= 3.0)
+	{
+		x -= 1.0;
+		z *= x;
+	}
 
-  while( x < 0.0 )
-  {
-    if( x > -1.E-9 )
-      goto Small;
-    z /= x;
-    x += 1.0;
-  }
+	while (x < 0.0)
+	{
+		if (x > -1.E-9)
+			goto Small;
+		z /= x;
+		x += 1.0;
+	}
 
-  while( x < 2.0 )
-  {
-    if( x < 1.e-9 )
-      goto Small;
-    z /= x;
-    x += 1.0;
-  }
+	while (x < 2.0)
+	{
+		if (x < 1.e-9)
+			goto Small;
+		z /= x;
+		x += 1.0;
+	}
 
-  if( x == 2.0 )
-    return(z);
+	if (x == 2.0)
+		return (z);
 
-  x -= 2.0;
-  p = polevl( x, P, 6 );
-  q = polevl( x, Q, 7 );
-  return( z * p / q );
+	x -= 2.0;
+	p = polevl( x, P, 6 );
+	q = polevl( x, Q, 7 );
+	return (z * p / q);
 
 Small:
-  if( x == 0.0 )
-  {
-    goto gsing;
-  }
-  else
-    return( z/((1.0 + 0.5772156649015329 * x) * x) );
+	if (x == 0.0)
+	{
+		goto gsing;
+	}
+	else
+		return (z/((1.0 + 0.5772156649015329 * x) * x));
 }
 
 /* This is the C99 version */
-
 double tgamma(double x)
 {
-  int local_sgngam=0;
-  return (__tgamma_r(x, &local_sgngam));
+	int local_sgngam = 0;
+	return (__tgamma_r(x, &local_sgngam));
 }
+
diff --git a/mingw-w64-crt/math/tgammaf.c b/mingw-w64-crt/math/tgammaf.c
index d199cf6..ff335b2 100644
--- a/mingw-w64-crt/math/tgammaf.c
+++ b/mingw-w64-crt/math/tgammaf.c
@@ -13,9 +13,9 @@
  * relative error < 1.9e-11
  */
 static const float STIR[] = {
--2.705194986674176E-003,
- 3.473255786154910E-003,
- 8.333331788340907E-002,
+  -2.705194986674176E-003,
+   3.473255786154910E-003,
+   8.333331788340907E-002,
 };
 static const float MAXSTIR = 26.77;
 static const float SQTPIF = 2.50662827463100050242; /* sqrt( 2 pi ) */
@@ -28,168 +28,167 @@
  */
 static float stirf( float x )
 {
-float  y, w, v;
+	float  y, w, v;
 
-w = 1.0/x;
-w = 1.0 + w * polevlf( w, STIR, 2 );
-y = expf( -x );
-if( x > MAXSTIR )
+	w = 1.0/x;
+	w = 1.0 + w * polevlf(w, STIR, 2);
+	y = expf(-x);
+	if (x > MAXSTIR)
 	{ /* Avoid overflow in pow() */
-	v = powf( x, 0.5 * x - 0.25 );
-	y *= v;
-	y *= v;
+		v = powf(x, 0.5 * x - 0.25);
+		y *= v;
+		y *= v;
 	}
-else
+	else
 	{
-	y = powf( x, x - 0.5 ) * y;
+		y = powf(x, x - 0.5) * y;
 	}
-y = SQTPIF * y * w;
-return( y );
+	y = SQTPIF * y * w;
+	return (y);
 }
 
 
 /* gamma(x+2), 0 < x < 1 */
 static const float P[] = {
- 1.536830450601906E-003,
- 5.397581592950993E-003,
- 4.130370201859976E-003,
- 7.232307985516519E-002,
- 8.203960091619193E-002,
- 4.117857447645796E-001,
- 4.227867745131584E-001,
- 9.999999822945073E-001,
+  1.536830450601906E-003,
+  5.397581592950993E-003,
+  4.130370201859976E-003,
+  7.232307985516519E-002,
+  8.203960091619193E-002,
+  4.117857447645796E-001,
+  4.227867745131584E-001,
+  9.999999822945073E-001,
 };
 
 float __tgammaf_r( float x, int* sgngamf);
 
 float __tgammaf_r( float x, int* sgngamf)
 {
-float p, q, z, nz;
-int i, direction, negative;
+	float p, q, z, nz;
+	int i, direction, negative;
 
 #ifdef NANS
-if( isnan(x) )
-	return(x);
+	if (isnan(x))
+		return (x);
 #endif
 #ifdef INFINITIES
 #ifdef NANS
-if( x == INFINITYF )
-	return(x);
-if( x == -INFINITYF )
-	return(NANF);
+	if (x == INFINITYF)
+		return (x);
+	if (x == -INFINITYF)
+		return (NANF);
 #else
-if( !isfinite(x) )
-	return(x);
+	if (!isfinite(x))
+		return (x);
 #endif
 #endif
 
-*sgngamf = 1;
-negative = 0;
-nz = 0.0;
-if( x < 0.0 )
+	*sgngamf = 1;
+	negative = 0;
+	nz = 0.0;
+	if (x < 0.0)
 	{
-	negative = 1;
-	q = -x;
-	p = floorf(q);
-	if( p == q )
+		negative = 1;
+		q = -x;
+		p = floorf(q);
+		if (p == q)
 		{
 gsing:
-		_SET_ERRNO(EDOM);
-		mtherr( "tgammaf", SING );
+			_SET_ERRNO(EDOM);
+			mtherr("tgammaf", SING);
 #ifdef INFINITIES
-		return (INFINITYF);
+			return (INFINITYF);
 #else
-		return (MAXNUMF);
+			return (MAXNUMF);
 #endif
-			}
-	i = p;
-	if( (i & 1) == 0 )
-		*sgngamf = -1;
-	nz = q - p;
-	if( nz > 0.5 )
-		{
-		p += 1.0;
+		}
+		i = p;
+		if ((i & 1) == 0)
+			*sgngamf = -1;
 		nz = q - p;
-		}
-	nz = q * sinf( PIF * nz );
-	if( nz == 0.0 )
+		if (nz > 0.5)
 		{
-		_SET_ERRNO(ERANGE);
-		mtherr( "tgamma", OVERFLOW );
+			p += 1.0;
+			nz = q - p;
+		}
+		nz = q * sinf(PIF * nz);
+		if (nz == 0.0)
+		{
+			_SET_ERRNO(ERANGE);
+			mtherr("tgamma", OVERFLOW);
 #ifdef INFINITIES
-		return( *sgngamf * INFINITYF);
+			return(*sgngamf * INFINITYF);
 #else
-		return( *sgngamf * MAXNUMF);
+			return(*sgngamf * MAXNUMF);
 #endif
 		}
-	if( nz < 0 )
-		nz = -nz;
-	x = q;
+		if (nz < 0)
+			nz = -nz;
+		x = q;
 	}
-if( x >= 10.0 )
+	if (x >= 10.0)
 	{
-	z = stirf(x);
+		z = stirf(x);
 	}
-if( x < 2.0 )
-	direction = 1;
-else
-	direction = 0;
-z = 1.0;
-while( x >= 3.0 )
+	if (x < 2.0)
+		direction = 1;
+	else
+		direction = 0;
+	z = 1.0;
+	while (x >= 3.0)
 	{
-	x -= 1.0;
-	z *= x;
+		x -= 1.0;
+		z *= x;
 	}
-/*
-while( x < 0.0 )
+	/*
+	while (x < 0.0)
 	{
-	if( x > -1.E-4 )
-		goto Small;
-	z *=x;
-	x += 1.0;
+		if (x > -1.E-4)
+			goto Small;
+		z *=x;
+		x += 1.0;
 	}
-*/
-while( x < 2.0 )
+	*/
+	while (x < 2.0)
 	{
-	if( x < 1.e-4 )
-		goto Small;
-	z *=x;
-	x += 1.0;
+		if (x < 1.e-4)
+			goto Small;
+		z *=x;
+		x += 1.0;
 	}
 
-if( direction )
-	z = 1.0/z;
+	if (direction)
+		z = 1.0/z;
 
-if( x == 2.0 )
-	return(z);
+	if (x == 2.0)
+		return (z);
 
-x -= 2.0;
-p = z * polevlf( x, P, 7 );
+	x -= 2.0;
+	p = z * polevlf(x, P, 7);
 
 gdone:
-
-if( negative )
+	if (negative)
 	{
-	p = *sgngamf * PIF/(nz * p );
+		p = *sgngamf * PIF/(nz * p );
 	}
-return(p);
+	return (p);
 
 Small:
-if( x == 0.0 )
+	if (x == 0.0)
 	{
-	goto gsing;
+		goto gsing;
 	}
-else
+	else
 	{
-	p = z / ((1.0 + 0.5772156649015329 * x) * x);
-	goto gdone;
+		p = z / ((1.0 + 0.5772156649015329 * x) * x);
+		goto gdone;
 	}
 }
 
 /* This is the C99 version */
-
 float tgammaf(float x)
 {
-  int local_sgngamf=0;
-  return (__tgammaf_r(x, &local_sgngamf));
+	int local_sgngamf = 0;
+	return (__tgammaf_r(x, &local_sgngamf));
 }
+
diff --git a/mingw-w64-crt/math/tgammal.c b/mingw-w64-crt/math/tgammal.c
index 3aa9129..f9ca66b 100644
--- a/mingw-w64-crt/math/tgammal.c
+++ b/mingw-w64-crt/math/tgammal.c
@@ -228,168 +228,166 @@
 };
 #endif
 
-static long double stirf ( long double);
+static long double stirf (long double);
 
 /* Gamma function computed by Stirling's formula.  */
 
 static long double stirf(long double x)
 {
-  long double y, w, v;
+	long double y, w, v;
 
-  w = 1.0L/x;
-  /* For large x, use rational coefficients from the analytical expansion.  */
-  if( x > 1024.0L )
-    w = (((((6.97281375836585777429E-5L * w
-    + 7.84039221720066627474E-4L) * w
-    - 2.29472093621399176955E-4L) * w
-    - 2.68132716049382716049E-3L) * w
-    + 3.47222222222222222222E-3L) * w
-    + 8.33333333333333333333E-2L) * w
-    + 1.0L;
-  else
-    w = 1.0L + w * polevll( w, STIR, 8 );
-  y = expl(x);
-  if( x > MAXSTIR )
-  { /* Avoid overflow in pow() */
-    v = powl( x, 0.5L * x - 0.25L );
-    y = v * (v / y);
-  }
-  else
-  {
-    y = powl( x, x - 0.5L ) / y;
-  }
-  y = SQTPI * y * w;
-  return( y );
+	w = 1.0L/x;
+	/* For large x, use rational coefficients from the analytical expansion.  */
+	if (x > 1024.0L)
+		w = (((((6.97281375836585777429E-5L * w
+		      + 7.84039221720066627474E-4L) * w
+		      - 2.29472093621399176955E-4L) * w
+		      - 2.68132716049382716049E-3L) * w
+		      + 3.47222222222222222222E-3L) * w
+		      + 8.33333333333333333333E-2L) * w
+		      + 1.0L;
+	else
+		w = 1.0L + w * polevll( w, STIR, 8 );
+	y = expl(x);
+	if (x > MAXSTIR)
+	{ /* Avoid overflow in pow() */
+		v = powl(x, 0.5L * x - 0.25L);
+		y = v * (v / y);
+	}
+	else
+	{
+		y = powl(x, x - 0.5L) / y;
+	}
+	y = SQTPI * y * w;
+	return (y);
 }
 
-long double __tgammal_r(long double x, int* sgngaml);
+long double __tgammal_r(long double, int *);
 
 long double __tgammal_r(long double x, int* sgngaml)
 {
-long double p, q, z;
-int i;
+	long double p, q, z;
+	int i;
 
-*sgngaml = 1;
+	*sgngaml = 1;
 #ifdef NANS
-if( isnanl(x) )
-	return(NANL);
+	if (isnanl(x))
+		return (NANL);
 #endif
 #ifdef INFINITIES
 #ifdef NANS
-if( x == INFINITYL )
-	return(x);
-if( x == -INFINITYL )
-	return(NANL);
+	if (x == INFINITYL)
+		return (x);
+	if (x == -INFINITYL)
+		return (NANL);
 #else
-if( !isfinite(x) )
-	return(x);
+	if (!isfinite(x))
+		return (x);
 #endif
 #endif
-q = fabsl(x);
+	q = fabsl(x);
 
-if( q > 13.0L )
+	if (q > 13.0L)
 	{
-	if( q > MAXGAML )
-		goto goverf;
-	if( x < 0.0L )
+		if (q > MAXGAML)
+			goto goverf;
+		if (x < 0.0L)
 		{
-		p = floorl(q);
-		if( p == q )
+			p = floorl(q);
+			if (p == q)
 			{
 gsing:
-			_SET_ERRNO(EDOM);
-			mtherr( "tgammal", SING );
+				_SET_ERRNO(EDOM);
+				mtherr("tgammal", SING);
 #ifdef INFINITIES
-			return (INFINITYL);
+				return (INFINITYL);
 #else
-			return( *sgngaml * MAXNUML);
+				return (*sgngaml * MAXNUML);
 #endif
 			}
-		i = p;
-		if( (i & 1) == 0 )
-			*sgngaml = -1;
-		z = q - p;
-		if( z > 0.5L )
-			{
-			p += 1.0L;
+			i = p;
+			if ((i & 1) == 0)
+				*sgngaml = -1;
 			z = q - p;
+			if (z > 0.5L)
+			{
+				p += 1.0L;
+				z = q - p;
 			}
-		z = q * sinl( PIL * z );
-		z = fabsl(z) * stirf(q);
-		if( z <= PIL/MAXNUML )
+			z = q * sinl(PIL * z);
+			z = fabsl(z) * stirf(q);
+			if (z <= PIL/MAXNUML)
 			{
 goverf:
-			_SET_ERRNO(ERANGE);
-			mtherr( "tgammal", OVERFLOW );
+				_SET_ERRNO(ERANGE);
+				mtherr("tgammal", OVERFLOW);
 #ifdef INFINITIES
-			return( *sgngaml * INFINITYL);
+				return(*sgngaml * INFINITYL);
 #else
-			return( *sgngaml * MAXNUML);
+				return(*sgngaml * MAXNUML);
 #endif
 			}
-		z = PIL/z;
+			z = PIL/z;
 		}
-	else
+		else
 		{
-		z = stirf(x);
+			z = stirf(x);
 		}
-	return( *sgngaml * z );
+		return (*sgngaml * z);
 	}
 
-z = 1.0L;
-while( x >= 3.0L )
+	z = 1.0L;
+	while (x >= 3.0L)
 	{
-	x -= 1.0L;
-	z *= x;
+		x -= 1.0L;
+		z *= x;
 	}
 
-while( x < -0.03125L )
+	while (x < -0.03125L)
 	{
-	z /= x;
-	x += 1.0L;
+		z /= x;
+		x += 1.0L;
 	}
 
-if( x <= 0.03125L )
-	goto Small;
+	if (x <= 0.03125L)
+		goto Small;
 
-while( x < 2.0L )
+	while (x < 2.0L)
 	{
-	z /= x;
-	x += 1.0L;
+		z /= x;
+		x += 1.0L;
 	}
 
-if( x == 2.0L )
-	return(z);
+	if (x == 2.0L)
+		return (z);
 
-x -= 2.0L;
-p = polevll( x, P, 7 );
-q = polevll( x, Q, 8 );
-return( z * p / q );
+	x -= 2.0L;
+	p = polevll( x, P, 7 );
+	q = polevll( x, Q, 8 );
+	return (z * p / q);
 
 Small:
-if( x == 0.0L )
+	if (x == 0.0L)
 	{
-	goto gsing;
+		goto gsing;
 	}
-else
-	{
-	if( x < 0.0L )
-		{
-		x = -x;
-		q = z / (x * polevll( x, SN, 8 ));
-		}
 	else
-		q = z / (x * polevll( x, S, 8 ));
+	{
+		if (x < 0.0L)
+		{
+			x = -x;
+			q = z / (x * polevll(x, SN, 8));
+		}
+		else
+			q = z / (x * polevll(x, S, 8));
 	}
-return q;
+	return q;
 }
 
-
 /* This is the C99 version. */
-
 long double tgammal(long double x)
 {
-  int local_sgngaml=0;
-  return (__tgammal_r(x, &local_sgngaml));
+	int local_sgngaml = 0;
+	return (__tgammal_r(x, &local_sgngaml));
 }