blob: bdcd50afe1070554656b8f423a20371bfff087e0 [file] [log] [blame]
/* Function powf vectorized with AVX-512. KNL and SKX versions.
Copyright (C) 2014-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
#include "svml_s_powf_data.h"
#include "svml_s_wrapper_impl.h"
/*
ALGORITHM DESCRIPTION:
We are using the next identity : pow(x,y) = 2^(y * log2(x)).
1) log2(x) calculation
Here we use the following formula.
Let |x|=2^k1*X1, where k1 is integer, 1<=X1<2.
Let C ~= 1/ln(2),
Rcp1 ~= 1/X1, X2=Rcp1*X1,
Rcp2 ~= 1/X2, X3=Rcp2*X2,
Rcp3 ~= 1/X3, Rcp3C ~= C/X3.
Then
log2|x| = k1 + log2(1/Rcp1) + log2(1/Rcp2) + log2(C/Rcp3C) +
log2(X1*Rcp1*Rcp2*Rcp3C/C),
where X1*Rcp1*Rcp2*Rcp3C = C*(1+q), q is very small.
The values of Rcp1, log2(1/Rcp1), Rcp2, log2(1/Rcp2),
Rcp3C, log2(C/Rcp3C) are taken from tables.
Values of Rcp1, Rcp2, Rcp3C are such that RcpC=Rcp1*Rcp2*Rcp3C
is exactly represented in target precision.
log2(X1*Rcp1*Rcp2*Rcp3C/C) = log2(1+q) = ln(1+q)/ln2 =
= 1/(ln2)*q - 1/(2ln2)*q^2 + 1/(3ln2)*q^3 - ... =
= 1/(C*ln2)*cq - 1/(2*C^2*ln2)*cq^2 + 1/(3*C^3*ln2)*cq^3 - ... =
= (1 + a1)*cq + a2*cq^2 + a3*cq^3 + ...,
where
cq=X1*Rcp1*Rcp2*Rcp3C-C,
a1=1/(C*ln(2))-1 is small,
a2=1/(2*C^2*ln2),
a3=1/(3*C^3*ln2),
...
Log2 result is split by three parts: HH+HL+HLL
2) Calculation of y*log2(x)
Split y into YHi+YLo.
Get high PH and medium PL parts of y*log2|x|.
Get low PLL part of y*log2|x|.
Now we have PH+PL+PLL ~= y*log2|x|.
3) Calculation of 2^(y*log2(x))
Let's represent PH+PL+PLL in the form N + j/2^expK + Z,
where expK=7 in this implementation, N and j are integers,
0<=j<=2^expK-1, |Z|<2^(-expK-1). Hence
2^(PH+PL+PLL) ~= 2^N * 2^(j/2^expK) * 2^Z,
where 2^(j/2^expK) is stored in a table, and
2^Z ~= 1 + B1*Z + B2*Z^2 ... + B5*Z^5.
We compute 2^(PH+PL+PLL) as follows:
Break PH into PHH + PHL, where PHH = N + j/2^expK.
Z = PHL + PL + PLL
Exp2Poly = B1*Z + B2*Z^2 ... + B5*Z^5
Get 2^(j/2^expK) from table in the form THI+TLO.
Now we have 2^(PH+PL+PLL) ~= 2^N * (THI + TLO) * (1 + Exp2Poly).
Get significand of 2^(PH+PL+PLL) in the form ResHi+ResLo:
ResHi := THI
ResLo := THI * Exp2Poly + TLO
Get exponent ERes of the result:
Res := ResHi + ResLo:
Result := ex(Res) + N. */
.text
ENTRY (_ZGVeN16vv_powf_knl)
#ifndef HAVE_AVX512DQ_ASM_SUPPORT
WRAPPER_IMPL_AVX512_ff _ZGVdN8vv_powf
#else
pushq %rbp
cfi_adjust_cfa_offset (8)
cfi_rel_offset (%rbp, 0)
movq %rsp, %rbp
cfi_def_cfa_register (%rbp)
andq $-64, %rsp
subq $1344, %rsp
movq __svml_spow_data@GOTPCREL(%rip), %rdx
vmovaps %zmm1, %zmm9
vshuff32x4 $238, %zmm0, %zmm0, %zmm7
kxnorw %k3, %k3, %k3
vcvtps2pd %ymm0, %zmm14
vcvtps2pd %ymm7, %zmm10
movl $-1, %eax
movq $-1, %rcx
vpandd _ABSMASK(%rdx), %zmm9, %zmm4
vmovups _ExpMask(%rdx), %zmm6
/* exponent bits selection */
vpsrlq $20, %zmm14, %zmm13
vshuff32x4 $238, %zmm9, %zmm9, %zmm8
vpcmpd $5, _INF(%rdx), %zmm4, %k2
vpsrlq $32, %zmm13, %zmm15
vcvtps2pd %ymm8, %zmm2
vmovups _Two10(%rdx), %zmm4
vpmovqd %zmm15, %ymm12
vcvtps2pd %ymm9, %zmm1
vpsubd _NMINNORM(%rdx), %zmm0, %zmm3
vpbroadcastd %eax, %zmm8{%k2}{z}
vpcmpd $5, _NMAXVAL(%rdx), %zmm3, %k1
/* preserve mantissa, set input exponent to 2^(-10) */
vmovaps %zmm6, %zmm3
vpternlogq $248, %zmm6, %zmm10, %zmm4
vpsrlq $20, %zmm10, %zmm10
vpternlogq $234, _Two10(%rdx), %zmm14, %zmm3
/* reciprocal approximation good to at least 11 bits */
vrcp28pd %zmm4, %zmm11
vpsrlq $32, %zmm10, %zmm14
vpbroadcastd %eax, %zmm7{%k1}{z}
kxnorw %k1, %k1, %k1
vrcp28pd %zmm3, %zmm5
vpmovqd %zmm14, %ymm6
vshufi32x4 $68, %zmm6, %zmm12, %zmm13
vmovups _One(%rdx), %zmm6
/* round reciprocal to nearest integer, will have 1+9 mantissa bits */
vrndscalepd $8, %zmm5, %zmm14
/* biased exponent in DP format */
vshuff32x4 $238, %zmm13, %zmm13, %zmm5
vrndscalepd $8, %zmm11, %zmm11
vcmppd $30, _Threshold(%rdx), %zmm14, %k2
vcvtdq2pd %ymm13, %zmm10
vcvtdq2pd %ymm5, %zmm15
/* table lookup */
vpsrlq $40, %zmm14, %zmm13
vpxord %zmm5, %zmm5, %zmm5
vgatherqpd _Log2Rcp_lookup(%rdx,%zmm13), %zmm5{%k3}
vfmsub213pd %zmm6, %zmm14, %zmm3
vfmsub213pd %zmm6, %zmm11, %zmm4
vcmppd $30, _Threshold(%rdx), %zmm11, %k3
vpbroadcastq %rcx, %zmm14{%k2}{z}
/* dpP= _dbT+lJ*T_ITEM_GRAN */
kxnorw %k2, %k2, %k2
vpsrlq $40, %zmm11, %zmm12
vpxord %zmm6, %zmm6, %zmm6
vpbroadcastq %rcx, %zmm11{%k3}{z}
kxnorw %k3, %k3, %k3
vgatherqpd _Log2Rcp_lookup(%rdx,%zmm12), %zmm6{%k1}
vmovups _Bias1(%rdx), %zmm12
vpternlogq $236, _Bias(%rdx), %zmm12, %zmm14
vpternlogq $248, _Bias(%rdx), %zmm11, %zmm12
vsubpd %zmm14, %zmm10, %zmm13
vsubpd %zmm12, %zmm15, %zmm10
vmovups _poly_coeff_3(%rdx), %zmm11
vmovups _poly_coeff_4(%rdx), %zmm15
vfmadd213pd %zmm15, %zmm4, %zmm11
vmulpd %zmm4, %zmm4, %zmm12
vmovaps %zmm15, %zmm14
vmulpd %zmm3, %zmm3, %zmm15
vfmadd231pd _poly_coeff_3(%rdx), %zmm3, %zmm14
/* reconstruction */
vfmadd213pd %zmm4, %zmm12, %zmm11
vfmadd213pd %zmm3, %zmm15, %zmm14
vaddpd %zmm6, %zmm11, %zmm11
vaddpd %zmm5, %zmm14, %zmm3
vfmadd231pd _L2(%rdx), %zmm10, %zmm11
vfmadd132pd _L2(%rdx), %zmm3, %zmm13
vmulpd %zmm2, %zmm11, %zmm12
vmulpd %zmm1, %zmm13, %zmm10
vmulpd __dbInvLn2(%rdx), %zmm12, %zmm6
/* hi bits */
vpsrlq $32, %zmm12, %zmm12
vmulpd __dbInvLn2(%rdx), %zmm10, %zmm1
/* to round down; if dR is an integer we will get R = 1, which is ok */
vsubpd __dbHALF(%rdx), %zmm6, %zmm4
vpsrlq $32, %zmm10, %zmm11
vpmovqd %zmm11, %ymm3
vsubpd __dbHALF(%rdx), %zmm1, %zmm2
vaddpd __dbShifter(%rdx), %zmm4, %zmm14
vpmovqd %zmm12, %ymm4
vshufi32x4 $68, %zmm4, %zmm3, %zmm5
vpxord %zmm4, %zmm4, %zmm4
vaddpd __dbShifter(%rdx), %zmm2, %zmm2
/* iAbsX = iAbsX&iAbsMask; */
vpandd __iAbsMask(%rdx), %zmm5, %zmm11
vpxord %zmm5, %zmm5, %zmm5
vsubpd __dbShifter(%rdx), %zmm14, %zmm13
/* iRangeMask = (iAbsX>iDomainRange) */
vpcmpgtd __iDomainRange(%rdx), %zmm11, %k1
vsubpd __dbShifter(%rdx), %zmm2, %zmm15
vpbroadcastd %eax, %zmm10{%k1}{z}
vpternlogd $254, %zmm8, %zmm7, %zmm10
/* [0..1) */
vsubpd %zmm15, %zmm1, %zmm1
/* low K bits */
vpandq __lbLOWKBITS(%rdx), %zmm14, %zmm11
vgatherqpd 13952(%rdx,%zmm11,8), %zmm5{%k3}
vsubpd %zmm13, %zmm6, %zmm7
vptestmd %zmm10, %zmm10, %k0
vpandq __lbLOWKBITS(%rdx), %zmm2, %zmm10
vmulpd __dbC1(%rdx), %zmm1, %zmm1
vmulpd __dbC1(%rdx), %zmm7, %zmm3
vpsrlq $11, %zmm2, %zmm8
vpsrlq $11, %zmm14, %zmm2
/* NB : including +/- sign for the exponent!! */
vpsllq $52, %zmm8, %zmm8
kmovw %k0, %ecx
vpsllq $52, %zmm2, %zmm6
vfmadd213pd %zmm5, %zmm3, %zmm5
vgatherqpd 13952(%rdx,%zmm10,8), %zmm4{%k2}
vfmadd213pd %zmm4, %zmm1, %zmm4
vpaddq %zmm6, %zmm5, %zmm10
vcvtpd2ps %zmm10, %ymm12
vpaddq %zmm8, %zmm4, %zmm7
vcvtpd2ps %zmm7, %ymm11
vshuff32x4 $68, %zmm12, %zmm11, %zmm1
testl %ecx, %ecx
jne .LBL_1_3
.LBL_1_2:
cfi_remember_state
vmovaps %zmm1, %zmm0
movq %rbp, %rsp
cfi_def_cfa_register (%rsp)
popq %rbp
cfi_adjust_cfa_offset (-8)
cfi_restore (%rbp)
ret
.LBL_1_3:
cfi_restore_state
vmovups %zmm0, 1152(%rsp)
vmovups %zmm9, 1216(%rsp)
vmovups %zmm1, 1280(%rsp)
je .LBL_1_2
xorb %dl, %dl
kmovw %k4, 1048(%rsp)
xorl %eax, %eax
kmovw %k5, 1040(%rsp)
kmovw %k6, 1032(%rsp)
kmovw %k7, 1024(%rsp)
vmovups %zmm16, 960(%rsp)
vmovups %zmm17, 896(%rsp)
vmovups %zmm18, 832(%rsp)
vmovups %zmm19, 768(%rsp)
vmovups %zmm20, 704(%rsp)
vmovups %zmm21, 640(%rsp)
vmovups %zmm22, 576(%rsp)
vmovups %zmm23, 512(%rsp)
vmovups %zmm24, 448(%rsp)
vmovups %zmm25, 384(%rsp)
vmovups %zmm26, 320(%rsp)
vmovups %zmm27, 256(%rsp)
vmovups %zmm28, 192(%rsp)
vmovups %zmm29, 128(%rsp)
vmovups %zmm30, 64(%rsp)
vmovups %zmm31, (%rsp)
movq %rsi, 1064(%rsp)
movq %rdi, 1056(%rsp)
movq %r12, 1096(%rsp)
cfi_offset_rel_rsp (12, 1096)
movb %dl, %r12b
movq %r13, 1088(%rsp)
cfi_offset_rel_rsp (13, 1088)
movl %ecx, %r13d
movq %r14, 1080(%rsp)
cfi_offset_rel_rsp (14, 1080)
movl %eax, %r14d
movq %r15, 1072(%rsp)
cfi_offset_rel_rsp (15, 1072)
cfi_remember_state
.LBL_1_6:
btl %r14d, %r13d
jc .LBL_1_12
.LBL_1_7:
lea 1(%r14), %esi
btl %esi, %r13d
jc .LBL_1_10
.LBL_1_8:
addb $1, %r12b
addl $2, %r14d
cmpb $16, %r12b
jb .LBL_1_6
kmovw 1048(%rsp), %k4
movq 1064(%rsp), %rsi
kmovw 1040(%rsp), %k5
movq 1056(%rsp), %rdi
kmovw 1032(%rsp), %k6
movq 1096(%rsp), %r12
cfi_restore (%r12)
movq 1088(%rsp), %r13
cfi_restore (%r13)
kmovw 1024(%rsp), %k7
vmovups 960(%rsp), %zmm16
vmovups 896(%rsp), %zmm17
vmovups 832(%rsp), %zmm18
vmovups 768(%rsp), %zmm19
vmovups 704(%rsp), %zmm20
vmovups 640(%rsp), %zmm21
vmovups 576(%rsp), %zmm22
vmovups 512(%rsp), %zmm23
vmovups 448(%rsp), %zmm24
vmovups 384(%rsp), %zmm25
vmovups 320(%rsp), %zmm26
vmovups 256(%rsp), %zmm27
vmovups 192(%rsp), %zmm28
vmovups 128(%rsp), %zmm29
vmovups 64(%rsp), %zmm30
vmovups (%rsp), %zmm31
movq 1080(%rsp), %r14
cfi_restore (%r14)
movq 1072(%rsp), %r15
cfi_restore (%r15)
vmovups 1280(%rsp), %zmm1
jmp .LBL_1_2
.LBL_1_10:
cfi_restore_state
movzbl %r12b, %r15d
vmovss 1156(%rsp,%r15,8), %xmm0
vmovss 1220(%rsp,%r15,8), %xmm1
call JUMPTARGET(__powf_finite)
vmovss %xmm0, 1284(%rsp,%r15,8)
jmp .LBL_1_8
.LBL_1_12:
movzbl %r12b, %r15d
vmovss 1152(%rsp,%r15,8), %xmm0
vmovss 1216(%rsp,%r15,8), %xmm1
call JUMPTARGET(__powf_finite)
vmovss %xmm0, 1280(%rsp,%r15,8)
jmp .LBL_1_7
#endif
END (_ZGVeN16vv_powf_knl)
ENTRY (_ZGVeN16vv_powf_skx)
#ifndef HAVE_AVX512DQ_ASM_SUPPORT
WRAPPER_IMPL_AVX512_ff _ZGVdN8vv_powf
#else
pushq %rbp
cfi_adjust_cfa_offset (8)
cfi_rel_offset (%rbp, 0)
movq %rsp, %rbp
cfi_def_cfa_register (%rbp)
andq $-64, %rsp
subq $1344, %rsp
movq __svml_spow_data@GOTPCREL(%rip), %rax
vextractf32x8 $1, %zmm1, %ymm14
vextractf32x8 $1, %zmm0, %ymm15
vpsubd _NMINNORM(%rax), %zmm0, %zmm9
vmovups %zmm26, 1280(%rsp)
vmovups _ExpMask(%rax), %zmm6
vpcmpd $1, _NMAXVAL(%rax), %zmm9, %k1
vcvtps2pd %ymm0, %zmm5
vcvtps2pd %ymm1, %zmm12
kxnorw %k3, %k3, %k3
/* exponent bits selection */
vpsrlq $20, %zmm5, %zmm3
vpsrlq $32, %zmm3, %zmm2
vpmovqd %zmm2, %ymm11
vcvtps2pd %ymm14, %zmm13
vmovups .L_2il0floatpacket.23(%rip), %zmm14
vmovaps %zmm14, %zmm26
vpandd _ABSMASK(%rax), %zmm1, %zmm8
vpcmpd $1, _INF(%rax), %zmm8, %k2
vpandnd %zmm9, %zmm9, %zmm26{%k1}
vmovups _Two10(%rax), %zmm9
kxnorw %k1, %k1, %k1
vcvtps2pd %ymm15, %zmm4
vmovaps %zmm14, %zmm15
/* preserve mantissa, set input exponent to 2^(-10) */
vpternlogq $248, %zmm6, %zmm4, %zmm9
vpsrlq $20, %zmm4, %zmm4
/* reciprocal approximation good to at least 11 bits */
vrcp14pd %zmm9, %zmm10
/* round reciprocal to nearest integer, will have 1+9 mantissa bits */
vrndscalepd $8, %zmm10, %zmm3
vmovups _One(%rax), %zmm10
vfmsub213pd %zmm10, %zmm3, %zmm9
vpandnd %zmm8, %zmm8, %zmm15{%k2}
vmovaps %zmm6, %zmm8
vpternlogq $234, _Two10(%rax), %zmm5, %zmm8
vpsrlq $32, %zmm4, %zmm5
vrcp14pd %zmm8, %zmm7
vpmovqd %zmm5, %ymm6
vrndscalepd $8, %zmm7, %zmm2
vfmsub213pd %zmm10, %zmm2, %zmm8
/* table lookup */
vpsrlq $40, %zmm2, %zmm10
vinserti32x8 $1, %ymm6, %zmm11, %zmm4
vpsrlq $40, %zmm3, %zmm11
/* biased exponent in DP format */
vextracti32x8 $1, %zmm4, %ymm7
vcvtdq2pd %ymm4, %zmm6
vpmovqd %zmm10, %ymm4
vpmovqd %zmm11, %ymm5
vpxord %zmm10, %zmm10, %zmm10
vgatherdpd _Log2Rcp_lookup(%rax,%ymm4), %zmm10{%k3}
vpbroadcastq .L_2il0floatpacket.24(%rip), %zmm4
vpxord %zmm11, %zmm11, %zmm11
vcvtdq2pd %ymm7, %zmm7
vgatherdpd _Log2Rcp_lookup(%rax,%ymm5), %zmm11{%k1}
vmovups _Threshold(%rax), %zmm5
vcmppd $21, %zmm2, %zmm5, %k2
vcmppd $21, %zmm3, %zmm5, %k3
vmovups _Bias1(%rax), %zmm3
vmovaps %zmm4, %zmm2
vpandnq %zmm5, %zmm5, %zmm2{%k2}
vpternlogq $236, _Bias(%rax), %zmm3, %zmm2
/* dpP= _dbT+lJ*T_ITEM_GRAN */
kxnorw %k2, %k2, %k2
vpandnq %zmm5, %zmm5, %zmm4{%k3}
vpternlogq $248, _Bias(%rax), %zmm4, %zmm3
vsubpd %zmm2, %zmm6, %zmm4
vmovups _poly_coeff_3(%rax), %zmm6
vmovups _poly_coeff_4(%rax), %zmm2
vsubpd %zmm3, %zmm7, %zmm5
vmulpd %zmm8, %zmm8, %zmm7
vfmadd213pd %zmm2, %zmm9, %zmm6
kxnorw %k3, %k3, %k3
vmovaps %zmm2, %zmm3
vmulpd %zmm9, %zmm9, %zmm2
vfmadd231pd _poly_coeff_3(%rax), %zmm8, %zmm3
/* reconstruction */
vfmadd213pd %zmm9, %zmm2, %zmm6
vfmadd213pd %zmm8, %zmm7, %zmm3
vaddpd %zmm11, %zmm6, %zmm8
vaddpd %zmm10, %zmm3, %zmm9
vfmadd231pd _L2(%rax), %zmm5, %zmm8
vfmadd132pd _L2(%rax), %zmm9, %zmm4
vmulpd %zmm13, %zmm8, %zmm13
vmulpd %zmm12, %zmm4, %zmm3
vmulpd __dbInvLn2(%rax), %zmm13, %zmm10
vmulpd __dbInvLn2(%rax), %zmm3, %zmm8
/* hi bits */
vpsrlq $32, %zmm3, %zmm4
vpsrlq $32, %zmm13, %zmm13
/* to round down; if dR is an integer we will get R = 1, which is ok */
vsubpd __dbHALF(%rax), %zmm8, %zmm12
vpmovqd %zmm4, %ymm5
vpmovqd %zmm13, %ymm2
vsubpd __dbHALF(%rax), %zmm10, %zmm9
vaddpd __dbShifter(%rax), %zmm12, %zmm7
vaddpd __dbShifter(%rax), %zmm9, %zmm9
vsubpd __dbShifter(%rax), %zmm7, %zmm11
vsubpd __dbShifter(%rax), %zmm9, %zmm12
vinserti32x8 $1, %ymm2, %zmm5, %zmm3
/* iAbsX = iAbsX&iAbsMask */
vpandd __iAbsMask(%rax), %zmm3, %zmm4
/* iRangeMask = (iAbsX>iDomainRange) */
vpcmpd $2, __iDomainRange(%rax), %zmm4, %k1
vpandnd %zmm4, %zmm4, %zmm14{%k1}
vpternlogd $254, %zmm15, %zmm26, %zmm14
/* [0..1) */
vsubpd %zmm11, %zmm8, %zmm15
vsubpd %zmm12, %zmm10, %zmm26
vptestmd %zmm14, %zmm14, %k0
vpsrlq $11, %zmm7, %zmm8
vpsrlq $11, %zmm9, %zmm10
vmulpd __dbC1(%rax), %zmm26, %zmm26
vmulpd __dbC1(%rax), %zmm15, %zmm15
/* NB : including +/- sign for the exponent!! */
vpsllq $52, %zmm10, %zmm13
vpsllq $52, %zmm8, %zmm12
kmovw %k0, %ecx
/* low K bits */
vpandq __lbLOWKBITS(%rax), %zmm9, %zmm14
vpandq __lbLOWKBITS(%rax), %zmm7, %zmm6
vpmovqd %zmm14, %ymm7
vpmovqd %zmm6, %ymm9
vpxord %zmm2, %zmm2, %zmm2
vgatherdpd 13952(%rax,%ymm7,8), %zmm2{%k3}
vfmadd213pd %zmm2, %zmm26, %zmm2
vpaddq %zmm13, %zmm2, %zmm2
vcvtpd2ps %zmm2, %ymm4
vpxord %zmm11, %zmm11, %zmm11
vgatherdpd 13952(%rax,%ymm9,8), %zmm11{%k2}
vfmadd213pd %zmm11, %zmm15, %zmm11
vpaddq %zmm12, %zmm11, %zmm3
vcvtpd2ps %zmm3, %ymm5
vinsertf32x8 $1, %ymm4, %zmm5, %zmm2
testl %ecx, %ecx
jne .LBL_2_3
.LBL_2_2:
cfi_remember_state
vmovups 1280(%rsp), %zmm26
vmovaps %zmm2, %zmm0
movq %rbp, %rsp
cfi_def_cfa_register (%rsp)
popq %rbp
cfi_adjust_cfa_offset (-8)
cfi_restore (%rbp)
ret
.LBL_2_3:
cfi_restore_state
vmovups %zmm0, 1088(%rsp)
vmovups %zmm1, 1152(%rsp)
vmovups %zmm2, 1216(%rsp)
je .LBL_2_2
xorb %dl, %dl
xorl %eax, %eax
kmovw %k4, 984(%rsp)
kmovw %k5, 976(%rsp)
kmovw %k6, 968(%rsp)
kmovw %k7, 960(%rsp)
vmovups %zmm16, 896(%rsp)
vmovups %zmm17, 832(%rsp)
vmovups %zmm18, 768(%rsp)
vmovups %zmm19, 704(%rsp)
vmovups %zmm20, 640(%rsp)
vmovups %zmm21, 576(%rsp)
vmovups %zmm22, 512(%rsp)
vmovups %zmm23, 448(%rsp)
vmovups %zmm24, 384(%rsp)
vmovups %zmm25, 320(%rsp)
vmovups %zmm27, 256(%rsp)
vmovups %zmm28, 192(%rsp)
vmovups %zmm29, 128(%rsp)
vmovups %zmm30, 64(%rsp)
vmovups %zmm31, (%rsp)
movq %rsi, 1000(%rsp)
movq %rdi, 992(%rsp)
movq %r12, 1032(%rsp)
cfi_offset_rel_rsp (12, 1032)
movb %dl, %r12b
movq %r13, 1024(%rsp)
cfi_offset_rel_rsp (13, 1024)
movl %ecx, %r13d
movq %r14, 1016(%rsp)
cfi_offset_rel_rsp (14, 1016)
movl %eax, %r14d
movq %r15, 1008(%rsp)
cfi_offset_rel_rsp (15, 1008)
cfi_remember_state
.LBL_2_6:
btl %r14d, %r13d
jc .LBL_2_12
.LBL_2_7:
lea 1(%r14), %esi
btl %esi, %r13d
jc .LBL_2_10
.LBL_2_8:
incb %r12b
addl $2, %r14d
cmpb $16, %r12b
jb .LBL_2_6
kmovw 984(%rsp), %k4
kmovw 976(%rsp), %k5
kmovw 968(%rsp), %k6
kmovw 960(%rsp), %k7
vmovups 896(%rsp), %zmm16
vmovups 832(%rsp), %zmm17
vmovups 768(%rsp), %zmm18
vmovups 704(%rsp), %zmm19
vmovups 640(%rsp), %zmm20
vmovups 576(%rsp), %zmm21
vmovups 512(%rsp), %zmm22
vmovups 448(%rsp), %zmm23
vmovups 384(%rsp), %zmm24
vmovups 320(%rsp), %zmm25
vmovups 256(%rsp), %zmm27
vmovups 192(%rsp), %zmm28
vmovups 128(%rsp), %zmm29
vmovups 64(%rsp), %zmm30
vmovups (%rsp), %zmm31
vmovups 1216(%rsp), %zmm2
movq 1000(%rsp), %rsi
movq 992(%rsp), %rdi
movq 1032(%rsp), %r12
cfi_restore (%r12)
movq 1024(%rsp), %r13
cfi_restore (%r13)
movq 1016(%rsp), %r14
cfi_restore (%r14)
movq 1008(%rsp), %r15
cfi_restore (%r15)
jmp .LBL_2_2
.LBL_2_10:
cfi_restore_state
movzbl %r12b, %r15d
vmovss 1156(%rsp,%r15,8), %xmm1
vzeroupper
vmovss 1092(%rsp,%r15,8), %xmm0
call JUMPTARGET(__powf_finite)
vmovss %xmm0, 1220(%rsp,%r15,8)
jmp .LBL_2_8
.LBL_2_12:
movzbl %r12b, %r15d
vmovss 1152(%rsp,%r15,8), %xmm1
vzeroupper
vmovss 1088(%rsp,%r15,8), %xmm0
call JUMPTARGET(__powf_finite)
vmovss %xmm0, 1216(%rsp,%r15,8)
jmp .LBL_2_7
#endif
END (_ZGVeN16vv_powf_skx)
.section .rodata, "a"
.L_2il0floatpacket.23:
.long 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff
.type .L_2il0floatpacket.23,@object
.L_2il0floatpacket.24:
.long 0xffffffff,0xffffffff
.type .L_2il0floatpacket.24,@object