| /* Copyright (C) 2002-2018 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <time.h> |
| #include <sys/param.h> |
| #include <sys/time.h> |
| #include "pthreadP.h" |
| #include <atomic.h> |
| #include <lowlevellock.h> |
| #include <not-cancel.h> |
| |
| #include <stap-probe.h> |
| |
| #ifndef lll_timedlock_elision |
| #define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c) |
| #endif |
| |
| #ifndef lll_trylock_elision |
| #define lll_trylock_elision(a,t) lll_trylock(a) |
| #endif |
| |
| #ifndef FORCE_ELISION |
| #define FORCE_ELISION(m, s) |
| #endif |
| |
| int |
| __pthread_mutex_timedlock (pthread_mutex_t *mutex, |
| const struct timespec *abstime) |
| { |
| int oldval; |
| pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
| int result = 0; |
| |
| LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
| |
| /* We must not check ABSTIME here. If the thread does not block |
| abstime must not be checked for a valid value. */ |
| |
| switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
| PTHREAD_MUTEX_TIMED_NP)) |
| { |
| /* Recursive mutex. */ |
| case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
| case PTHREAD_MUTEX_RECURSIVE_NP: |
| /* Check whether we already hold the mutex. */ |
| if (mutex->__data.__owner == id) |
| { |
| /* Just bump the counter. */ |
| if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| /* Overflow of the counter. */ |
| return EAGAIN; |
| |
| ++mutex->__data.__count; |
| |
| goto out; |
| } |
| |
| /* We have to get the mutex. */ |
| result = lll_timedlock (mutex->__data.__lock, abstime, |
| PTHREAD_MUTEX_PSHARED (mutex)); |
| |
| if (result != 0) |
| goto out; |
| |
| /* Only locked once so far. */ |
| mutex->__data.__count = 1; |
| break; |
| |
| /* Error checking mutex. */ |
| case PTHREAD_MUTEX_ERRORCHECK_NP: |
| /* Check whether we already hold the mutex. */ |
| if (__glibc_unlikely (mutex->__data.__owner == id)) |
| return EDEADLK; |
| |
| /* Don't do lock elision on an error checking mutex. */ |
| goto simple; |
| |
| case PTHREAD_MUTEX_TIMED_NP: |
| FORCE_ELISION (mutex, goto elision); |
| simple: |
| /* Normal mutex. */ |
| result = lll_timedlock (mutex->__data.__lock, abstime, |
| PTHREAD_MUTEX_PSHARED (mutex)); |
| break; |
| |
| case PTHREAD_MUTEX_TIMED_ELISION_NP: |
| elision: __attribute__((unused)) |
| /* Don't record ownership */ |
| return lll_timedlock_elision (mutex->__data.__lock, |
| mutex->__data.__spins, |
| abstime, |
| PTHREAD_MUTEX_PSHARED (mutex)); |
| |
| |
| case PTHREAD_MUTEX_ADAPTIVE_NP: |
| if (! __is_smp) |
| goto simple; |
| |
| if (lll_trylock (mutex->__data.__lock) != 0) |
| { |
| int cnt = 0; |
| int max_cnt = MIN (MAX_ADAPTIVE_COUNT, |
| mutex->__data.__spins * 2 + 10); |
| do |
| { |
| if (cnt++ >= max_cnt) |
| { |
| result = lll_timedlock (mutex->__data.__lock, abstime, |
| PTHREAD_MUTEX_PSHARED (mutex)); |
| break; |
| } |
| atomic_spin_nop (); |
| } |
| while (lll_trylock (mutex->__data.__lock) != 0); |
| |
| mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
| } |
| break; |
| |
| case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
| case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
| case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
| case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| &mutex->__data.__list.__next); |
| /* We need to set op_pending before starting the operation. Also |
| see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| |
| oldval = mutex->__data.__lock; |
| /* This is set to FUTEX_WAITERS iff we might have shared the |
| FUTEX_WAITERS flag with other threads, and therefore need to keep it |
| set to avoid lost wake-ups. We have the same requirement in the |
| simple mutex algorithm. */ |
| unsigned int assume_other_futex_waiters = 0; |
| while (1) |
| { |
| /* Try to acquire the lock through a CAS from 0 (not acquired) to |
| our TID | assume_other_futex_waiters. */ |
| if (__glibc_likely (oldval == 0)) |
| { |
| oldval |
| = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| id | assume_other_futex_waiters, 0); |
| if (__glibc_likely (oldval == 0)) |
| break; |
| } |
| |
| if ((oldval & FUTEX_OWNER_DIED) != 0) |
| { |
| /* The previous owner died. Try locking the mutex. */ |
| int newval = id | (oldval & FUTEX_WAITERS) |
| | assume_other_futex_waiters; |
| |
| newval |
| = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| newval, oldval); |
| if (newval != oldval) |
| { |
| oldval = newval; |
| continue; |
| } |
| |
| /* We got the mutex. */ |
| mutex->__data.__count = 1; |
| /* But it is inconsistent unless marked otherwise. */ |
| mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| |
| /* We must not enqueue the mutex before we have acquired it. |
| Also see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| ENQUEUE_MUTEX (mutex); |
| /* We need to clear op_pending after we enqueue the mutex. */ |
| __asm ("" ::: "memory"); |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| |
| /* Note that we deliberately exit here. If we fall |
| through to the end of the function __nusers would be |
| incremented which is not correct because the old |
| owner has to be discounted. */ |
| return EOWNERDEAD; |
| } |
| |
| /* Check whether we already hold the mutex. */ |
| if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| { |
| int kind = PTHREAD_MUTEX_TYPE (mutex); |
| if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
| { |
| /* We do not need to ensure ordering wrt another memory |
| access. Also see comments at ENQUEUE_MUTEX. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| NULL); |
| return EDEADLK; |
| } |
| |
| if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
| { |
| /* We do not need to ensure ordering wrt another memory |
| access. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| NULL); |
| |
| /* Just bump the counter. */ |
| if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| /* Overflow of the counter. */ |
| return EAGAIN; |
| |
| ++mutex->__data.__count; |
| |
| LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| |
| return 0; |
| } |
| } |
| |
| /* We are about to block; check whether the timeout is invalid. */ |
| if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| return EINVAL; |
| /* Work around the fact that the kernel rejects negative timeout |
| values despite them being valid. */ |
| if (__glibc_unlikely (abstime->tv_sec < 0)) |
| return ETIMEDOUT; |
| #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \ |
| || !defined lll_futex_timed_wait_bitset) |
| struct timeval tv; |
| struct timespec rt; |
| |
| /* Get the current time. */ |
| (void) __gettimeofday (&tv, NULL); |
| |
| /* Compute relative timeout. */ |
| rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| if (rt.tv_nsec < 0) |
| { |
| rt.tv_nsec += 1000000000; |
| --rt.tv_sec; |
| } |
| |
| /* Already timed out? */ |
| if (rt.tv_sec < 0) |
| return ETIMEDOUT; |
| #endif |
| |
| /* We cannot acquire the mutex nor has its owner died. Thus, try |
| to block using futexes. Set FUTEX_WAITERS if necessary so that |
| other threads are aware that there are potentially threads |
| blocked on the futex. Restart if oldval changed in the |
| meantime. */ |
| if ((oldval & FUTEX_WAITERS) == 0) |
| { |
| if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
| oldval | FUTEX_WAITERS, |
| oldval) |
| != 0) |
| { |
| oldval = mutex->__data.__lock; |
| continue; |
| } |
| oldval |= FUTEX_WAITERS; |
| } |
| |
| /* It is now possible that we share the FUTEX_WAITERS flag with |
| another thread; therefore, update assume_other_futex_waiters so |
| that we do not forget about this when handling other cases |
| above and thus do not cause lost wake-ups. */ |
| assume_other_futex_waiters |= FUTEX_WAITERS; |
| |
| /* Block using the futex. */ |
| #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \ |
| || !defined lll_futex_timed_wait_bitset) |
| lll_futex_timed wait (&mutex->__data.__lock, oldval, |
| &rt, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| #else |
| int err = lll_futex_timed_wait_bitset (&mutex->__data.__lock, |
| oldval, abstime, FUTEX_CLOCK_REALTIME, |
| PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| /* The futex call timed out. */ |
| if (err == -ETIMEDOUT) |
| return -err; |
| #endif |
| /* Reload current lock value. */ |
| oldval = mutex->__data.__lock; |
| } |
| |
| /* We have acquired the mutex; check if it is still consistent. */ |
| if (__builtin_expect (mutex->__data.__owner |
| == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| { |
| /* This mutex is now not recoverable. */ |
| mutex->__data.__count = 0; |
| int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
| lll_unlock (mutex->__data.__lock, private); |
| /* FIXME This violates the mutex destruction requirements. See |
| __pthread_mutex_unlock_full. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| return ENOTRECOVERABLE; |
| } |
| |
| mutex->__data.__count = 1; |
| /* We must not enqueue the mutex before we have acquired it. |
| Also see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| ENQUEUE_MUTEX (mutex); |
| /* We need to clear op_pending after we enqueue the mutex. */ |
| __asm ("" ::: "memory"); |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| break; |
| |
| /* The PI support requires the Linux futex system call. If that's not |
| available, pthread_mutex_init should never have allowed the type to |
| be set. So it will get the default case for an invalid type. */ |
| #ifdef __NR_futex |
| case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
| case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
| case PTHREAD_MUTEX_PI_NORMAL_NP: |
| case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
| case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
| case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
| case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
| case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
| { |
| int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
| |
| if (robust) |
| { |
| /* Note: robust PI futexes are signaled by setting bit 0. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| (void *) (((uintptr_t) &mutex->__data.__list.__next) |
| | 1)); |
| /* We need to set op_pending before starting the operation. Also |
| see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| } |
| |
| oldval = mutex->__data.__lock; |
| |
| /* Check whether we already hold the mutex. */ |
| if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| { |
| if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| { |
| /* We do not need to ensure ordering wrt another memory |
| access. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| return EDEADLK; |
| } |
| |
| if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| { |
| /* We do not need to ensure ordering wrt another memory |
| access. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| |
| /* Just bump the counter. */ |
| if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| /* Overflow of the counter. */ |
| return EAGAIN; |
| |
| ++mutex->__data.__count; |
| |
| LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| |
| return 0; |
| } |
| } |
| |
| oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| id, 0); |
| |
| if (oldval != 0) |
| { |
| /* The mutex is locked. The kernel will now take care of |
| everything. The timeout value must be a relative value. |
| Convert it. */ |
| int private = (robust |
| ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
| : PTHREAD_MUTEX_PSHARED (mutex)); |
| INTERNAL_SYSCALL_DECL (__err); |
| |
| int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| __lll_private_flag (FUTEX_LOCK_PI, |
| private), 1, |
| abstime); |
| if (INTERNAL_SYSCALL_ERROR_P (e, __err)) |
| { |
| if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT) |
| return ETIMEDOUT; |
| |
| if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
| || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK) |
| { |
| assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
| || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
| && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
| /* ESRCH can happen only for non-robust PI mutexes where |
| the owner of the lock died. */ |
| assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH |
| || !robust); |
| |
| /* Delay the thread until the timeout is reached. |
| Then return ETIMEDOUT. */ |
| struct timespec reltime; |
| struct timespec now; |
| |
| INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME, |
| &now); |
| reltime.tv_sec = abstime->tv_sec - now.tv_sec; |
| reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec; |
| if (reltime.tv_nsec < 0) |
| { |
| reltime.tv_nsec += 1000000000; |
| --reltime.tv_sec; |
| } |
| if (reltime.tv_sec >= 0) |
| while (__nanosleep_nocancel (&reltime, &reltime) != 0) |
| continue; |
| |
| return ETIMEDOUT; |
| } |
| |
| return INTERNAL_SYSCALL_ERRNO (e, __err); |
| } |
| |
| oldval = mutex->__data.__lock; |
| |
| assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
| } |
| |
| if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
| { |
| atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
| |
| /* We got the mutex. */ |
| mutex->__data.__count = 1; |
| /* But it is inconsistent unless marked otherwise. */ |
| mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| |
| /* We must not enqueue the mutex before we have acquired it. |
| Also see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| ENQUEUE_MUTEX_PI (mutex); |
| /* We need to clear op_pending after we enqueue the mutex. */ |
| __asm ("" ::: "memory"); |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| |
| /* Note that we deliberately exit here. If we fall |
| through to the end of the function __nusers would be |
| incremented which is not correct because the old owner |
| has to be discounted. */ |
| return EOWNERDEAD; |
| } |
| |
| if (robust |
| && __builtin_expect (mutex->__data.__owner |
| == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| { |
| /* This mutex is now not recoverable. */ |
| mutex->__data.__count = 0; |
| |
| INTERNAL_SYSCALL_DECL (__err); |
| INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| __lll_private_flag (FUTEX_UNLOCK_PI, |
| PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
| 0, 0); |
| |
| /* To the kernel, this will be visible after the kernel has |
| acquired the mutex in the syscall. */ |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| return ENOTRECOVERABLE; |
| } |
| |
| mutex->__data.__count = 1; |
| if (robust) |
| { |
| /* We must not enqueue the mutex before we have acquired it. |
| Also see comments at ENQUEUE_MUTEX. */ |
| __asm ("" ::: "memory"); |
| ENQUEUE_MUTEX_PI (mutex); |
| /* We need to clear op_pending after we enqueue the mutex. */ |
| __asm ("" ::: "memory"); |
| THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| } |
| } |
| break; |
| #endif /* __NR_futex. */ |
| |
| case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
| case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
| case PTHREAD_MUTEX_PP_NORMAL_NP: |
| case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
| { |
| int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| |
| oldval = mutex->__data.__lock; |
| |
| /* Check whether we already hold the mutex. */ |
| if (mutex->__data.__owner == id) |
| { |
| if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| return EDEADLK; |
| |
| if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| { |
| /* Just bump the counter. */ |
| if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| /* Overflow of the counter. */ |
| return EAGAIN; |
| |
| ++mutex->__data.__count; |
| |
| LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| |
| return 0; |
| } |
| } |
| |
| int oldprio = -1, ceilval; |
| do |
| { |
| int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
| >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| |
| if (__pthread_current_priority () > ceiling) |
| { |
| result = EINVAL; |
| failpp: |
| if (oldprio != -1) |
| __pthread_tpp_change_priority (oldprio, -1); |
| return result; |
| } |
| |
| result = __pthread_tpp_change_priority (oldprio, ceiling); |
| if (result) |
| return result; |
| |
| ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| oldprio = ceiling; |
| |
| oldval |
| = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| ceilval | 1, ceilval); |
| |
| if (oldval == ceilval) |
| break; |
| |
| do |
| { |
| oldval |
| = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| ceilval | 2, |
| ceilval | 1); |
| |
| if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
| break; |
| |
| if (oldval != ceilval) |
| { |
| /* Reject invalid timeouts. */ |
| if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| { |
| result = EINVAL; |
| goto failpp; |
| } |
| |
| struct timeval tv; |
| struct timespec rt; |
| |
| /* Get the current time. */ |
| (void) __gettimeofday (&tv, NULL); |
| |
| /* Compute relative timeout. */ |
| rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| if (rt.tv_nsec < 0) |
| { |
| rt.tv_nsec += 1000000000; |
| --rt.tv_sec; |
| } |
| |
| /* Already timed out? */ |
| if (rt.tv_sec < 0) |
| { |
| result = ETIMEDOUT; |
| goto failpp; |
| } |
| |
| lll_futex_timed_wait (&mutex->__data.__lock, |
| ceilval | 2, &rt, |
| PTHREAD_MUTEX_PSHARED (mutex)); |
| } |
| } |
| while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| ceilval | 2, ceilval) |
| != ceilval); |
| } |
| while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
| |
| assert (mutex->__data.__owner == 0); |
| mutex->__data.__count = 1; |
| } |
| break; |
| |
| default: |
| /* Correct code cannot set any other type. */ |
| return EINVAL; |
| } |
| |
| if (result == 0) |
| { |
| /* Record the ownership. */ |
| mutex->__data.__owner = id; |
| ++mutex->__data.__nusers; |
| |
| LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| } |
| |
| out: |
| return result; |
| } |
| weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock) |