| /* Optimized expf(). PowerPC64/POWER8 version. |
| Copyright (C) 2016-2018 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <sysdep.h> |
| |
| /* Short algorithm description: |
| * |
| * Let K = 64 (table size). |
| * e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y)) |
| * where: |
| * x = m*log(2)/K + y, y in [0.0..log(2)/K] |
| * m = n*K + j, m,n,j - signed integer, j in [0..K-1] |
| * values of 2^(j/K) are tabulated as T[j]. |
| * |
| * P(y) is a minimax polynomial approximation of expf(y)-1 |
| * on small interval [0.0..log(2)/K]. |
| * |
| * P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as |
| * z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y |
| * |
| * Special cases: |
| * expf(NaN) = NaN |
| * expf(+INF) = +INF |
| * expf(-INF) = 0 |
| * expf(x) = 1 for subnormals |
| * for finite argument, only expf(0)=1 is exact |
| * expf(x) overflows if x>88.7228317260742190 |
| * expf(x) underflows if x<-103.972076416015620 |
| */ |
| |
| #define C1 0x42ad496b /* Single precision 125*log(2). */ |
| #define C2 0x31800000 /* Single precision 2^(-28). */ |
| #define SP_INF 0x7f800000 /* Single precision Inf. */ |
| #define SP_EXP_BIAS 0x1fc0 /* Single precision exponent bias. */ |
| |
| #define DATA_OFFSET r9 |
| |
| /* Implements the function |
| |
| float [fp1] expf (float [fp1] x) */ |
| |
| .machine power8 |
| ENTRY (__ieee754_expf, 4) |
| addis DATA_OFFSET,r2,.Lanchor@toc@ha |
| addi DATA_OFFSET,DATA_OFFSET,.Lanchor@toc@l |
| |
| xscvdpspn v0,v1 |
| mfvsrd r8,v0 /* r8 = x */ |
| lfd fp2,(.KLN2-.Lanchor)(DATA_OFFSET) |
| lfd fp3,(.P2-.Lanchor)(DATA_OFFSET) |
| rldicl r3,r8,32,33 /* r3 = |x| */ |
| lis r4,C1@ha /* r4 = 125*log(2) */ |
| ori r4,r4,C1@l |
| cmpw r3,r4 |
| lfd fp5,(.P3-.Lanchor)(DATA_OFFSET) |
| lfd fp4,(.RS-.Lanchor)(DATA_OFFSET) |
| fmadd fp2,fp1,fp2,fp4 /* fp2 = x * K/log(2) + (2^23 + 2^22) */ |
| bge L(special_paths) /* |x| >= 125*log(2) ? */ |
| |
| lis r4,C2@ha |
| ori r4,r4,C2@l |
| cmpw r3,r4 |
| blt L(small_args) /* |x| < 2^(-28) ? */ |
| |
| /* Main path: here if 2^(-28) <= |x| < 125*log(2) */ |
| frsp fp6,fp2 |
| xscvdpsp v2,v2 |
| mfvsrd r8,v2 |
| mr r3,r8 /* r3 = m */ |
| rldicl r8,r8,32,58 /* r8 = j */ |
| lfs fp4,(.SP_RS-.Lanchor)(DATA_OFFSET) |
| fsubs fp2,fp6,fp4 /* fp2 = m = x * K/log(2) */ |
| srdi r3,r3,32 |
| clrrwi r3,r3,6 /* r3 = n */ |
| lfd fp6,(.NLN2K-.Lanchor)(DATA_OFFSET) |
| fmadd fp0,fp2,fp6,fp1 /* fp0 = y = x - m*log(2)/K */ |
| fmul fp2,fp0,fp0 /* fp2 = z = y^2 */ |
| lfd fp4,(.P1-.Lanchor)(DATA_OFFSET) |
| lfd fp6,(.P0-.Lanchor)(DATA_OFFSET) |
| lis r4,SP_EXP_BIAS@ha |
| ori r4,r4,SP_EXP_BIAS@l |
| add r3,r3,r4 |
| rldic r3,r3,49,1 /* r3 = 2^n */ |
| fmadd fp4,fp5,fp2,fp4 /* fp4 = P3 * z + P1 */ |
| fmadd fp6,fp3,fp2,fp6 /* fp6 = P2 * z + P0 */ |
| mtvsrd v1,r3 |
| xscvspdp v1,v1 |
| fmul fp4,fp4,fp2 /* fp4 = (P3 * z + P1)*z */ |
| fmadd fp0,fp0,fp6,fp4 /* fp0 = P(y) */ |
| sldi r8,r8,3 /* Access doublewords from T[j]. */ |
| addi r6,DATA_OFFSET,(.Ttable-.Lanchor) |
| lfdx fp3,r6,r8 |
| fmadd fp0,fp0,fp3,fp3 /* fp0 = T[j] * (1 + P(y)) */ |
| fmul fp1,fp1,fp0 /* fp1 = 2^n * T[j] * (1 + P(y)) */ |
| frsp fp1,fp1 |
| blr |
| |
| .align 4 |
| /* x is either underflow, overflow, infinite or NaN. */ |
| L(special_paths): |
| srdi r8,r8,32 |
| rlwinm r8,r8,3,29,29 /* r8 = 0, if x positive. |
| r8 = 4, otherwise. */ |
| addi r6,DATA_OFFSET,(.SPRANGE-.Lanchor) |
| lwzx r4,r6,r8 /* r4 = .SPRANGE[signbit(x)] */ |
| cmpw r3,r4 |
| /* |x| <= .SPRANGE[signbit(x)] */ |
| ble L(near_under_or_overflow) |
| |
| lis r4,SP_INF@ha |
| ori r4,r4,SP_INF@l |
| cmpw r3,r4 |
| bge L(arg_inf_or_nan) /* |x| > Infinite ? */ |
| |
| addi r6,DATA_OFFSET,(.SPLARGE_SMALL-.Lanchor) |
| lfsx fp1,r6,r8 |
| fmuls fp1,fp1,fp1 |
| blr |
| |
| |
| .align 4 |
| L(small_args): |
| /* expf(x) = 1.0, where |x| < |2^(-28)| */ |
| lfs fp2,(.SPone-.Lanchor)(DATA_OFFSET) |
| fadds fp1,fp1,fp2 |
| blr |
| |
| |
| .align 4 |
| L(arg_inf_or_nan:) |
| bne L(arg_nan) |
| |
| /* expf(+INF) = +INF |
| expf(-INF) = 0 */ |
| addi r6,DATA_OFFSET,(.INF_ZERO-.Lanchor) |
| lfsx fp1,r6,r8 |
| blr |
| |
| |
| .align 4 |
| L(arg_nan): |
| /* expf(NaN) = NaN */ |
| fadd fp1,fp1,fp1 |
| frsp fp1,fp1 |
| blr |
| |
| .align 4 |
| L(near_under_or_overflow): |
| frsp fp6,fp2 |
| xscvdpsp v2,v2 |
| mfvsrd r8,v2 |
| mr r3,r8 /* r3 = m */ |
| rldicl r8,r8,32,58 /* r8 = j */ |
| lfs fp4,(.SP_RS-.Lanchor)(DATA_OFFSET) |
| fsubs fp2,fp6,fp4 /* fp2 = m = x * K/log(2) */ |
| srdi r3,r3,32 |
| clrrwi r3,r3,6 /* r3 = n */ |
| lfd fp6,(.NLN2K-.Lanchor)(DATA_OFFSET) |
| fmadd fp0,fp2,fp6,fp1 /* fp0 = y = x - m*log(2)/K */ |
| fmul fp2,fp0,fp0 /* fp2 = z = y^2 */ |
| lfd fp4,(.P1-.Lanchor)(DATA_OFFSET) |
| lfd fp6,(.P0-.Lanchor)(DATA_OFFSET) |
| ld r4,(.DP_EXP_BIAS-.Lanchor)(DATA_OFFSET) |
| add r3,r3,r4 |
| rldic r3,r3,46,1 /* r3 = 2 */ |
| fmadd fp4,fp5,fp2,fp4 /* fp4 = P3 * z + P1 */ |
| fmadd fp6,fp3,fp2,fp6 /* fp6 = P2 * z + P0 */ |
| mtvsrd v1,r3 |
| fmul fp4,fp4,fp2 /* fp4 = (P3*z + P1)*z */ |
| fmadd fp0,fp0,fp6,fp4 /* fp0 = P(y) */ |
| sldi r8,r8,3 /* Access doublewords from T[j]. */ |
| addi r6,DATA_OFFSET,(.Ttable-.Lanchor) |
| lfdx fp3,r6,r8 |
| fmadd fp0,fp0,fp3,fp3 /* fp0 = T[j] * (1 + T[j]) */ |
| fmul fp1,fp1,fp0 /* fp1 = 2^n * T[j] * (1 + T[j]) */ |
| frsp fp1,fp1 |
| blr |
| END(__ieee754_expf) |
| |
| .section .rodata, "a",@progbits |
| .Lanchor: |
| .balign 8 |
| /* Table T[j] = 2^(j/K). Double precision. */ |
| .Ttable: |
| .8byte 0x3ff0000000000000 |
| .8byte 0x3ff02c9a3e778061 |
| .8byte 0x3ff059b0d3158574 |
| .8byte 0x3ff0874518759bc8 |
| .8byte 0x3ff0b5586cf9890f |
| .8byte 0x3ff0e3ec32d3d1a2 |
| .8byte 0x3ff11301d0125b51 |
| .8byte 0x3ff1429aaea92de0 |
| .8byte 0x3ff172b83c7d517b |
| .8byte 0x3ff1a35beb6fcb75 |
| .8byte 0x3ff1d4873168b9aa |
| .8byte 0x3ff2063b88628cd6 |
| .8byte 0x3ff2387a6e756238 |
| .8byte 0x3ff26b4565e27cdd |
| .8byte 0x3ff29e9df51fdee1 |
| .8byte 0x3ff2d285a6e4030b |
| .8byte 0x3ff306fe0a31b715 |
| .8byte 0x3ff33c08b26416ff |
| .8byte 0x3ff371a7373aa9cb |
| .8byte 0x3ff3a7db34e59ff7 |
| .8byte 0x3ff3dea64c123422 |
| .8byte 0x3ff4160a21f72e2a |
| .8byte 0x3ff44e086061892d |
| .8byte 0x3ff486a2b5c13cd0 |
| .8byte 0x3ff4bfdad5362a27 |
| .8byte 0x3ff4f9b2769d2ca7 |
| .8byte 0x3ff5342b569d4f82 |
| .8byte 0x3ff56f4736b527da |
| .8byte 0x3ff5ab07dd485429 |
| .8byte 0x3ff5e76f15ad2148 |
| .8byte 0x3ff6247eb03a5585 |
| .8byte 0x3ff6623882552225 |
| .8byte 0x3ff6a09e667f3bcd |
| .8byte 0x3ff6dfb23c651a2f |
| .8byte 0x3ff71f75e8ec5f74 |
| .8byte 0x3ff75feb564267c9 |
| .8byte 0x3ff7a11473eb0187 |
| .8byte 0x3ff7e2f336cf4e62 |
| .8byte 0x3ff82589994cce13 |
| .8byte 0x3ff868d99b4492ed |
| .8byte 0x3ff8ace5422aa0db |
| .8byte 0x3ff8f1ae99157736 |
| .8byte 0x3ff93737b0cdc5e5 |
| .8byte 0x3ff97d829fde4e50 |
| .8byte 0x3ff9c49182a3f090 |
| .8byte 0x3ffa0c667b5de565 |
| .8byte 0x3ffa5503b23e255d |
| .8byte 0x3ffa9e6b5579fdbf |
| .8byte 0x3ffae89f995ad3ad |
| .8byte 0x3ffb33a2b84f15fb |
| .8byte 0x3ffb7f76f2fb5e47 |
| .8byte 0x3ffbcc1e904bc1d2 |
| .8byte 0x3ffc199bdd85529c |
| .8byte 0x3ffc67f12e57d14b |
| .8byte 0x3ffcb720dcef9069 |
| .8byte 0x3ffd072d4a07897c |
| .8byte 0x3ffd5818dcfba487 |
| .8byte 0x3ffda9e603db3285 |
| .8byte 0x3ffdfc97337b9b5f |
| .8byte 0x3ffe502ee78b3ff6 |
| .8byte 0x3ffea4afa2a490da |
| .8byte 0x3ffefa1bee615a27 |
| .8byte 0x3fff50765b6e4540 |
| .8byte 0x3fffa7c1819e90d8 |
| |
| .KLN2: |
| .8byte 0x40571547652b82fe /* Double precision K/log(2). */ |
| |
| /* Double precision polynomial coefficients. */ |
| .P0: |
| .8byte 0x3fefffffffffe7c6 |
| .P1: |
| .8byte 0x3fe00000008d6118 |
| .P2: |
| .8byte 0x3fc55550da752d4f |
| .P3: |
| .8byte 0x3fa56420eb78fa85 |
| |
| .RS: |
| .8byte 0x4168000000000000 /* Double precision 2^23 + 2^22. */ |
| .NLN2K: |
| .8byte 0xbf862e42fefa39ef /* Double precision -log(2)/K. */ |
| .DP_EXP_BIAS: |
| .8byte 0x000000000000ffc0 /* Double precision exponent bias. */ |
| |
| .balign 4 |
| .SPone: |
| .4byte 0x3f800000 /* Single precision 1.0. */ |
| .SP_RS: |
| .4byte 0x4b400000 /* Single precision 2^23 + 2^22. */ |
| |
| .SPRANGE: /* Single precision overflow/underflow bounds. */ |
| .4byte 0x42b17217 /* if x>this bound, then result overflows. */ |
| .4byte 0x42cff1b4 /* if x<this bound, then result underflows. */ |
| |
| .SPLARGE_SMALL: |
| .4byte 0x71800000 /* 2^100. */ |
| .4byte 0x0d800000 /* 2^-100. */ |
| |
| .INF_ZERO: |
| .4byte 0x7f800000 /* Single precision Inf. */ |
| .4byte 0 /* Single precision zero. */ |
| |
| strong_alias (__ieee754_expf, __expf_finite) |