blob: e29ecce2f04b499a497a8cd8954ba7a774652d4b [file] [log] [blame]
/*
* R : A Computer Language for Statistical Data Analysis
* Copyright (C) 2001-2014 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*
* Most of this file is C translations of Fortran routines in
* QUADPACK: the latter is part of SLATEC 'and therefore in the public
* domain' (https://en.wikipedia.org/wiki/QUADPACK).
*
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <float.h>
#include <Rmath.h> /* for fmax2, fmin2, imin2 */
#include <R_ext/Applic.h> /* exporting the API , particularly */
/*--- typedef void integr_fn(double *x, int n, void *ex) ---
* vectorizing function f(x[1:n], ...) -> x[] {overwriting x[]}.
* Vectorization can be used to speed up the integrand
* instead of calling it n times.
*/
/* f2c-ed translations + modifications of QUADPACK functions */
static void rdqagie(integr_fn f, void *ex,
double *, int *, double * , double *, int *,
double *, double *, int *,
int *, double *, double *, double *, double *,
int *, int *);
static void rdqk15i(integr_fn f, void *ex,
double *, int *, double * , double *,
double *, double *, double *, double *);
static void rdqagse(integr_fn f, void *ex, double *, double *,
double *, double *, int *, double *, double *,
int *, int *, double *, double *, double *,
double *, int *, int *);
static void rdqk21(integr_fn f, void *ex,
double *, double *, double *, double *, double *, double *);
static void rdqpsrt(int *, int *, int *, double *, double *, int *, int *);
static void rdqelg(int *, double *, double *, double *, double *, int *);
/* Table of constant values */
static double c_b6 = 0.;
static double c_b7 = 1.;
void Rdqagi(integr_fn f, void *ex, double *bound, int *inf,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *limit, int *lenw, int *last,
int *iwork, double *work)
{
int l1, l2, l3;
/*
***begin prologue dqagi
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a3a1,h2a4a1
***keywords automatic integrator, infinite intervals,
general-purpose, transformation, extrapolation,
globally adaptive
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & progr. div. -k.u.leuven
***purpose the routine calculates an approximation result to a given
integral i = integral of f over (bound,+infinity)
or i = integral of f over (-infinity,bound)
or i = integral of f over (-infinity,+infinity)
hopefully satisfying following claim for accuracy
abs(i-result) <= max(epsabs,epsrel*abs(i)).
***description
integration over infinite intervals
standard fortran subroutine
parameters
on entry
f - double precision
function subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the driver program.
bound - double precision
finite bound of integration range
(has no meaning if interval is doubly-infinite)
inf - int
indicating the kind of integration range involved
inf = 1 corresponds to (bound,+infinity),
inf = -1 to (-infinity,bound),
inf = 2 to (-infinity,+infinity).
epsabs - double precision
absolute accuracy requested
epsrel - double precision
relative accuracy requested
if epsabs <= 0
and epsrel < max(50*rel.mach.acc.,0.5d-28),
the routine will end with ier = 6.
on return
result - double precision
approximation to the integral
abserr - double precision
estimate of the modulus of the absolute error,
which should equal or exceed abs(i-result)
neval - int
number of integrand evaluations
ier - int
ier = 0 normal and reliable termination of the
routine. it is assumed that the requested
accuracy has been achieved.
- ier > 0 abnormal termination of the routine. the
estimates for result and error are less
reliable. it is assumed that the requested
accuracy has not been achieved.
error messages
ier = 1 maximum number of subdivisions allowed
has been achieved. one can allow more
subdivisions by increasing the value of
limit (and taking the according dimension
adjustments into account). however, if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties. if
the position of a local difficulty can be
determined (e.g. singularity,
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges. if possible,
an appropriate special-purpose integrator
should be used, which is designed for
handling the type of difficulty involved.
= 2 the occurrence of roundoff error is
detected, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
= 3 extremely bad integrand behaviour occurs
at some points of the integration
interval.
= 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table.
it is assumed that the requested tolerance
cannot be achieved, and that the returned
result is the best which can be obtained.
= 5 the integral is probably divergent, or
slowly convergent. it must be noted that
divergence can occur with any other value
of ier.
= 6 the input is invalid, because
(epsabs <= 0 and
epsrel < max(50*rel.mach.acc.,0.5d-28))
or limit < 1 or leniw < limit*4.
result, abserr, neval, last are set to
zero. exept when limit or leniw is
invalid, iwork(1), work(limit*2+1) and
work(limit*3+1) are set to zero, work(1)
is set to a and work(limit+1) to b.
dimensioning parameters
limit - int
dimensioning parameter for iwork
limit determines the maximum number of subintervals
in the partition of the given integration interval
(a,b), limit >= 1.
if limit < 1, the routine will end with ier = 6.
lenw - int
dimensioning parameter for work
lenw must be at least limit*4.
if lenw < limit*4, the routine will end
with ier = 6.
last - int
on return, last equals the number of subintervals
produced in the subdivision process, which
determines the number of significant elements
actually in the work arrays.
work arrays
iwork - int
vector of dimension at least limit, the first
k elements of which contain pointers
to the error estimates over the subintervals,
such that work(limit*3+iwork(1)),... ,
work(limit*3+iwork(k)) form a decreasing
sequence, with k = last if last <= (limit/2+2), and
k = limit+1-last otherwise
work - double precision
vector of dimension at least lenw
on return
work(1), ..., work(last) contain the left
end points of the subintervals in the
partition of (a,b),
work(limit+1), ..., work(limit+last) contain
the right end points,
work(limit*2+1), ...,work(limit*2+last) contain the
integral approximations over the subintervals,
work(limit*3+1), ..., work(limit*3)
contain the error estimates.
***routines called dqagie
***end prologue dqagi */
*ier = 6;
*neval = 0;
*last = 0;
*result = 0.;
*abserr = 0.;
if (*limit < 1 || *lenw < *limit << 2) return;
l1 = *limit;
l2 = *limit + l1;
l3 = *limit + l2;
rdqagie(f, ex, bound, inf, epsabs, epsrel, limit, result, abserr, neval, ier,
work, &work[l1], &work[l2], &work[l3], iwork, last);
return;
} /* Rdqagi */
static
void rdqagie(integr_fn f, void *ex, double *bound, int *inf, double *
epsabs, double *epsrel, int *limit, double *result,
double *abserr, int *neval, int *ier, double *alist,
double *blist, double *rlist, double *elist, int *
iord, int *last)
{
/* Local variables */
double area, dres;
int ksgn;
double boun;
int nres;
double area1, area2, area12;
int k;
double small = 0.0, erro12;
int ierro;
double a1, a2, b1, b2, defab1, defab2, oflow;
int ktmin, nrmax;
double uflow;
Rboolean noext;
int iroff1, iroff2, iroff3;
double res3la[3], error1, error2;
int id;
double rlist2[52];
int numrl2;
double defabs, epmach, erlarg = 0.0, abseps, correc = 0.0, errbnd, resabs;
int jupbnd;
double erlast, errmax;
int maxerr;
double reseps;
Rboolean extrap;
double ertest = 0.0, errsum;
/**begin prologue dqagie
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a3a1,h2a4a1
***keywords automatic integrator, infinite intervals,
general-purpose, transformation, extrapolation,
globally adaptive
***author piessens,robert,appl. math & progr. div - k.u.leuven
de doncker,elise,appl. math & progr. div - k.u.leuven
***purpose the routine calculates an approximation result to a given
integral i = integral of f over (bound,+infinity)
or i = integral of f over (-infinity,bound)
or i = integral of f over (-infinity,+infinity),
hopefully satisfying following claim for accuracy
abs(i-result) <= max(epsabs,epsrel*abs(i))
***description
integration over infinite intervals
standard fortran subroutine
f - double precision
function subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the driver program.
bound - double precision
finite bound of integration range
(has no meaning if interval is doubly-infinite)
inf - double precision
indicating the kind of integration range involved
inf = 1 corresponds to (bound,+infinity),
inf = -1 to (-infinity,bound),
inf = 2 to (-infinity,+infinity).
epsabs - double precision
absolute accuracy requested
epsrel - double precision
relative accuracy requested
if epsabs <= 0
and epsrel < max(50*rel.mach.acc.,0.5d-28),
the routine will end with ier = 6.
limit - int
gives an upper bound on the number of subintervals
in the partition of (a,b), limit >= 1
on return
result - double precision
approximation to the integral
abserr - double precision
estimate of the modulus of the absolute error,
which should equal or exceed abs(i-result)
neval - int
number of integrand evaluations
ier - int
ier = 0 normal and reliable termination of the
routine. it is assumed that the requested
accuracy has been achieved.
- ier > 0 abnormal termination of the routine. the
estimates for result and error are less
reliable. it is assumed that the requested
accuracy has not been achieved.
error messages
ier = 1 maximum number of subdivisions allowed
has been achieved. one can allow more
subdivisions by increasing the value of
limit (and taking the according dimension
adjustments into account). however,if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties.
if the position of a local difficulty can
be determined (e.g. singularity,
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges. if possible,
an appropriate special-purpose integrator
should be used, which is designed for
handling the type of difficulty involved.
= 2 the occurrence of roundoff error is
detected, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
= 3 extremely bad integrand behaviour occurs
at some points of the integration
interval.
= 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table.
it is assumed that the requested tolerance
cannot be achieved, and that the returned
result is the best which can be obtained.
= 5 the integral is probably divergent, or
slowly convergent. it must be noted that
divergence can occur with any other value
of ier.
= 6 the input is invalid, because
(epsabs <= 0 and
epsrel < max(50*rel.mach.acc.,0.5d-28),
result, abserr, neval, last, rlist(1),
elist(1) and iord(1) are set to zero.
alist(1) and blist(1) are set to 0
and 1 respectively.
alist - double precision
vector of dimension at least limit, the first
last elements of which are the left
end points of the subintervals in the partition
of the transformed integration range (0,1).
blist - double precision
vector of dimension at least limit, the first
last elements of which are the right
end points of the subintervals in the partition
of the transformed integration range (0,1).
rlist - double precision
vector of dimension at least limit, the first
last elements of which are the integral
approximations on the subintervals
elist - double precision
vector of dimension at least limit, the first
last elements of which are the moduli of the
absolute error estimates on the subintervals
iord - int
vector of dimension limit, the first k
elements of which are pointers to the
error estimates over the subintervals,
such that elist(iord(1)), ..., elist(iord(k))
form a decreasing sequence, with k = last
if last <= (limit/2+2), and k = limit+1-last
otherwise
last - int
number of subintervals actually produced
in the subdivision process
***routines called dqelg,dqk15i,dqpsrt
***end prologue dqagie
the dimension of rlist2 is determined by the value of
limexp in subroutine dqelg.
list of major variables
-----------------------
alist - list of left end points of all subintervals
considered up to now
blist - list of right end points of all subintervals
considered up to now
rlist(i) - approximation to the integral over
(alist(i),blist(i))
rlist2 - array of dimension at least (limexp+2),
containing the part of the epsilon table
wich is still needed for further computations
elist(i) - error estimate applying to rlist(i)
maxerr - pointer to the interval with largest error
estimate
errmax - elist(maxerr)
erlast - error on the interval currently subdivided
(before that subdivision has taken place)
area - sum of the integrals over the subintervals
errsum - sum of the errors over the subintervals
errbnd - requested accuracy max(epsabs,epsrel*
abs(result))
*****1 - variable for the left subinterval
*****2 - variable for the right subinterval
last - index for subdivision
nres - number of calls to the extrapolation routine
numrl2 - number of elements currently in rlist2. if an
appropriate approximation to the compounded
integral has been obtained, it is put in
rlist2(numrl2) after numrl2 has been increased
by one.
small - length of the smallest interval considered up
to now, multiplied by 1.5
erlarg - sum of the errors over the intervals larger
than the smallest interval considered up to now
extrap - logical variable denoting that the routine
is attempting to perform extrapolation. i.e.
before subdividing the smallest interval we
try to decrease the value of erlarg.
noext - logical variable denoting that extrapolation
is no longer allowed (true-value)
machine dependent constants
---------------------------
epmach is the largest relative spacing.
uflow is the smallest positive magnitude.
oflow is the largest positive magnitude. */
/* ***first executable statement dqagie */
/* Parameter adjustments */
--iord;
--elist;
--rlist;
--blist;
--alist;
/* Function Body */
epmach = DBL_EPSILON;
/* test on validity of parameters */
/* ----------------------------- */
*ier = 0;
*neval = 0;
*last = 0;
*result = 0.;
*abserr = 0.;
alist[1] = 0.;
blist[1] = 1.;
rlist[1] = 0.;
elist[1] = 0.;
iord[1] = 0;
if (*epsabs <= 0. && (*epsrel < fmax2(epmach * 50., 5e-29))) *ier = 6;
if (*ier == 6) return;
/* first approximation to the integral */
/* ----------------------------------- */
/* determine the interval to be mapped onto (0,1).
if inf = 2 the integral is computed as i = i1+i2, where
i1 = integral of f over (-infinity,0),
i2 = integral of f over (0,+infinity). */
boun = *bound;
if (*inf == 2) {
boun = 0.;
}
rdqk15i(f, ex, &boun, inf, &c_b6, &c_b7, result, abserr, &defabs, &resabs);
/* test on accuracy */
*last = 1;
rlist[1] = *result;
elist[1] = *abserr;
iord[1] = 1;
dres = fabs(*result);
errbnd = fmax2(*epsabs, *epsrel * dres);
if (*abserr <= epmach * 100. * defabs && *abserr > errbnd) *ier = 2;
if (*limit == 1) *ier = 1;
if (*ier != 0 || (*abserr <= errbnd && *abserr != resabs)
|| *abserr == 0.) goto L130;
/* initialization */
/* -------------- */
uflow = DBL_MIN;
oflow = DBL_MAX;
rlist2[0] = *result;
errmax = *abserr;
maxerr = 1;
area = *result;
errsum = *abserr;
*abserr = oflow;
nrmax = 1;
nres = 0;
ktmin = 0;
numrl2 = 2;
extrap = FALSE;
noext = FALSE;
ierro = 0;
iroff1 = 0;
iroff2 = 0;
iroff3 = 0;
ksgn = -1;
if (dres >= (1. - epmach * 50.) * defabs) {
ksgn = 1;
}
/* main do-loop */
/* ------------ */
for (*last = 2; *last <= *limit; ++(*last)) {
/* bisect the subinterval with nrmax-th largest error estimate. */
a1 = alist[maxerr];
b1 = (alist[maxerr] + blist[maxerr]) * .5;
a2 = b1;
b2 = blist[maxerr];
erlast = errmax;
rdqk15i(f, ex, &boun, inf, &a1, &b1, &area1, &error1, &resabs, &defab1);
rdqk15i(f, ex, &boun, inf, &a2, &b2, &area2, &error2, &resabs, &defab2);
/* improve previous approximations to integral
and error and test for accuracy. */
area12 = area1 + area2;
erro12 = error1 + error2;
errsum = errsum + erro12 - errmax;
area = area + area12 - rlist[maxerr];
if (!(defab1 == error1 || defab2 == error2)) {
if (fabs(rlist[maxerr] - area12) <= fabs(area12) * 1e-5 &&
erro12 >= errmax * .99) {
if (extrap)
++iroff2;
else /* if (! extrap) */
++iroff1;
}
if (*last > 10 && erro12 > errmax)
++iroff3;
}
rlist[maxerr] = area1;
rlist[*last] = area2;
errbnd = fmax2(*epsabs, *epsrel * fabs(area));
/* test for roundoff error and eventually set error flag. */
if (iroff1 + iroff2 >= 10 || iroff3 >= 20)
*ier = 2;
if (iroff2 >= 5)
ierro = 3;
/* set error flag in the case that the number of
subintervals equals limit. */
if (*last == *limit)
*ier = 1;
/* set error flag in the case of bad integrand behaviour
at some points of the integration range. */
if (fmax2(fabs(a1), fabs(b2)) <=
(epmach * 100. + 1.) * (fabs(a2) + uflow * 1e3))
{
*ier = 4;
}
/* append the newly-created intervals to the list. */
if (error2 <= error1) {
alist[*last] = a2;
blist[maxerr] = b1;
blist[*last] = b2;
elist[maxerr] = error1;
elist[*last] = error2;
}
else {
alist[maxerr] = a2;
alist[*last] = a1;
blist[*last] = b1;
rlist[maxerr] = area2;
rlist[*last] = area1;
elist[maxerr] = error2;
elist[*last] = error1;
}
/* call subroutine dqpsrt to maintain the descending ordering
in the list of error estimates and select the subinterval
with nrmax-th largest error estimate (to be bisected next). */
rdqpsrt(limit, last, &maxerr, &errmax, &elist[1], &iord[1], &nrmax);
if (errsum <= errbnd) {
goto L115;
}
if (*ier != 0) break;
if (*last == 2) { /* L80: */
small = .375;
erlarg = errsum;
ertest = errbnd;
rlist2[1] = area; continue;
}
if (noext) continue;
erlarg -= erlast;
if (fabs(b1 - a1) > small) {
erlarg += erro12;
}
if (!extrap) {
/* test whether the interval to be bisected next is the
smallest interval. */
if (fabs(blist[maxerr] - alist[maxerr]) > small) {
continue;
}
extrap = TRUE;
nrmax = 2;
}
if (ierro != 3 && erlarg > ertest) {
/* the smallest interval has the largest error.
before bisecting decrease the sum of the errors over the
larger intervals (erlarg) and perform extrapolation. */
id = nrmax;
jupbnd = *last;
if (*last > *limit / 2 + 2) {
jupbnd = *limit + 3 - *last;
}
for (k = id; k <= jupbnd; ++k) {
maxerr = iord[nrmax];
errmax = elist[maxerr];
if (fabs(blist[maxerr] - alist[maxerr]) > small) {
goto L90;
}
++nrmax;
/* L50: */
}
}
/* perform extrapolation. L60: */
++numrl2;
rlist2[numrl2 - 1] = area;
rdqelg(&numrl2, rlist2, &reseps, &abseps, res3la, &nres);
++ktmin;
if (ktmin > 5 && *abserr < errsum * .001) {
*ier = 5;
}
if (abseps >= *abserr) {
goto L70;
}
ktmin = 0;
*abserr = abseps;
*result = reseps;
correc = erlarg;
ertest = fmax2(*epsabs, *epsrel * fabs(reseps));
if (*abserr <= ertest) {
break;
}
/* prepare bisection of the smallest interval. */
L70:
if (numrl2 == 1) {
noext = TRUE;
}
if (*ier == 5) {
break;
}
maxerr = iord[1];
errmax = elist[maxerr];
nrmax = 1;
extrap = FALSE;
small *= .5;
erlarg = errsum;
L90:
;
}
/* L100: set final result and error estimate. */
/* ------------------------------------ */
if (*abserr == oflow) {
goto L115;
}
if (*ier + ierro == 0) {
goto L110;
}
if (ierro == 3) {
*abserr += correc;
}
if (*ier == 0) {
*ier = 3;
}
if (*result == 0. || area == 0.) {
if (*abserr > errsum)
goto L115;
if (area == 0.)
goto L130;
}
else { /* L105: */
if (*abserr / fabs(*result) > errsum / fabs(area)) {
goto L115;
}
}
/* test on divergence */
L110:
if (ksgn == -1 && fmax2(fabs(*result), fabs(area)) <= defabs * .01) {
goto L130;
}
if (.01 > *result / area || *result / area > 100. || errsum > fabs(area)) {
*ier = 6;
}
goto L130;
/* compute global integral sum. */
L115:
*result = 0.;
for (k = 1; k <= *last; ++k)
*result += rlist[k];
*abserr = errsum;
L130:
*neval = *last * 30 - 15;
if (*inf == 2) {
*neval <<= 1;
}
if (*ier > 2) {
--(*ier);
}
return;
} /* rdqagie_ */
void Rdqags(integr_fn f, void *ex, double *a, double *b,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *limit, int *lenw, int *last, int *iwork, double *work)
{
int l1, l2, l3;
/*
***begin prologue dqags
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a1a1
***keywords automatic integrator, general-purpose,
(end-point) singularities, extrapolation,
globally adaptive
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & prog. div. - k.u.leuven
***purpose the routine calculates an approximation result to a given
definite integral i = integral of f over (a,b),
hopefully satisfying following claim for accuracy
abs(i-result) <= max(epsabs,epsrel*abs(i)).
***description
computation of a definite integral
standard fortran subroutine
double precision version
parameters
on entry
f - double precision
function subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the driver program.
a - double precision
lower limit of integration
b - double precision
upper limit of integration
epsabs - double precision
absolute accuracy requested
epsrel - double precision
relative accuracy requested
if epsabs <= 0
and epsrel < max(50*rel.mach.acc.,0.5d-28),
the routine will end with ier = 6.
on return
result - double precision
approximation to the integral
abserr - double precision
estimate of the modulus of the absolute error,
which should equal or exceed abs(i-result)
neval - int
number of integrand evaluations
ier - int
ier = 0 normal and reliable termination of the
routine. it is assumed that the requested
accuracy has been achieved.
ier > 0 abnormal termination of the routine
the estimates for integral and error are
less reliable. it is assumed that the
requested accuracy has not been achieved.
error messages
ier = 1 maximum number of subdivisions allowed
has been achieved. one can allow more sub-
divisions by increasing the value of limit
(and taking the according dimension
adjustments into account. however, if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties. if
the position of a local difficulty can be
determined (e.g. singularity,
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges. if possible,
an appropriate special-purpose integrator
should be used, which is designed for
handling the type of difficulty involved.
= 2 the occurrence of roundoff error is detec-
ted, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
= 3 extremely bad integrand behaviour
occurs at some points of the integration
interval.
= 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table. it is presumed that
the requested tolerance cannot be
achieved, and that the returned result is
the best which can be obtained.
= 5 the integral is probably divergent, or
slowly convergent. it must be noted that
divergence can occur with any other value
of ier.
= 6 the input is invalid, because
(epsabs <= 0 and
epsrel < max(50*rel.mach.acc.,0.5d-28)
or limit < 1 or lenw < limit*4.
result, abserr, neval, last are set to
zero.except when limit or lenw is invalid,
iwork(1), work(limit*2+1) and
work(limit*3+1) are set to zero, work(1)
is set to a and work(limit+1) to b.
dimensioning parameters
limit - int
dimensioning parameter for iwork
limit determines the maximum number of subintervals
in the partition of the given integration interval
(a,b), limit >= 1.
if limit < 1, the routine will end with ier = 6.
lenw - int
dimensioning parameter for work
lenw must be at least limit*4.
if lenw < limit*4, the routine will end
with ier = 6.
last - int
on return, last equals the number of subintervals
produced in the subdivision process, detemines the
number of significant elements actually in the work
arrays.
work arrays
iwork - int
vector of dimension at least limit, the first k
elements of which contain pointers
to the error estimates over the subintervals
such that work(limit*3+iwork(1)),... ,
work(limit*3+iwork(k)) form a decreasing
sequence, with k = last if last <= (limit/2+2),
and k = limit+1-last otherwise
work - double precision
vector of dimension at least lenw
on return
work(1), ..., work(last) contain the left
end-points of the subintervals in the
partition of (a,b),
work(limit+1), ..., work(limit+last) contain
the right end-points,
work(limit*2+1), ..., work(limit*2+last) contain
the integral approximations over the subintervals,
work(limit*3+1), ..., work(limit*3+last)
contain the error estimates.
***routines called dqagse
***end prologue dqags */
/* check validity of limit and lenw. */
*ier = 6;
*neval = 0;
*last = 0;
*result = 0.;
*abserr = 0.;
if (*limit < 1 || *lenw < *limit *4) return;
/* prepare call for dqagse. */
l1 = *limit;
l2 = *limit + l1;
l3 = *limit + l2;
rdqagse(f, ex, a, b, epsabs, epsrel, limit, result, abserr, neval, ier,
work, &work[l1], &work[l2], &work[l3], iwork, last);
return;
} /* rdqags_ */
static
void rdqagse(integr_fn f, void *ex, double *a, double *b, double *
epsabs, double *epsrel, int *limit, double *result,
double *abserr, int *neval, int *ier, double *alist,
double *blist, double *rlist, double *elist, int *
iord, int *last)
{
/* Local variables */
Rboolean noext, extrap;
int k,ksgn, nres;
int ierro;
int ktmin, nrmax;
int iroff1, iroff2, iroff3;
int id;
int numrl2;
int jupbnd;
int maxerr;
double res3la[3];
double rlist2[52];
double abseps, area, area1, area2, area12, dres, epmach;
double a1, a2, b1, b2, defabs, defab1, defab2, oflow, uflow, resabs, reseps;
double error1, error2, erro12, errbnd, erlast, errmax, errsum;
double correc = 0.0, erlarg = 0.0, ertest = 0.0, small = 0.0;
/*
***begin prologue dqagse
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a1a1
***keywords automatic integrator, general-purpose,
(end point) singularities, extrapolation,
globally adaptive
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & progr. div. - k.u.leuven
***purpose the routine calculates an approximation result to a given
definite integral i = integral of f over (a,b),
hopefully satisfying following claim for accuracy
abs(i-result) <= max(epsabs,epsrel*abs(i)).
***description
computation of a definite integral
standard fortran subroutine
double precision version
parameters
on entry
f - double precision
function subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the driver program.
a - double precision
lower limit of integration
b - double precision
upper limit of integration
epsabs - double precision
absolute accuracy requested
epsrel - double precision
relative accuracy requested
if epsabs <= 0
and epsrel < max(50*rel.mach.acc.,0.5d-28),
the routine will end with ier = 6.
limit - int
gives an upperbound on the number of subintervals
in the partition of (a,b)
on return
result - double precision
approximation to the integral
abserr - double precision
estimate of the modulus of the absolute error,
which should equal or exceed abs(i-result)
neval - int
number of integrand evaluations
ier - int
ier = 0 normal and reliable termination of the
routine. it is assumed that the requested
accuracy has been achieved.
ier > 0 abnormal termination of the routine
the estimates for integral and error are
less reliable. it is assumed that the
requested accuracy has not been achieved.
error messages
= 1 maximum number of subdivisions allowed
has been achieved. one can allow more sub-
divisions by increasing the value of limit
(and taking the according dimension
adjustments into account). however, if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties. if
the position of a local difficulty can be
determined (e.g. singularity,
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges. if possible,
an appropriate special-purpose integrator
should be used, which is designed for
handling the type of difficulty involved.
= 2 the occurrence of roundoff error is detec-
ted, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
= 3 extremely bad integrand behaviour
occurs at some points of the integration
interval.
= 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table.
it is presumed that the requested
tolerance cannot be achieved, and that the
returned result is the best which can be
obtained.
= 5 the integral is probably divergent, or
slowly convergent. it must be noted that
divergence can occur with any other value
of ier.
= 6 the input is invalid, because
epsabs <= 0 and
epsrel < max(50*rel.mach.acc.,0.5d-28).
result, abserr, neval, last, rlist(1),
iord(1) and elist(1) are set to zero.
alist(1) and blist(1) are set to a and b
respectively.
alist - double precision
vector of dimension at least limit, the first
last elements of which are the left end points
of the subintervals in the partition of the
given integration range (a,b)
blist - double precision
vector of dimension at least limit, the first
last elements of which are the right end points
of the subintervals in the partition of the given
integration range (a,b)
rlist - double precision
vector of dimension at least limit, the first
last elements of which are the integral
approximations on the subintervals
elist - double precision
vector of dimension at least limit, the first
last elements of which are the moduli of the
absolute error estimates on the subintervals
iord - int
vector of dimension at least limit, the first k
elements of which are pointers to the
error estimates over the subintervals,
such that elist(iord(1)), ..., elist(iord(k))
form a decreasing sequence, with k = last
if last <= (limit/2+2), and k = limit+1-last
otherwise
last - int
number of subintervals actually produced in the
subdivision process
***references (none)
***routines called dqelg,dqk21,dqpsrt
***end prologue dqagse
the dimension of rlist2 is determined by the value of
limexp in subroutine dqelg (rlist2 should be of dimension
(limexp+2) at least).
list of major variables
-----------------------
alist - list of left end points of all subintervals
considered up to now
blist - list of right end points of all subintervals
considered up to now
rlist(i) - approximation to the integral over
(alist(i),blist(i))
rlist2 - array of dimension at least limexp+2 containing
the part of the epsilon table which is still
needed for further computations
elist(i) - error estimate applying to rlist(i)
maxerr - pointer to the interval with largest error
estimate
errmax - elist(maxerr)
erlast - error on the interval currently subdivided
(before that subdivision has taken place)
area - sum of the integrals over the subintervals
errsum - sum of the errors over the subintervals
errbnd - requested accuracy max(epsabs,epsrel*
abs(result))
*****1 - variable for the left interval
*****2 - variable for the right interval
last - index for subdivision
nres - number of calls to the extrapolation routine
numrl2 - number of elements currently in rlist2. if an
appropriate approximation to the compounded
integral has been obtained it is put in
rlist2(numrl2) after numrl2 has been increased
by one.
small - length of the smallest interval considered up
to now, multiplied by 1.5
erlarg - sum of the errors over the intervals larger
than the smallest interval considered up to now
extrap - logical variable denoting that the routine is
attempting to perform extrapolation i.e. before
subdividing the smallest interval we try to
decrease the value of erlarg.
noext - logical variable denoting that extrapolation
is no longer allowed (true value)
machine dependent constants
---------------------------
epmach is the largest relative spacing.
uflow is the smallest positive magnitude.
oflow is the largest positive magnitude. */
/* ***first executable statement dqagse */
/* Parameter adjustments */
--iord;
--elist;
--rlist;
--blist;
--alist;
/* Function Body */
epmach = DBL_EPSILON;
/* test on validity of parameters */
/* ------------------------------ */
*ier = 0;
*neval = 0;
*last = 0;
*result = 0.;
*abserr = 0.;
alist[1] = *a;
blist[1] = *b;
rlist[1] = 0.;
elist[1] = 0.;
if (*epsabs <= 0. && *epsrel < fmax2(epmach * 50., 5e-29)) {
*ier = 6;
return;
}
/* first approximation to the integral */
/* ----------------------------------- */
uflow = DBL_MIN;
oflow = DBL_MAX;
ierro = 0;
rdqk21(f, ex, a, b, result, abserr, &defabs, &resabs);
/* test on accuracy. */
dres = fabs(*result);
errbnd = fmax2(*epsabs, *epsrel * dres);
*last = 1;
rlist[1] = *result;
elist[1] = *abserr;
iord[1] = 1;
if (*abserr <= epmach * 100. * defabs && *abserr > errbnd)
*ier = 2;
if (*limit == 1)
*ier = 1;
if (*ier != 0 || (*abserr <= errbnd && *abserr != resabs)
|| *abserr == 0.) goto L140;
/* initialization */
/* -------------- */
rlist2[0] = *result;
errmax = *abserr;
maxerr = 1;
area = *result;
errsum = *abserr;
*abserr = oflow;
nrmax = 1;
nres = 0;
numrl2 = 2;
ktmin = 0;
extrap = FALSE;
noext = FALSE;
iroff1 = 0;
iroff2 = 0;
iroff3 = 0;
ksgn = -1;
if (dres >= (1. - epmach * 50.) * defabs) {
ksgn = 1;
}
/* main do-loop */
/* ------------ */
for (*last = 2; *last <= *limit; ++(*last)) {
/* bisect the subinterval with the nrmax-th largest error estimate. */
a1 = alist[maxerr];
b1 = (alist[maxerr] + blist[maxerr]) * .5;
a2 = b1;
b2 = blist[maxerr];
erlast = errmax;
rdqk21(f, ex, &a1, &b1, &area1, &error1, &resabs, &defab1);
rdqk21(f, ex, &a2, &b2, &area2, &error2, &resabs, &defab2);
/* improve previous approximations to integral
and error and test for accuracy. */
area12 = area1 + area2;
erro12 = error1 + error2;
errsum = errsum + erro12 - errmax;
area = area + area12 - rlist[maxerr];
if (!(defab1 == error1 || defab2 == error2)) {
if (fabs(rlist[maxerr] - area12) <= fabs(area12) * 1e-5 &&
erro12 >= errmax * .99) {
if (extrap)
++iroff2;
else /* if(! extrap) */
++iroff1;
}
if (*last > 10 && erro12 > errmax)
++iroff3;
}
rlist[maxerr] = area1;
rlist[*last] = area2;
errbnd = fmax2(*epsabs, *epsrel * fabs(area));
/* test for roundoff error and eventually set error flag. */
if (iroff1 + iroff2 >= 10 || iroff3 >= 20)
*ier = 2;
if (iroff2 >= 5)
ierro = 3;
/* set error flag in the case that the number of subintervals equals limit. */
if (*last == *limit)
*ier = 1;
/* set error flag in the case of bad integrand behaviour
at a point of the integration range. */
if (fmax2(fabs(a1), fabs(b2)) <=
(epmach * 100. + 1.) * (fabs(a2) + uflow * 1e3)) {
*ier = 4;
}
/* append the newly-created intervals to the list. */
if (error2 > error1) {
alist[maxerr] = a2;
alist[*last] = a1;
blist[*last] = b1;
rlist[maxerr] = area2;
rlist[*last] = area1;
elist[maxerr] = error2;
elist[*last] = error1;
} else {
alist[*last] = a2;
blist[maxerr] = b1;
blist[*last] = b2;
elist[maxerr] = error1;
elist[*last] = error2;
}
/* call subroutine dqpsrt to maintain the descending ordering
in the list of error estimates and select the subinterval
with nrmax-th largest error estimate (to be bisected next). */
/*L30:*/
rdqpsrt(limit, last, &maxerr, &errmax, &elist[1], &iord[1], &nrmax);
if (errsum <= errbnd) goto L115;/* ***jump out of do-loop */
if (*ier != 0) break;
if (*last == 2) { /* L80: */
small = fabs(*b - *a) * .375;
erlarg = errsum;
ertest = errbnd;
rlist2[1] = area; continue;
}
if (noext) continue;
erlarg -= erlast;
if (fabs(b1 - a1) > small) {
erlarg += erro12;
}
if (!extrap) {
/* test whether the interval to be bisected next is the
smallest interval. */
if (fabs(blist[maxerr] - alist[maxerr]) > small) {
continue;
}
extrap = TRUE;
nrmax = 2;
}
if (ierro != 3 && erlarg > ertest) {
/* the smallest interval has the largest error.
before bisecting decrease the sum of the errors over the
larger intervals (erlarg) and perform extrapolation. */
id = nrmax;
jupbnd = *last;
if (*last > *limit / 2 + 2) {
jupbnd = *limit + 3 - *last;
}
for (k = id; k <= jupbnd; ++k) {
maxerr = iord[nrmax];
errmax = elist[maxerr];
if (fabs(blist[maxerr] - alist[maxerr]) > small) {
goto L90;
}
++nrmax;
/* L50: */
}
}
/* perform extrapolation. L60: */
++numrl2;
rlist2[numrl2 - 1] = area;
rdqelg(&numrl2, rlist2, &reseps, &abseps, res3la, &nres);
++ktmin;
if (ktmin > 5 && *abserr < errsum * .001) {
*ier = 5;
}
if (abseps < *abserr) {
ktmin = 0;
*abserr = abseps;
*result = reseps;
correc = erlarg;
ertest = fmax2(*epsabs, *epsrel * fabs(reseps));
if (*abserr <= ertest) {
break;
}
}
/* prepare bisection of the smallest interval. L70: */
if (numrl2 == 1) {
noext = TRUE;
}
if (*ier == 5) {
break;
}
maxerr = iord[1];
errmax = elist[maxerr];
nrmax = 1;
extrap = FALSE;
small *= .5;
erlarg = errsum;
L90:
;
}
/* L100: set final result and error estimate. */
/* ------------------------------------ */
if (*abserr == oflow) goto L115;
if (*ier + ierro == 0) goto L110;
if (ierro == 3)
*abserr += correc;
if (*ier == 0)
*ier = 3;
if (*result == 0. || area == 0.) {
if (*abserr > errsum) goto L115;
if (area == 0.) goto L130;
}
else { /* L105:*/
if (*abserr / fabs(*result) > errsum / fabs(area))
goto L115;
}
L110:/* test on divergence. */
if (ksgn == -1 && fmax2(fabs(*result), fabs(area)) <= defabs * .01) {
goto L130;
}
if (.01 > *result / area || *result / area > 100. || errsum > fabs(area)) {
*ier = 5;
}
goto L130;
L115:/* compute global integral sum. */
*result = 0.;
for (k = 1; k <= *last; ++k)
*result += rlist[k];
*abserr = errsum;
L130:
if (*ier > 2)
L140:
*neval = *last * 42 - 21;
return;
} /* rdqagse_ */
static void rdqk15i(integr_fn f, void *ex,
double *boun, int *inf, double *a, double *b,
double *result,
double *abserr, double *resabs, double *resasc)
{
/* Initialized data */
static double wg[8] = {
0., .129484966168869693270611432679082,
0., .27970539148927666790146777142378,
0., .381830050505118944950369775488975,
0., .417959183673469387755102040816327 };
static double xgk[8] = {
.991455371120812639206854697526329,
.949107912342758524526189684047851,
.864864423359769072789712788640926,
.741531185599394439863864773280788,
.58608723546769113029414483825873,
.405845151377397166906606412076961,
.207784955007898467600689403773245, 0. };
static double wgk[8] = {
.02293532201052922496373200805897,
.063092092629978553290700663189204,
.104790010322250183839876322541518,
.140653259715525918745189590510238,
.16900472663926790282658342659855,
.190350578064785409913256402421014,
.204432940075298892414161999234649,
.209482141084727828012999174891714 };
/* Local variables */
double absc, dinf, resg, resk, fsum, absc1, absc2, fval1, fval2;
int j;
double hlgth, centr, reskh, uflow;
double tabsc1, tabsc2, fc, epmach;
double fv1[7], fv2[7], vec[15], vec2[15];
/*
***begin prologue dqk15i
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a3a2,h2a4a2
***keywords 15-point transformed gauss-kronrod rules
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & progr. div. - k.u.leuven
***purpose the original (infinite integration range is mapped
onto the interval (0,1) and (a,b) is a part of (0,1).
it is the purpose to compute
i = integral of transformed integrand over (a,b),
j = integral of abs(transformed integrand) over (a,b).
***description
integration rule
standard fortran subroutine
double precision version
parameters
on entry
f - double precision
fuction subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the calling program.
boun - double precision
finite bound of original integration
range (set to zero if inf = +2)
inf - int
if inf = -1, the original interval is
(-infinity,bound),
if inf = +1, the original interval is
(bound,+infinity),
if inf = +2, the original interval is
(-infinity,+infinity) and
the integral is computed as the sum of two
integrals, one over (-infinity,0) and one over
(0,+infinity).
a - double precision
lower limit for integration over subrange
of (0,1)
b - double precision
upper limit for integration over subrange
of (0,1)
on return
result - double precision
approximation to the integral i
result is computed by applying the 15-point
kronrod rule(resk) obtained by optimal addition
of abscissae to the 7-point gauss rule(resg).
abserr - double precision
estimate of the modulus of the absolute error,
which should equal or exceed abs(i-result)
resabs - double precision
approximation to the integral j
resasc - double precision
approximation to the integral of
abs((transformed integrand)-i/(b-a)) over (a,b)
***references (none)
***end prologue dqk15i
the abscissae and weights are supplied for the interval
(-1,1). because of symmetry only the positive abscissae and
their corresponding weights are given.
xgk - abscissae of the 15-point kronrod rule
xgk(2), xgk(4), ... abscissae of the 7-point
gauss rule
xgk(1), xgk(3), ... abscissae which are optimally
added to the 7-point gauss rule
wgk - weights of the 15-point kronrod rule
wg - weights of the 7-point gauss rule, corresponding
to the abscissae xgk(2), xgk(4), ...
wg(1), wg(3), ... are set to zero.
list of major variables
-----------------------
centr - mid point of the interval
hlgth - half-length of the interval
absc* - abscissa
tabsc* - transformed abscissa
fval* - function value
resg - result of the 7-point gauss formula
resk - result of the 15-point kronrod formula
reskh - approximation to the mean value of the transformed
integrand over (a,b), i.e. to i/(b-a)
machine dependent constants
---------------------------
epmach is the largest relative spacing.
uflow is the smallest positive magnitude.
*/
/* ***first executable statement dqk15i */
epmach = DBL_EPSILON;
uflow = DBL_MIN;
dinf = (double) imin2(1, *inf);
centr = (*a + *b) * .5;
hlgth = (*b - *a) * .5;
tabsc1 = *boun + dinf * (1. - centr) / centr;
vec[0] = tabsc1;
if (*inf == 2) {
vec2[0] = -tabsc1;
}
for (j = 1; j <= 7; ++j) {
absc = hlgth * xgk[j - 1];
absc1 = centr - absc;
absc2 = centr + absc;
tabsc1 = *boun + dinf * (1. - absc1) / absc1;
tabsc2 = *boun + dinf * (1. - absc2) / absc2;
vec[(j << 1) - 1] = tabsc1;
vec[j * 2] = tabsc2;
if (*inf == 2) {
vec2[(j << 1) - 1] = -tabsc1;
vec2[j * 2] = -tabsc2;
}
/* L5: */
}
f(vec, 15, ex); /* -> new vec[] overwriting old vec[] */
if (*inf == 2) f(vec2, 15, ex);
fval1 = vec[0];
if (*inf == 2) fval1 += vec2[0];
fc = fval1 / centr / centr;
/* compute the 15-point kronrod approximation to
the integral, and estimate the error. */
resg = wg[7] * fc;
resk = wgk[7] * fc;
*resabs = fabs(resk);
for (j = 1; j <= 7; ++j) {
absc = hlgth * xgk[j - 1];
absc1 = centr - absc;
absc2 = centr + absc;
tabsc1 = *boun + dinf * (1. - absc1) / absc1;
tabsc2 = *boun + dinf * (1. - absc2) / absc2;
fval1 = vec[(j << 1) - 1];
fval2 = vec[j * 2];
if (*inf == 2) {
fval1 += vec2[(j << 1) - 1];
}
if (*inf == 2) {
fval2 += vec2[j * 2];
}
fval1 = fval1 / absc1 / absc1;
fval2 = fval2 / absc2 / absc2;
fv1[j - 1] = fval1;
fv2[j - 1] = fval2;
fsum = fval1 + fval2;
resg += wg[j - 1] * fsum;
resk += wgk[j - 1] * fsum;
*resabs += wgk[j - 1] * (fabs(fval1) + fabs(fval2));
/* L10: */
}
reskh = resk * .5;
*resasc = wgk[7] * fabs(fc - reskh);
for (j = 1; j <= 7; ++j) {
*resasc += wgk[j - 1] * (fabs(fv1[j - 1] - reskh) +
fabs(fv2[j - 1] - reskh));
/* L20: */
}
*result = resk * hlgth;
*resasc *= hlgth;
*resabs *= hlgth;
*abserr = fabs((resk - resg) * hlgth);
if (*resasc != 0. && *abserr != 0.) {
*abserr = *resasc * fmin2(1., pow(*abserr * 200. / *resasc, 1.5));
}
if (*resabs > uflow / (epmach * 50.)) {
*abserr = fmax2(epmach * 50. * *resabs, *abserr);
}
return;
} /* rdqk15i_ */
static void rdqelg(int *n, double *epstab, double *
result, double *abserr, double *res3la, int *nres)
{
/* Local variables */
int i__, indx, ib, ib2, ie, k1, k2, k3, num, newelm, limexp;
double delta1, delta2, delta3, e0, e1, e1abs, e2, e3, epmach, epsinf;
double oflow, ss, res;
double errA, err1, err2, err3, tol1, tol2, tol3;
/* ***begin prologue dqelg
***refer to dqagie,dqagoe,dqagpe,dqagse
***revision date 830518 (yymmdd)
***keywords epsilon algorithm, convergence acceleration,
extrapolation
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math & progr. div. - k.u.leuven
***purpose the routine determines the limit of a given sequence of
approximations, by means of the epsilon algorithm of
p.wynn. an estimate of the absolute error is also given.
the condensed epsilon table is computed. only those
elements needed for the computation of the next diagonal
are preserved.
***description
epsilon algorithm
standard fortran subroutine
double precision version
parameters
n - int
epstab(n) contains the new element in the
first column of the epsilon table.
epstab - double precision
vector of dimension 52 containing the elements
of the two lower diagonals of the triangular
epsilon table. the elements are numbered
starting at the right-hand corner of the
triangle.
result - double precision
resulting approximation to the integral
abserr - double precision
estimate of the absolute error computed from
result and the 3 previous results
res3la - double precision
vector of dimension 3 containing the last 3
results
nres - int
number of calls to the routine
(should be zero at first call)
***end prologue dqelg
list of major variables
-----------------------
e0 - the 4 elements on which the computation of a new
e1 element in the epsilon table is based
e2
e3 e0
e3 e1 new
e2
newelm - number of elements to be computed in the new diagonal
errA - errA = abs(e1-e0)+abs(e2-e1)+abs(new-e2)
result - the element in the new diagonal with least value of errA
machine dependent constants
---------------------------
epmach is the largest relative spacing.
oflow is the largest positive magnitude.
limexp is the maximum number of elements the epsilon
table can contain. if this number is reached, the upper
diagonal of the epsilon table is deleted. */
/* ***first executable statement dqelg */
/* Parameter adjustments */
--res3la;
--epstab;
/* Function Body */
epmach = DBL_EPSILON;
oflow = DBL_MAX;
++(*nres);
*abserr = oflow;
*result = epstab[*n];
if (*n < 3) {
goto L100;
}
limexp = 50;
epstab[*n + 2] = epstab[*n];
newelm = (*n - 1) / 2;
epstab[*n] = oflow;
num = *n;
k1 = *n;
for (i__ = 1; i__ <= newelm; ++i__) {
k2 = k1 - 1;
k3 = k1 - 2;
res = epstab[k1 + 2];
e0 = epstab[k3];
e1 = epstab[k2];
e2 = res;
e1abs = fabs(e1);
delta2 = e2 - e1;
err2 = fabs(delta2);
tol2 = fmax2(fabs(e2), e1abs) * epmach;
delta3 = e1 - e0;
err3 = fabs(delta3);
tol3 = fmax2(e1abs, fabs(e0)) * epmach;
if (err2 <= tol2 && err3 <= tol3) {
/* if e0, e1 and e2 are equal to within machine
accuracy, convergence is assumed. */
*result = res;/* result = e2 */
*abserr = err2 + err3;/* abserr = fabs(e1-e0)+fabs(e2-e1) */
goto L100; /* ***jump out of do-loop */
}
e3 = epstab[k1];
epstab[k1] = e1;
delta1 = e1 - e3;
err1 = fabs(delta1);
tol1 = fmax2(e1abs, fabs(e3)) * epmach;
/* if two elements are very close to each other, omit
a part of the table by adjusting the value of n */
if (err1 > tol1 && err2 > tol2 && err3 > tol3) {
ss = 1. / delta1 + 1. / delta2 - 1. / delta3;
epsinf = fabs(ss * e1);
/* test to detect irregular behaviour in the table, and
eventually omit a part of the table adjusting the value of n. */
if (epsinf > 1e-4) {
goto L30;
}
}
*n = i__ + i__ - 1;
goto L50;/* ***jump out of do-loop */
L30:/* compute a new element and eventually adjust the value of result. */
res = e1 + 1. / ss;
epstab[k1] = res;
k1 += -2;
errA = err2 + fabs(res - e2) + err3;
if (errA <= *abserr) {
*abserr = errA;
*result = res;
}
}
/* shift the table. */
L50:
if (*n == limexp) {
*n = (limexp / 2 << 1) - 1;
}
if (num / 2 << 1 == num) ib = 2; else ib = 1;
ie = newelm + 1;
for (i__ = 1; i__ <= ie; ++i__) {
ib2 = ib + 2;
epstab[ib] = epstab[ib2];
ib = ib2;
}
if (num != *n) {
indx = num - *n + 1;
for (i__ = 1; i__ <= *n; ++i__) {
epstab[i__] = epstab[indx];
++indx;
}
}
/*L80:*/
if (*nres >= 4) {
/* L90: */
*abserr = fabs(*result - res3la[3]) +
fabs(*result - res3la[2]) +
fabs(*result - res3la[1]);
res3la[1] = res3la[2];
res3la[2] = res3la[3];
res3la[3] = *result;
} else {
res3la[*nres] = *result;
*abserr = oflow;
}
L100:/* compute error estimate */
*abserr = fmax2(*abserr, epmach * 5. * fabs(*result));
return;
} /* rdqelg_ */
static void rdqk21(integr_fn f, void *ex, double *a, double *b, double *result,
double *abserr, double *resabs, double *resasc)
{
/* Initialized data */
static double wg[5] = { .066671344308688137593568809893332,
.149451349150580593145776339657697,
.219086362515982043995534934228163,
.269266719309996355091226921569469,
.295524224714752870173892994651338 };
static double xgk[11] = { .995657163025808080735527280689003,
.973906528517171720077964012084452,
.930157491355708226001207180059508,
.865063366688984510732096688423493,
.780817726586416897063717578345042,
.679409568299024406234327365114874,
.562757134668604683339000099272694,
.433395394129247190799265943165784,
.294392862701460198131126603103866,
.14887433898163121088482600112972,0. };
static double wgk[11] = { .011694638867371874278064396062192,
.03255816230796472747881897245939,
.05475589657435199603138130024458,
.07503967481091995276704314091619,
.093125454583697605535065465083366,
.109387158802297641899210590325805,
.123491976262065851077958109831074,
.134709217311473325928054001771707,
.142775938577060080797094273138717,
.147739104901338491374841515972068,
.149445554002916905664936468389821 };
/* Local variables */
double fv1[10], fv2[10], vec[21];
double absc, resg, resk, fsum, fval1, fval2;
double hlgth, centr, reskh, uflow;
double fc, epmach, dhlgth;
int j, jtw, jtwm1;
/* ***begin prologue dqk21
***date written 800101 (yymmdd)
***revision date 830518 (yymmdd)
***category no. h2a1a2
***keywords 21-point gauss-kronrod rules
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & progr. div. - k.u.leuven
***purpose to compute i = integral of f over (a,b), with error
estimate
j = integral of abs(f) over (a,b)
***description
integration rules
standard fortran subroutine
double precision version
parameters
on entry
f - double precision
function subprogram defining the integrand
function f(x). the actual name for f needs to be
declared e x t e r n a l in the driver program.
a - double precision
lower limit of integration
b - double precision
upper limit of integration
on return
result - double precision
approximation to the integral i
result is computed by applying the 21-point
kronrod rule (resk) obtained by optimal addition
of abscissae to the 10-point gauss rule (resg).
abserr - double precision
estimate of the modulus of the absolute error,
which should not exceed abs(i-result)
resabs - double precision
approximation to the integral j
resasc - double precision
approximation to the integral of abs(f-i/(b-a))
over (a,b)
***references (none)
***end prologue dqk21
the abscissae and weights are given for the interval (-1,1).
because of symmetry only the positive abscissae and their
corresponding weights are given.
xgk - abscissae of the 21-point kronrod rule
xgk(2), xgk(4), ... abscissae of the 10-point
gauss rule
xgk(1), xgk(3), ... abscissae which are optimally
added to the 10-point gauss rule
wgk - weights of the 21-point kronrod rule
wg - weights of the 10-point gauss rule
gauss quadrature weights and kronron quadrature abscissae and weights
as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
bell labs, nov. 1981.
list of major variables
-----------------------
centr - mid point of the interval
hlgth - half-length of the interval
absc - abscissa
fval* - function value
resg - result of the 10-point gauss formula
resk - result of the 21-point kronrod formula
reskh - approximation to the mean value of f over (a,b),
i.e. to i/(b-a)
machine dependent constants
---------------------------
epmach is the largest relative spacing.
uflow is the smallest positive magnitude. */
/* ***first executable statement dqk21 */
epmach = DBL_EPSILON;
uflow = DBL_MIN;
centr = (*a + *b) * .5;
hlgth = (*b - *a) * .5;
dhlgth = fabs(hlgth);
/* compute the 21-point kronrod approximation to
the integral, and estimate the absolute error. */
resg = 0.;
vec[0] = centr;
for (j = 1; j <= 5; ++j) {
jtw = j << 1;
absc = hlgth * xgk[jtw - 1];
vec[(j << 1) - 1] = centr - absc;
/* L5: */
vec[j * 2] = centr + absc;
}
for (j = 1; j <= 5; ++j) {
jtwm1 = (j << 1) - 1;
absc = hlgth * xgk[jtwm1 - 1];
vec[(j << 1) + 9] = centr - absc;
vec[(j << 1) + 10] = centr + absc;
}
f(vec, 21, ex);
fc = vec[0];
resk = wgk[10] * fc;
*resabs = fabs(resk);
for (j = 1; j <= 5; ++j) {
jtw = j << 1;
absc = hlgth * xgk[jtw - 1];
fval1 = vec[(j << 1) - 1];
fval2 = vec[j * 2];
fv1[jtw - 1] = fval1;
fv2[jtw - 1] = fval2;
fsum = fval1 + fval2;
resg += wg[j - 1] * fsum;
resk += wgk[jtw - 1] * fsum;
*resabs += wgk[jtw - 1] * (fabs(fval1) + fabs(fval2));
/* L10: */
}
for (j = 1; j <= 5; ++j) {
jtwm1 = (j << 1) - 1;
absc = hlgth * xgk[jtwm1 - 1];
fval1 = vec[(j << 1) + 9];
fval2 = vec[(j << 1) + 10];
fv1[jtwm1 - 1] = fval1;
fv2[jtwm1 - 1] = fval2;
fsum = fval1 + fval2;
resk += wgk[jtwm1 - 1] * fsum;
*resabs += wgk[jtwm1 - 1] * (fabs(fval1) + fabs(fval2));
/* L15: */
}
reskh = resk * .5;
*resasc = wgk[10] * fabs(fc - reskh);
for (j = 1; j <= 10; ++j) {
*resasc += wgk[j - 1] * (fabs(fv1[j - 1] - reskh) +
fabs(fv2[j - 1] - reskh));
/* L20: */
}
*result = resk * hlgth;
*resabs *= dhlgth;
*resasc *= dhlgth;
*abserr = fabs((resk - resg) * hlgth);
if (*resasc != 0. && *abserr != 0.) {
*abserr = *resasc * fmin2(1., pow(*abserr * 200. / *resasc, 1.5));
}
if (*resabs > uflow / (epmach * 50.)) {
*abserr = fmax2(epmach * 50. * *resabs, *abserr);
}
return;
} /* rdqk21_ */
static void rdqpsrt(int *limit, int *last, int *maxerr,
double *ermax, double *elist, int *iord, int *nrmax)
{
/* Local variables */
int i, j, k, ido, jbnd, isucc, jupbn;
double errmin, errmax;
/* ***begin prologue dqpsrt
***refer to dqage,dqagie,dqagpe,dqawse
***routines called (none)
***revision date 810101 (yymmdd)
***keywords sequential sorting
***author piessens,robert,appl. math. & progr. div. - k.u.leuven
de doncker,elise,appl. math. & progr. div. - k.u.leuven
***purpose this routine maintains the descending ordering in the
list of the local error estimated resulting from the
interval subdivision process. at each call two error
estimates are inserted using the sequential search
method, top-down for the largest error estimate and
bottom-up for the smallest error estimate.
***description
ordering routine
standard fortran subroutine
double precision version
parameters (meaning at output)
limit - int
maximum number of error estimates the list
can contain
last - int
number of error estimates currently in the list
maxerr - int
maxerr points to the nrmax-th largest error
estimate currently in the list
ermax - double precision
nrmax-th largest error estimate
ermax = elist(maxerr)
elist - double precision
vector of dimension last containing
the error estimates
iord - int
vector of dimension last, the first k elements
of which contain pointers to the error
estimates, such that
elist(iord(1)),..., elist(iord(k))
form a decreasing sequence, with
k = last if last <= (limit/2+2), and
k = limit+1-last otherwise
nrmax - int
maxerr = iord(nrmax)
***end prologue dqpsrt
*/
/* Parameter adjustments */
--iord;
--elist;
/* Function Body */
/* check whether the list contains more than
two error estimates. */
if (*last <= 2) {
iord[1] = 1;
iord[2] = 2;
goto Last;
}
/* this part of the routine is only executed if, due to a
difficult integrand, subdivision increased the error
estimate. in the normal case the insert procedure should
start after the nrmax-th largest error estimate. */
errmax = elist[*maxerr];
if (*nrmax > 1) {
ido = *nrmax - 1;
for (i = 1; i <= ido; ++i) {
isucc = iord[*nrmax - 1];
if (errmax <= elist[isucc])
break; /* out of for-loop */
iord[*nrmax] = isucc;
--(*nrmax);
/* L20: */
}
}
/*L30: compute the number of elements in the list to be maintained
in descending order. this number depends on the number of
subdivisions still allowed. */
if (*last > *limit / 2 + 2)
jupbn = *limit + 3 - *last;
else
jupbn = *last;
errmin = elist[*last];
/* insert errmax by traversing the list top-down,
starting comparison from the element elist(iord(nrmax+1)). */
jbnd = jupbn - 1;
for (i = *nrmax + 1; i <= jbnd; ++i) {
isucc = iord[i];
if (errmax >= elist[isucc]) {/* ***jump out of do-loop */
/* L60: insert errmin by traversing the list bottom-up. */
iord[i - 1] = *maxerr;
for (j = i, k = jbnd; j <= jbnd; j++, k--) {
isucc = iord[k];
if (errmin < elist[isucc]) {
/* goto L80; ***jump out of do-loop */
iord[k + 1] = *last;
goto Last;
}
iord[k + 1] = isucc;
}
iord[i] = *last;
goto Last;
}
iord[i - 1] = isucc;
}
iord[jbnd] = *maxerr;
iord[jupbn] = *last;
Last:/* set maxerr and ermax. */
*maxerr = iord[*nrmax];
*ermax = elist[*maxerr];
return;
} /* rdqpsrt_ */