blob: 4bc8f9e52bb30f1725954bac0d257de8fbc41c20 [file] [log] [blame]
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 2000-2018 The R Core Team
* Copyright (C) 1998 Ross Ihaka
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double lgammafn_sign(double x, int *sgn);
* double lgammafn(double x);
*
* DESCRIPTION
*
* The function lgammafn computes log|gamma(x)|. The function
* lgammafn_sign in addition assigns the sign of the gamma function
* to the address in the second argument if this is not NULL.
*
* NOTES
*
* This routine is a translation into C of a Fortran subroutine
* by W. Fullerton of Los Alamos Scientific Laboratory.
*
* The accuracy of this routine compares (very) favourably
* with those of the Sun Microsystems portable mathematical
* library.
*/
#include "nmath.h"
double lgammafn_sign(double x, int *sgn)
{
double ans, y, sinpiy;
#ifdef NOMORE_FOR_THREADS
static double xmax = 0.;
static double dxrel = 0.;
if (xmax == 0) {/* initialize machine dependent constants _ONCE_ */
xmax = d1mach(2)/log(d1mach(2));/* = 2.533 e305 for IEEE double */
dxrel = sqrt (d1mach(4));/* sqrt(Eps) ~ 1.49 e-8 for IEEE double */
}
#else
/* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 :
xmax = DBL_MAX / log(DBL_MAX) = 2^1024 / (1024 * log(2)) = 2^1014 / log(2)
dxrel = sqrt(DBL_EPSILON) = 2^-26 = 5^26 * 1e-26 (is *exact* below !)
*/
#define xmax 2.5327372760800758e+305
#define dxrel 1.490116119384765625e-8
#endif
if (sgn != NULL) *sgn = 1;
#ifdef IEEE_754
if(ISNAN(x)) return x;
#endif
if (sgn != NULL && x < 0 && fmod(floor(-x), 2.) == 0)
*sgn = -1;
if (x <= 0 && x == trunc(x)) { /* Negative integer argument */
// No warning: this is the best answer; was ML_ERROR(ME_RANGE, "lgamma");
return ML_POSINF;/* +Inf, since lgamma(x) = log|gamma(x)| */
}
y = fabs(x);
if (y < 1e-306) return -log(y); // denormalized range, R change
if (y <= 10) return log(fabs(gammafn(x)));
/*
ELSE y = |x| > 10 ---------------------- */
if (y > xmax) {
// No warning: +Inf is the best answer
return ML_POSINF;
}
if (x > 0) { /* i.e. y = x > 10 */
#ifdef IEEE_754
if(x > 1e17)
return(x*(log(x) - 1.));
else if(x > 4934720.)
return(M_LN_SQRT_2PI + (x - 0.5) * log(x) - x);
else
#endif
return M_LN_SQRT_2PI + (x - 0.5) * log(x) - x + lgammacor(x);
}
/* else: x < -10; y = -x */
sinpiy = fabs(sinpi(y));
if (sinpiy == 0) { /* Negative integer argument ===
Now UNNECESSARY: caught above */
MATHLIB_WARNING(" ** should NEVER happen! *** [lgamma.c: Neg.int, y=%g]\n",y);
ML_ERR_return_NAN;
}
ans = M_LN_SQRT_PId2 + (x - 0.5) * log(y) - x - log(sinpiy) - lgammacor(y);
if(fabs((x - trunc(x - 0.5)) * ans / x) < dxrel) {
/* The answer is less than half precision because
* the argument is too near a negative integer. */
ML_ERROR(ME_PRECISION, "lgamma");
}
return ans;
}
double lgammafn(double x)
{
return lgammafn_sign(x, NULL);
}