blob: 7736299eda411c646ddc57eb7949a8a1a99829e9 [file] [log] [blame]
% File src/library/stats/man/Cauchy.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2014 R Core Team
% Distributed under GPL 2 or later
\name{Cauchy}
\alias{Cauchy}
\alias{dcauchy}
\alias{pcauchy}
\alias{qcauchy}
\alias{rcauchy}
\title{The Cauchy Distribution}
\description{
Density, distribution function, quantile function and random
generation for the Cauchy distribution with location parameter
\code{location} and scale parameter \code{scale}.
}
\usage{
dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)
}
\arguments{
\item{x, q}{vector of quantiles.}
\item{p}{vector of probabilities.}
\item{n}{number of observations. If \code{length(n) > 1}, the length
is taken to be the number required.}
\item{location, scale}{location and scale parameters.}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dcauchy}, \code{pcauchy}, and \code{qcauchy} are respectively
the density, distribution function and quantile function of the Cauchy
distribution. \code{rcauchy} generates random deviates from the
Cauchy.
The length of the result is determined by \code{n} for
\code{rcauchy}, and is the maximum of the lengths of the
numerical arguments for the other functions.
The numerical arguments other than \code{n} are recycled to the
length of the result. Only the first elements of the logical
arguments are used.
}
\details{
If \code{location} or \code{scale} are not specified, they assume
the default values of \code{0} and \code{1} respectively.
The Cauchy distribution with location \eqn{l} and scale \eqn{s} has
density
\deqn{f(x) = \frac{1}{\pi s}
\left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}%
}{f(x) = 1 / (\pi s (1 + ((x-l)/s)^2))}
for all \eqn{x}.
}
\source{
\code{dcauchy}, \code{pcauchy} and \code{qcauchy} are all calculated
from numerically stable versions of the definitions.
\code{rcauchy} uses inversion.
}
\references{
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
\emph{The New S Language}.
Wadsworth & Brooks/Cole.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)
\emph{Continuous Univariate Distributions}, volume 1, chapter 16.
Wiley, New York.
}
\seealso{
\link{Distributions} for other standard distributions, including
\code{\link{dt}} for the t distribution which generalizes
\code{dcauchy(*, l = 0, s = 1)}.
}
\examples{
dcauchy(-1:4)
}
\keyword{distribution}