blob: 89744b1b52d96ff784caa46522be43707b46a7b6 [file] [log] [blame]
% File src/library/stats/man/HoltWinters.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2018 R Core Team
% Distributed under GPL 2 or later
\name{HoltWinters}
\alias{HoltWinters}
\alias{print.HoltWinters}
\alias{residuals.HoltWinters}
\title{Holt-Winters Filtering}
\description{
Computes Holt-Winters Filtering of a given time series.
Unknown parameters are determined by minimizing the squared
prediction error.
}
\usage{
HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = c("additive", "multiplicative"),
start.periods = 2, l.start = NULL, b.start = NULL,
s.start = NULL,
optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
optim.control = list())
}
\arguments{
\item{x}{An object of class \code{ts}}
\item{alpha}{\eqn{alpha} parameter of Holt-Winters Filter.}
\item{beta}{\eqn{beta} parameter of Holt-Winters Filter. If set to
\code{FALSE}, the function will do exponential smoothing.}
\item{gamma}{\eqn{gamma} parameter used for the seasonal component.
If set to \code{FALSE}, an non-seasonal model is fitted.}
\item{seasonal}{Character string to select an \code{"additive"}
(the default) or \code{"multiplicative"} seasonal model. The first
few characters are sufficient. (Only takes effect if
\code{gamma} is non-zero).}
\item{start.periods}{Start periods used in the autodetection of start
values. Must be at least 2.}
\item{l.start}{Start value for level (a[0]).}
\item{b.start}{Start value for trend (b[0]).}
\item{s.start}{Vector of start values for the seasonal component
(\eqn{s_1[0] \ldots s_p[0]}{s_1[0] \dots s_p[0]})}
\item{optim.start}{Vector with named components \code{alpha},
\code{beta}, and \code{gamma} containing the starting values for the
optimizer. Only the values needed must be specified. Ignored in the
one-parameter case.}
\item{optim.control}{Optional list with additional control parameters
passed to \code{optim} if this is used. Ignored in the
one-parameter case.}
}
\details{
The additive Holt-Winters prediction function (for time series with
period length p) is
\deqn{\hat Y[t+h] = a[t] + h b[t] + s[t - p + 1 + (h - 1) \bmod p],}{
Yhat[t+h] = a[t] + h * b[t] + s[t - p + 1 + (h - 1) mod p],}
where \eqn{a[t]}, \eqn{b[t]} and \eqn{s[t]} are given by
\deqn{a[t] = \alpha (Y[t] - s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}{
a[t] = \alpha (Y[t] - s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}
\deqn{b[t] = \beta (a[t] -a[t-1]) + (1-\beta) b[t-1]}{
b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]}
\deqn{s[t] = \gamma (Y[t] - a[t]) + (1-\gamma) s[t-p]}{
s[t] = \gamma (Y[t] - a[t]) + (1-\gamma) s[t-p]}
The multiplicative Holt-Winters prediction function (for time series
with period length p) is
\deqn{\hat Y[t+h] = (a[t] + h b[t]) \times s[t - p + 1 + (h - 1) \bmod p].}{
Yhat[t+h] = (a[t] + h * b[t]) * s[t - p + 1 + (h - 1) mod p],}
where \eqn{a[t]}, \eqn{b[t]} and \eqn{s[t]} are given by
\deqn{a[t] = \alpha (Y[t] / s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}{
a[t] = \alpha (Y[t] / s[t-p]) + (1-\alpha) (a[t-1] + b[t-1])}
\deqn{b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]}{
b[t] = \beta (a[t] - a[t-1]) + (1-\beta) b[t-1]}
\deqn{s[t] = \gamma (Y[t] / a[t]) + (1-\gamma) s[t-p]}{
s[t] = \gamma (Y[t] / a[t]) + (1-\gamma) s[t-p]}
The data in \code{x} are required to be non-zero for a multiplicative
model, but it makes most sense if they are all positive.
The function tries to find the optimal values of \eqn{\alpha} and/or
\eqn{\beta} and/or \eqn{\gamma} by minimizing the squared one-step
prediction error if they are \code{NULL} (the default). \code{optimize}
will be used for the single-parameter case, and \code{optim} otherwise.
For seasonal models, start values for \code{a}, \code{b} and \code{s}
are inferred by performing a simple decomposition in trend and
seasonal component using moving averages (see function
\code{\link{decompose}}) on the \code{start.periods} first periods (a simple
linear regression on the trend component is used for starting level
and trend). For level/trend-models (no seasonal component), start
values for \code{a} and \code{b} are \code{x[2]} and \code{x[2] -
x[1]}, respectively. For level-only models (ordinary exponential
smoothing), the start value for \code{a} is \code{x[1]}.
}
\value{
An object of class \code{"HoltWinters"}, a list with components:
\item{fitted}{A multiple time series with one column for the
filtered series as well as for the level, trend and seasonal
components, estimated contemporaneously (that is at time t and not
at the end of the series).}
\item{x}{The original series}
\item{alpha}{alpha used for filtering}
\item{beta}{beta used for filtering}
\item{gamma}{gamma used for filtering}
\item{coefficients}{A vector with named components \code{a, b, s1, ..., sp}
containing the estimated values for the level, trend and seasonal
components}
\item{seasonal}{The specified \code{seasonal} parameter}
\item{SSE}{The final sum of squared errors achieved in optimizing}
\item{call}{The call used}
}
\references{
C. C. Holt (1957)
Forecasting seasonals and trends by exponentially weighted moving averages,
\emph{ONR Research Memorandum, Carnegie Institute of Technology} \bold{52}.
(reprint at \url{https://doi.org/10.1016/j.ijforecast.2003.09.015}).
P. R. Winters (1960).
Forecasting sales by exponentially weighted moving averages.
\emph{Management Science}, \bold{6}, 324--342.
\doi{10.1287/mnsc.6.3.324}.
}
\author{
David Meyer \email{David.Meyer@wu.ac.at}
}
\seealso{
\code{\link{predict.HoltWinters}}, \code{\link{optim}}.
}
% Differences seen on 32-bit Linux at -O3
\examples{
\dontshow{od <- options(digits = 5)}
require(graphics)
## Seasonal Holt-Winters
(m <- HoltWinters(co2))
plot(m)
plot(fitted(m))
(m <- HoltWinters(AirPassengers, seasonal = "mult"))
plot(m)
## Non-Seasonal Holt-Winters
x <- uspop + rnorm(uspop, sd = 5)
m <- HoltWinters(x, gamma = FALSE)
plot(m)
## Exponential Smoothing
m2 <- HoltWinters(x, gamma = FALSE, beta = FALSE)
lines(fitted(m2)[,1], col = 3)
\dontshow{options(od)}
}
\keyword{ts}