blob: ace4d154d77f8c54a7802815fc942b5168c124db [file] [log] [blame]
% File src/library/stats/man/Multinomal.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2014 R Core Team
% Distributed under GPL 2 or later
\name{Multinom}
\alias{Multinomial}
\alias{rmultinom}
\alias{dmultinom}
\title{The Multinomial Distribution}
\description{
Generate multinomially distributed random number vectors and
compute multinomial probabilities.
}
\usage{
rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)
}
\arguments{
\item{x}{vector of length \eqn{K} of integers in \code{0:size}.}
%%FUTURE: matrix of \eqn{K} rows or ...
\item{n}{number of random vectors to draw.}
\item{size}{integer, say \eqn{N}, specifying the total number
of objects that are put into \eqn{K} boxes in the typical multinomial
experiment. For \code{dmultinom}, it defaults to \code{sum(x)}.}
\item{prob}{numeric non-negative vector of length \eqn{K}, specifying
the probability for the \eqn{K} classes; is internally normalized to
sum 1. Infinite and missing values are not allowed.}
\item{log}{logical; if TRUE, log probabilities are computed.}
}
\note{\code{dmultinom} is currently \emph{not vectorized} at all and has
no C interface (API); this may be amended in the future.% yes, DO THIS!
}
\details{
If \code{x} is a \eqn{K}-component vector, \code{dmultinom(x, prob)}
is the probability
\deqn{P(X_1=x_1,\ldots,X_K=x_k) = C \times \prod_{j=1}^K
\pi_j^{x_j}}{P(X[1]=x[1], \dots , X[K]=x[k]) = C * prod(j=1 , \dots, K) p[j]^x[j]}
where \eqn{C} is the \sQuote{multinomial coefficient}
\eqn{C = N! / (x_1! \cdots x_K!)}{C = N! / (x[1]! * \dots * x[K]!)}
and \eqn{N = \sum_{j=1}^K x_j}{N = sum(j=1, \dots, K) x[j]}.
\cr
By definition, each component \eqn{X_j}{X[j]} is binomially distributed as
\code{Bin(size, prob[j])} for \eqn{j = 1, \ldots, K}.
The \code{rmultinom()} algorithm draws binomials \eqn{X_j}{X[j]} from
\eqn{Bin(n_j,P_j)}{Bin(n[j], P[j])} sequentially, where
\eqn{n_1 = N}{n[1] = N} (N := \code{size}),
\eqn{P_1 = \pi_1}{P[1] = p[1]} (\eqn{\pi}{p} is \code{prob} scaled to sum 1),
and for \eqn{j \ge 2}, recursively,
\eqn{n_j = N - \sum_{k=1}^{j-1} X_k}{n[j] = N - sum(k=1, \dots, j-1) X[k]}
and
\eqn{P_j = \pi_j / (1 - \sum_{k=1}^{j-1} \pi_k)}{P[j] = p[j] / (1 - sum(p[1:(j-1)]))}.
}
\value{
For \code{rmultinom()},
an integer \eqn{K \times n}{K x n} matrix where each column is a
random vector generated according to the desired multinomial law, and
hence summing to \code{size}. Whereas the \emph{transposed} result
would seem more natural at first, the returned matrix is more
efficient because of columnwise storage.
}
\seealso{
\link{Distributions} for standard distributions, including
\code{\link{dbinom}} which is a special case conceptually.
%% but does not return 2-vectors
}
\examples{
rmultinom(10, size = 12, prob = c(0.1,0.2,0.8))
pr <- c(1,3,6,10) # normalization not necessary for generation
rmultinom(10, 20, prob = pr)
## all possible outcomes of Multinom(N = 3, K = 3)
X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
X
round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)
}
\keyword{distribution}