blob: 16901a5d2f96567b7a758ac7bda113ddcaf2c72b [file] [log] [blame]
% File src/library/base/man/qraux.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2015 R Core Team
% Copyright 2002-2015 The R Foundation
% Distributed under GPL 2 or later
\name{QR.Auxiliaries}
\title{Reconstruct the Q, R, or X Matrices from a QR Object}
\usage{
qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec =)
qr.R(qr, complete = FALSE)
}
\alias{qr.X}
\alias{qr.Q}
\alias{qr.R}
\arguments{
\item{qr}{object representing a QR decomposition. This will
typically have come from a previous call to \code{\link{qr}} or
\code{\link{lsfit}}.}
\item{complete}{logical expression of length 1. Indicates whether an
arbitrary orthogonal completion of the \eqn{\bold{Q}} or
\eqn{\bold{X}} matrices is to be made, or whether the \eqn{\bold{R}}
matrix is to be completed by binding zero-value rows beneath the
square upper triangle.}
\item{ncol}{integer in the range \code{1:nrow(qr$qr)}. The number
of columns to be in the reconstructed \eqn{\bold{X}}. The default
when \code{complete} is \code{FALSE} is the first
\code{min(ncol(X), nrow(X))} columns of the original \eqn{\bold{X}}
from which the qr object was constructed. The default when
\code{complete} is \code{TRUE} is a square matrix with the original
\eqn{\bold{X}} in the first \code{ncol(X)} columns and an arbitrary
orthogonal completion (unitary completion in the complex case) in
the remaining columns.}
\item{Dvec}{vector (not matrix) of diagonal values. Each column of
the returned \eqn{\bold{Q}} will be multiplied by the corresponding
diagonal value. Defaults to all \code{1}s.}
}
\description{
Returns the original matrix from which the object was constructed or
the components of the decomposition.
}
\value{
\code{qr.X} returns \eqn{\bold{X}}, the original matrix from
which the qr object was constructed, provided \code{ncol(X) <= nrow(X)}.
If \code{complete} is \code{TRUE} or the argument \code{ncol} is greater than
\code{ncol(X)}, additional columns from an arbitrary orthogonal
(unitary) completion of \code{X} are returned.
\code{qr.Q} returns part or all of \bold{Q}, the order-nrow(X)
orthogonal (unitary) transformation represented by \code{qr}. If
\code{complete} is \code{TRUE}, \bold{Q} has \code{nrow(X)} columns.
If \code{complete} is \code{FALSE}, \bold{Q} has \code{ncol(X)}
columns. When \code{Dvec} is specified, each column of \bold{Q} is
multiplied by the corresponding value in \code{Dvec}.
Note that \code{qr.Q(qr, *)} is a special case of
\code{\link{qr.qy}(qr, y)} (with a \dQuote{diagonal} \code{y}), and
\code{qr.X(qr, *)} is basically \code{\link{qr.qy}(qr, R)} (apart from
pivoting and \code{dimnames} setting).
\code{qr.R} returns \bold{R}. This may be pivoted, e.g., if
\code{a <- qr(x)} then \code{x[, a$pivot]} = \bold{QR}. The number of
rows of \bold{R} is either \code{nrow(X)} or \code{ncol(X)} (and may
depend on whether \code{complete} is \code{TRUE} or \code{FALSE}).
}
\seealso{
\code{\link{qr}},
\code{\link{qr.qy}}.
}
\examples{
p <- ncol(x <- LifeCycleSavings[, -1]) # not the 'sr'
qrstr <- qr(x) # dim(x) == c(n,p)
qrstr $ rank # = 4 = p
Q <- qr.Q(qrstr) # dim(Q) == dim(x)
R <- qr.R(qrstr) # dim(R) == ncol(x)
X <- qr.X(qrstr) # X == x
range(X - as.matrix(x)) # ~ < 6e-12
## X == Q \%*\% R if there has been no pivoting, as here:
all.equal(unname(X),
unname(Q \%*\% R))
# example of pivoting
x <- cbind(int = 1,
b1 = rep(1:0, each = 3), b2 = rep(0:1, each = 3),
c1 = rep(c(1,0,0), 2), c2 = rep(c(0,1,0), 2), c3 = rep(c(0,0,1),2))
x # is singular, columns "b2" and "c3" are "extra"
a <- qr(x)
zapsmall(qr.R(a)) # columns are int b1 c1 c2 b2 c3
a$pivot
pivI <- sort.list(a$pivot) # the inverse permutation
all.equal (x, qr.Q(a) \%*\% qr.R(a)) # no, no
stopifnot(
all.equal(x[, a$pivot], qr.Q(a) \%*\% qr.R(a)), # TRUE
all.equal(x , qr.Q(a) \%*\% qr.R(a)[, pivI])) # TRUE too!
}
\keyword{algebra}
\keyword{array}