| /* |
| * R : A Computer Language for Statistical Data Analysis |
| * Copyright (C) 2001-2014 R Core Team |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, a copy is available at |
| * https://www.R-project.org/Licenses/ |
| */ |
| |
| /* Constants und Documentation that apply to several of the |
| * ./bessel_[ijky].c files */ |
| |
| /* ******************************************************************* |
| |
| Explanation of machine-dependent constants |
| |
| beta = Radix for the floating-point system |
| minexp = Smallest representable power of beta |
| maxexp = Smallest power of beta that overflows |
| it = p = Number of bits (base-beta digits) in the mantissa |
| (significand) of a working precision (floating-point) variable |
| NSIG = Decimal significance desired. Should be set to |
| INT(LOG10(2)*it+1). Setting NSIG lower will result |
| in decreased accuracy while setting NSIG higher will |
| increase CPU time without increasing accuracy. The |
| truncation error is limited to a relative error of |
| T=.5*10^(-NSIG). |
| ENTEN = 10 ^ K, where K is the largest int such that |
| ENTEN is machine-representable in working precision |
| ENSIG = 10 ^ NSIG |
| RTNSIG = 10 ^ (-K) for the smallest int K such that K >= NSIG/4 |
| ENMTEN = Smallest ABS(X) such that X/4 does not underflow |
| XINF = Largest positive machine number; approximately beta ^ maxexp |
| == DBL_MAX (defined in #include <float.h>) |
| SQXMIN = Square root of beta ^ minexp = sqrt(DBL_MIN) |
| |
| EPS = The smallest positive floating-point number such that 1.0+EPS > 1.0 |
| = beta ^ (-p) == DBL_EPSILON |
| |
| |
| For I : |
| |
| EXPARG = Largest working precision argument that the library |
| EXP routine can handle and upper limit on the |
| magnitude of X when IZE=1; approximately LOG(beta ^ maxexp) |
| |
| For I and J : |
| |
| xlrg_IJ = xlrg_BESS_IJ (was = XLARGE). Upper limit on the magnitude of X |
| (when IZE=2 for I()). Bear in mind that if floor(abs(x)) =: N, then |
| at least N iterations of the backward recursion will be executed. |
| The value of 10 ^ 4 was used till Feb.2009, when it was increased |
| to 10 ^ 5 (= 1e5). |
| |
| For j : |
| XMIN_J = Smallest acceptable argument for RBESY; approximately |
| max(2*beta ^ minexp, 2/XINF), rounded up |
| |
| For Y : |
| |
| xlrg_Y = (was = XLARGE). Upper bound on X; |
| approximately 1/DEL, because the sine and cosine functions |
| have lost about half of their precision at that point. |
| |
| EPS_SINC = Machine number below which sin(x)/x = 1; approximately SQRT(EPS). |
| THRESH = Lower bound for use of the asymptotic form; |
| approximately AINT(-LOG10(EPS/2.0))+1.0 |
| |
| |
| For K : |
| |
| xmax_k = (was = XMAX). Upper limit on the magnitude of X when ize = 1; |
| i.e. maximal x for UNscaled answer. |
| |
| Solution to equation: |
| W(X) * (1 -1/8 X + 9/128 X^2) = beta ^ minexp |
| where W(X) = EXP(-X)*SQRT(PI/2X) |
| |
| -------------------------------------------------------------------- |
| |
| Approximate values for some important machines are: |
| |
| beta minexp maxexp it NSIG ENTEN ENSIG RTNSIG ENMTEN EXPARG |
| IEEE (IBM/XT, |
| SUN, etc.) (S.P.) 2 -126 128 24 8 1e38 1e8 1e-2 4.70e-38 88 |
| IEEE (...) (D.P.) 2 -1022 1024 53 16 1e308 1e16 1e-4 8.90e-308 709 |
| CRAY-1 (S.P.) 2 -8193 8191 48 15 1e2465 1e15 1e-4 1.84e-2466 5677 |
| Cyber 180/855 |
| under NOS (S.P.) 2 -975 1070 48 15 1e322 1e15 1e-4 1.25e-293 741 |
| IBM 3033 (D.P.) 16 -65 63 14 5 1e75 1e5 1e-2 2.16e-78 174 |
| VAX (S.P.) 2 -128 127 24 8 1e38 1e8 1e-2 1.17e-38 88 |
| VAX D-Format (D.P.) 2 -128 127 56 17 1e38 1e17 1e-5 1.17e-38 88 |
| VAX G-Format (D.P.) 2 -1024 1023 53 16 1e307 1e16 1e-4 2.22e-308 709 |
| |
| |
| And routine specific : |
| |
| xlrg_IJ xlrg_Y xmax_k EPS_SINC XMIN_J XINF THRESH |
| IEEE (IBM/XT, |
| SUN, etc.) (S.P.) 1e4 1e4 85.337 1e-4 2.36e-38 3.40e38 8. |
| IEEE (...) (D.P.) 1e4 1e8 705.342 1e-8 4.46e-308 1.79e308 16. |
| CRAY-1 (S.P.) 1e4 2e7 5674.858 5e-8 3.67e-2466 5.45e2465 15. |
| Cyber 180/855 |
| under NOS (S.P.) 1e4 2e7 672.788 5e-8 6.28e-294 1.26e322 15. |
| IBM 3033 (D.P.) 1e4 1e8 177.852 1e-8 2.77e-76 7.23e75 17. |
| VAX (S.P.) 1e4 1e4 86.715 1e-4 1.18e-38 1.70e38 8. |
| VAX e-Format (D.P.) 1e4 1e9 86.715 1e-9 1.18e-38 1.70e38 17. |
| VAX G-Format (D.P.) 1e4 1e8 706.728 1e-8 2.23e-308 8.98e307 16. |
| |
| */ |
| #define nsig_BESS 16 |
| #define ensig_BESS 1e16 |
| #define rtnsig_BESS 1e-4 |
| #define enmten_BESS 8.9e-308 |
| #define enten_BESS 1e308 |
| |
| #define exparg_BESS 709. |
| #define xlrg_BESS_IJ 1e5 |
| #define xlrg_BESS_Y 1e8 |
| #define thresh_BESS_Y 16. |
| |
| #define xmax_BESS_K 705.342/* maximal x for UNscaled answer */ |
| |
| |
| /* sqrt(DBL_MIN) = 1.491668e-154 */ |
| #define sqxmin_BESS_K 1.49e-154 |
| |
| /* x < eps_sinc <==> sin(x)/x == 1 (particularly "==>"); |
| Linux (around 2001-02) gives 2.14946906753213e-08 |
| Solaris 2.5.1 gives 2.14911933289084e-08 |
| */ |
| #define M_eps_sinc 2.149e-8 |