blob: a5b0c8023aea0fb000b095d19a17d6b53d995134 [file] [log] [blame]
/*
* R : A Computer Language for Statistical Data Analysis
* Copyright (C) 2001-2014 R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*/
/* Constants und Documentation that apply to several of the
* ./bessel_[ijky].c files */
/* *******************************************************************
Explanation of machine-dependent constants
beta = Radix for the floating-point system
minexp = Smallest representable power of beta
maxexp = Smallest power of beta that overflows
it = p = Number of bits (base-beta digits) in the mantissa
(significand) of a working precision (floating-point) variable
NSIG = Decimal significance desired. Should be set to
INT(LOG10(2)*it+1). Setting NSIG lower will result
in decreased accuracy while setting NSIG higher will
increase CPU time without increasing accuracy. The
truncation error is limited to a relative error of
T=.5*10^(-NSIG).
ENTEN = 10 ^ K, where K is the largest int such that
ENTEN is machine-representable in working precision
ENSIG = 10 ^ NSIG
RTNSIG = 10 ^ (-K) for the smallest int K such that K >= NSIG/4
ENMTEN = Smallest ABS(X) such that X/4 does not underflow
XINF = Largest positive machine number; approximately beta ^ maxexp
== DBL_MAX (defined in #include <float.h>)
SQXMIN = Square root of beta ^ minexp = sqrt(DBL_MIN)
EPS = The smallest positive floating-point number such that 1.0+EPS > 1.0
= beta ^ (-p) == DBL_EPSILON
For I :
EXPARG = Largest working precision argument that the library
EXP routine can handle and upper limit on the
magnitude of X when IZE=1; approximately LOG(beta ^ maxexp)
For I and J :
xlrg_IJ = xlrg_BESS_IJ (was = XLARGE). Upper limit on the magnitude of X
(when IZE=2 for I()). Bear in mind that if floor(abs(x)) =: N, then
at least N iterations of the backward recursion will be executed.
The value of 10 ^ 4 was used till Feb.2009, when it was increased
to 10 ^ 5 (= 1e5).
For j :
XMIN_J = Smallest acceptable argument for RBESY; approximately
max(2*beta ^ minexp, 2/XINF), rounded up
For Y :
xlrg_Y = (was = XLARGE). Upper bound on X;
approximately 1/DEL, because the sine and cosine functions
have lost about half of their precision at that point.
EPS_SINC = Machine number below which sin(x)/x = 1; approximately SQRT(EPS).
THRESH = Lower bound for use of the asymptotic form;
approximately AINT(-LOG10(EPS/2.0))+1.0
For K :
xmax_k = (was = XMAX). Upper limit on the magnitude of X when ize = 1;
i.e. maximal x for UNscaled answer.
Solution to equation:
W(X) * (1 -1/8 X + 9/128 X^2) = beta ^ minexp
where W(X) = EXP(-X)*SQRT(PI/2X)
--------------------------------------------------------------------
Approximate values for some important machines are:
beta minexp maxexp it NSIG ENTEN ENSIG RTNSIG ENMTEN EXPARG
IEEE (IBM/XT,
SUN, etc.) (S.P.) 2 -126 128 24 8 1e38 1e8 1e-2 4.70e-38 88
IEEE (...) (D.P.) 2 -1022 1024 53 16 1e308 1e16 1e-4 8.90e-308 709
CRAY-1 (S.P.) 2 -8193 8191 48 15 1e2465 1e15 1e-4 1.84e-2466 5677
Cyber 180/855
under NOS (S.P.) 2 -975 1070 48 15 1e322 1e15 1e-4 1.25e-293 741
IBM 3033 (D.P.) 16 -65 63 14 5 1e75 1e5 1e-2 2.16e-78 174
VAX (S.P.) 2 -128 127 24 8 1e38 1e8 1e-2 1.17e-38 88
VAX D-Format (D.P.) 2 -128 127 56 17 1e38 1e17 1e-5 1.17e-38 88
VAX G-Format (D.P.) 2 -1024 1023 53 16 1e307 1e16 1e-4 2.22e-308 709
And routine specific :
xlrg_IJ xlrg_Y xmax_k EPS_SINC XMIN_J XINF THRESH
IEEE (IBM/XT,
SUN, etc.) (S.P.) 1e4 1e4 85.337 1e-4 2.36e-38 3.40e38 8.
IEEE (...) (D.P.) 1e4 1e8 705.342 1e-8 4.46e-308 1.79e308 16.
CRAY-1 (S.P.) 1e4 2e7 5674.858 5e-8 3.67e-2466 5.45e2465 15.
Cyber 180/855
under NOS (S.P.) 1e4 2e7 672.788 5e-8 6.28e-294 1.26e322 15.
IBM 3033 (D.P.) 1e4 1e8 177.852 1e-8 2.77e-76 7.23e75 17.
VAX (S.P.) 1e4 1e4 86.715 1e-4 1.18e-38 1.70e38 8.
VAX e-Format (D.P.) 1e4 1e9 86.715 1e-9 1.18e-38 1.70e38 17.
VAX G-Format (D.P.) 1e4 1e8 706.728 1e-8 2.23e-308 8.98e307 16.
*/
#define nsig_BESS 16
#define ensig_BESS 1e16
#define rtnsig_BESS 1e-4
#define enmten_BESS 8.9e-308
#define enten_BESS 1e308
#define exparg_BESS 709.
#define xlrg_BESS_IJ 1e5
#define xlrg_BESS_Y 1e8
#define thresh_BESS_Y 16.
#define xmax_BESS_K 705.342/* maximal x for UNscaled answer */
/* sqrt(DBL_MIN) = 1.491668e-154 */
#define sqxmin_BESS_K 1.49e-154
/* x < eps_sinc <==> sin(x)/x == 1 (particularly "==>");
Linux (around 2001-02) gives 2.14946906753213e-08
Solaris 2.5.1 gives 2.14911933289084e-08
*/
#define M_eps_sinc 2.149e-8