blob: 8d414ba03a32dd2ffea0c52e9bed459f05053c46 [file] [log] [blame]
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000--2007 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double ptukey(q, rr, cc, df, lower_tail, log_p);
*
* DESCRIPTION
*
* Computes the probability that the maximum of rr studentized
* ranges, each based on cc means and with df degrees of freedom
* for the standard error, is less than q.
*
* The algorithm is based on that of the reference.
*
* REFERENCE
*
* Copenhaver, Margaret Diponzio & Holland, Burt S.
* Multiple comparisons of simple effects in
* the two-way analysis of variance with fixed effects.
* Journal of Statistical Computation and Simulation,
* Vol.30, pp.1-15, 1988.
*/
#include "nmath.h"
#include "dpq.h"
static double wprob(double w, double rr, double cc)
{
/* wprob() :
This function calculates probability integral of Hartley's
form of the range.
w = value of range
rr = no. of rows or groups
cc = no. of columns or treatments
ir = error flag = 1 if pr_w probability > 1
pr_w = returned probability integral from (0, w)
program will not terminate if ir is raised.
bb = upper limit of legendre integration
iMax = maximum acceptable value of integral
nleg = order of legendre quadrature
ihalf = int ((nleg + 1) / 2)
wlar = value of range above which wincr1 intervals are used to
calculate second part of integral,
else wincr2 intervals are used.
C1, C2, C3 = values which are used as cutoffs for terminating
or modifying a calculation.
M_1_SQRT_2PI = 1 / sqrt(2 * pi); from abramowitz & stegun, p. 3.
M_SQRT2 = sqrt(2)
xleg = legendre 12-point nodes
aleg = legendre 12-point coefficients
*/
#define nleg 12
#define ihalf 6
/* looks like this is suboptimal for double precision.
(see how C1-C3 are used) <MM>
*/
/* const double iMax = 1.; not used if = 1*/
const static double C1 = -30.;
const static double C2 = -50.;
const static double C3 = 60.;
const static double bb = 8.;
const static double wlar = 3.;
const static double wincr1 = 2.;
const static double wincr2 = 3.;
const static double xleg[ihalf] = {
0.981560634246719250690549090149,
0.904117256370474856678465866119,
0.769902674194304687036893833213,
0.587317954286617447296702418941,
0.367831498998180193752691536644,
0.125233408511468915472441369464
};
const static double aleg[ihalf] = {
0.047175336386511827194615961485,
0.106939325995318430960254718194,
0.160078328543346226334652529543,
0.203167426723065921749064455810,
0.233492536538354808760849898925,
0.249147045813402785000562436043
};
double a, ac, pr_w, b, binc, c, cc1,
pminus, pplus, qexpo, qsqz, rinsum, wi, wincr, xx;
LDOUBLE blb, bub, einsum, elsum;
int j, jj;
qsqz = w * 0.5;
/* if w >= 16 then the integral lower bound (occurs for c=20) */
/* is 0.99999999999995 so return a value of 1. */
if (qsqz >= bb)
return 1.0;
/* find (f(w/2) - 1) ^ cc */
/* (first term in integral of hartley's form). */
pr_w = 2 * pnorm(qsqz, 0.,1., 1,0) - 1.; /* erf(qsqz / M_SQRT2) */
/* if pr_w ^ cc < 2e-22 then set pr_w = 0 */
if (pr_w >= exp(C2 / cc))
pr_w = pow(pr_w, cc);
else
pr_w = 0.0;
/* if w is large then the second component of the */
/* integral is small, so fewer intervals are needed. */
if (w > wlar)
wincr = wincr1;
else
wincr = wincr2;
/* find the integral of second term of hartley's form */
/* for the integral of the range for equal-length */
/* intervals using legendre quadrature. limits of */
/* integration are from (w/2, 8). two or three */
/* equal-length intervals are used. */
/* blb and bub are lower and upper limits of integration. */
blb = qsqz;
binc = (bb - qsqz) / wincr;
bub = blb + binc;
einsum = 0.0;
/* integrate over each interval */
cc1 = cc - 1.0;
for (wi = 1; wi <= wincr; wi++) {
elsum = 0.0;
a = (double)(0.5 * (bub + blb));
/* legendre quadrature with order = nleg */
b = (double)(0.5 * (bub - blb));
for (jj = 1; jj <= nleg; jj++) {
if (ihalf < jj) {
j = (nleg - jj) + 1;
xx = xleg[j-1];
} else {
j = jj;
xx = -xleg[j-1];
}
c = b * xx;
ac = a + c;
/* if exp(-qexpo/2) < 9e-14, */
/* then doesn't contribute to integral */
qexpo = ac * ac;
if (qexpo > C3)
break;
pplus = 2 * pnorm(ac, 0., 1., 1,0);
pminus= 2 * pnorm(ac, w, 1., 1,0);
/* if rinsum ^ (cc-1) < 9e-14, */
/* then doesn't contribute to integral */
rinsum = (pplus * 0.5) - (pminus * 0.5);
if (rinsum >= exp(C1 / cc1)) {
rinsum = (aleg[j-1] * exp(-(0.5 * qexpo))) * pow(rinsum, cc1);
elsum += rinsum;
}
}
elsum *= (((2.0 * b) * cc) * M_1_SQRT_2PI);
einsum += elsum;
blb = bub;
bub += binc;
}
/* if pr_w ^ rr < 9e-14, then return 0 */
pr_w += (double) einsum;
if (pr_w <= exp(C1 / rr))
return 0.;
pr_w = pow(pr_w, rr);
if (pr_w >= 1.)/* 1 was iMax was eps */
return 1.;
return pr_w;
} /* wprob() */
double ptukey(double q, double rr, double cc, double df,
int lower_tail, int log_p)
{
/* function ptukey() [was qprob() ]:
q = value of studentized range
rr = no. of rows or groups
cc = no. of columns or treatments
df = degrees of freedom of error term
ir[0] = error flag = 1 if wprob probability > 1
ir[1] = error flag = 1 if qprob probability > 1
qprob = returned probability integral over [0, q]
The program will not terminate if ir[0] or ir[1] are raised.
All references in wprob to Abramowitz and Stegun
are from the following reference:
Abramowitz, Milton and Stegun, Irene A.
Handbook of Mathematical Functions.
New York: Dover publications, Inc. (1970).
All constants taken from this text are
given to 25 significant digits.
nlegq = order of legendre quadrature
ihalfq = int ((nlegq + 1) / 2)
eps = max. allowable value of integral
eps1 & eps2 = values below which there is
no contribution to integral.
d.f. <= dhaf: integral is divided into ulen1 length intervals. else
d.f. <= dquar: integral is divided into ulen2 length intervals. else
d.f. <= deigh: integral is divided into ulen3 length intervals. else
d.f. <= dlarg: integral is divided into ulen4 length intervals.
d.f. > dlarg: the range is used to calculate integral.
M_LN2 = log(2)
xlegq = legendre 16-point nodes
alegq = legendre 16-point coefficients
The coefficients and nodes for the legendre quadrature used in
qprob and wprob were calculated using the algorithms found in:
Stroud, A. H. and Secrest, D.
Gaussian Quadrature Formulas.
Englewood Cliffs,
New Jersey: Prentice-Hall, Inc, 1966.
All values matched the tables (provided in same reference)
to 30 significant digits.
f(x) = .5 + erf(x / sqrt(2)) / 2 for x > 0
f(x) = erfc( -x / sqrt(2)) / 2 for x < 0
where f(x) is standard normal c. d. f.
if degrees of freedom large, approximate integral
with range distribution.
*/
#define nlegq 16
#define ihalfq 8
/* const double eps = 1.0; not used if = 1 */
const static double eps1 = -30.0;
const static double eps2 = 1.0e-14;
const static double dhaf = 100.0;
const static double dquar = 800.0;
const static double deigh = 5000.0;
const static double dlarg = 25000.0;
const static double ulen1 = 1.0;
const static double ulen2 = 0.5;
const static double ulen3 = 0.25;
const static double ulen4 = 0.125;
const static double xlegq[ihalfq] = {
0.989400934991649932596154173450,
0.944575023073232576077988415535,
0.865631202387831743880467897712,
0.755404408355003033895101194847,
0.617876244402643748446671764049,
0.458016777657227386342419442984,
0.281603550779258913230460501460,
0.950125098376374401853193354250e-1
};
const static double alegq[ihalfq] = {
0.271524594117540948517805724560e-1,
0.622535239386478928628438369944e-1,
0.951585116824927848099251076022e-1,
0.124628971255533872052476282192,
0.149595988816576732081501730547,
0.169156519395002538189312079030,
0.182603415044923588866763667969,
0.189450610455068496285396723208
};
double ans, f2, f21, f2lf, ff4, otsum, qsqz, rotsum, t1, twa1, ulen, wprb;
int i, j, jj;
#ifdef IEEE_754
if (ISNAN(q) || ISNAN(rr) || ISNAN(cc) || ISNAN(df))
ML_ERR_return_NAN;
#endif
if (q <= 0)
return R_DT_0;
/* df must be > 1 */
/* there must be at least two values */
if (df < 2 || rr < 1 || cc < 2) ML_ERR_return_NAN;
if(!R_FINITE(q))
return R_DT_1;
if (df > dlarg)
return R_DT_val(wprob(q, rr, cc));
/* calculate leading constant */
f2 = df * 0.5;
/* lgammafn(u) = log(gamma(u)) */
f2lf = ((f2 * log(df)) - (df * M_LN2)) - lgammafn(f2);
f21 = f2 - 1.0;
/* integral is divided into unit, half-unit, quarter-unit, or */
/* eighth-unit length intervals depending on the value of the */
/* degrees of freedom. */
ff4 = df * 0.25;
if (df <= dhaf) ulen = ulen1;
else if (df <= dquar) ulen = ulen2;
else if (df <= deigh) ulen = ulen3;
else ulen = ulen4;
f2lf += log(ulen);
/* integrate over each subinterval */
ans = 0.0;
for (i = 1; i <= 50; i++) {
otsum = 0.0;
/* legendre quadrature with order = nlegq */
/* nodes (stored in xlegq) are symmetric around zero. */
twa1 = (2 * i - 1) * ulen;
for (jj = 1; jj <= nlegq; jj++) {
if (ihalfq < jj) {
j = jj - ihalfq - 1;
t1 = (f2lf + (f21 * log(twa1 + (xlegq[j] * ulen))))
- (((xlegq[j] * ulen) + twa1) * ff4);
} else {
j = jj - 1;
t1 = (f2lf + (f21 * log(twa1 - (xlegq[j] * ulen))))
+ (((xlegq[j] * ulen) - twa1) * ff4);
}
/* if exp(t1) < 9e-14, then doesn't contribute to integral */
if (t1 >= eps1) {
if (ihalfq < jj) {
qsqz = q * sqrt(((xlegq[j] * ulen) + twa1) * 0.5);
} else {
qsqz = q * sqrt(((-(xlegq[j] * ulen)) + twa1) * 0.5);
}
/* call wprob to find integral of range portion */
wprb = wprob(qsqz, rr, cc);
rotsum = (wprb * alegq[j]) * exp(t1);
otsum += rotsum;
}
/* end legendre integral for interval i */
/* L200: */
}
/* if integral for interval i < 1e-14, then stop.
* However, in order to avoid small area under left tail,
* at least 1 / ulen intervals are calculated.
*/
if (i * ulen >= 1.0 && otsum <= eps2)
break;
/* end of interval i */
/* L330: */
ans += otsum;
}
if(otsum > eps2) { /* not converged */
ML_ERROR(ME_PRECISION, "ptukey");
}
if (ans > 1.)
ans = 1.;
return R_DT_val(ans);
}