blob: da283bd89408a02d88582e54b5611fd92cbdd467 [file] [log] [blame]
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000-2009 The R Core Team
* Copyright (C) 2003-2009 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*
* DESCRIPTION
*
* The quantile function of the binomial distribution.
*
* METHOD
*
* Uses the Cornish-Fisher Expansion to include a skewness
* correction to a normal approximation. This gives an
* initial value which never seems to be off by more than
* 1 or 2. A search is then conducted of values close to
* this initial start point.
*/
#include "nmath.h"
#include "dpq.h"
static double
do_search(double y, double *z, double p, double n, double pr, double incr)
{
if(*z >= p) {
/* search to the left */
#ifdef DEBUG_qbinom
REprintf("\tnew z=%7g >= p = %7g --> search to left (y--) ..\n", z,p);
#endif
for(;;) {
double newz;
if(y == 0 ||
(newz = pbinom(y - incr, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) < p)
return y;
y = fmax2(0, y - incr);
*z = newz;
}
}
else { /* search to the right */
#ifdef DEBUG_qbinom
REprintf("\tnew z=%7g < p = %7g --> search to right (y++) ..\n", z,p);
#endif
for(;;) {
y = fmin2(y + incr, n);
if(y == n ||
(*z = pbinom(y, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p)
return y;
}
}
}
double qbinom(double p, double n, double pr, int lower_tail, int log_p)
{
double q, mu, sigma, gamma, z, y;
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(n) || ISNAN(pr))
return p + n + pr;
#endif
if(!R_FINITE(n) || !R_FINITE(pr))
ML_ERR_return_NAN;
/* if log_p is true, p = -Inf is a legitimate value */
if(!R_FINITE(p) && !log_p)
ML_ERR_return_NAN;
if(n != floor(n + 0.5)) ML_ERR_return_NAN;
if (pr < 0 || pr > 1 || n < 0)
ML_ERR_return_NAN;
R_Q_P01_boundaries(p, 0, n);
if (pr == 0. || n == 0) return 0.;
q = 1 - pr;
if(q == 0.) return n; /* covers the full range of the distribution */
mu = n * pr;
sigma = sqrt(n * pr * q);
gamma = (q - pr) / sigma;
#ifdef DEBUG_qbinom
REprintf("qbinom(p=%7g, n=%g, pr=%7g, l.t.=%d, log=%d): sigm=%g, gam=%g\n",
p,n,pr, lower_tail, log_p, sigma, gamma);
#endif
/* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
* FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
if(!lower_tail || log_p) {
p = R_DT_qIv(p); /* need check again (cancellation!): */
if (p == 0.) return 0.;
if (p == 1.) return n;
}
/* temporary hack --- FIXME --- */
if (p + 1.01*DBL_EPSILON >= 1.) return n;
/* y := approx.value (Cornish-Fisher expansion) : */
z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5);
if(y > n) /* way off */ y = n;
#ifdef DEBUG_qbinom
REprintf(" new (p,1-p)=(%7g,%7g), z=qnorm(..)=%7g, y=%5g\n", p, 1-p, z, y);
#endif
z = pbinom(y, n, pr, /*lower_tail*/TRUE, /*log_p*/FALSE);
/* fuzz to ensure left continuity: */
p *= 1 - 64*DBL_EPSILON;
if(n < 1e5) return do_search(y, &z, p, n, pr, 1);
/* Otherwise be a bit cleverer in the search */
{
double incr = floor(n * 0.001), oldincr;
do {
oldincr = incr;
y = do_search(y, &z, p, n, pr, incr);
incr = fmax2(1, floor(incr/100));
} while(oldincr > 1 && incr > n*1e-15);
return y;
}
}