| /* |
| * Mathlib : A C Library of Special Functions |
| * Copyright (C) 1998 Ross Ihaka |
| * Copyright (C) 2000-2009 The R Core Team |
| * Copyright (C) 2003-2009 The R Foundation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, a copy is available at |
| * https://www.R-project.org/Licenses/ |
| * |
| * DESCRIPTION |
| * |
| * The quantile function of the binomial distribution. |
| * |
| * METHOD |
| * |
| * Uses the Cornish-Fisher Expansion to include a skewness |
| * correction to a normal approximation. This gives an |
| * initial value which never seems to be off by more than |
| * 1 or 2. A search is then conducted of values close to |
| * this initial start point. |
| */ |
| #include "nmath.h" |
| #include "dpq.h" |
| |
| static double |
| do_search(double y, double *z, double p, double n, double pr, double incr) |
| { |
| if(*z >= p) { |
| /* search to the left */ |
| #ifdef DEBUG_qbinom |
| REprintf("\tnew z=%7g >= p = %7g --> search to left (y--) ..\n", z,p); |
| #endif |
| for(;;) { |
| double newz; |
| if(y == 0 || |
| (newz = pbinom(y - incr, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) < p) |
| return y; |
| y = fmax2(0, y - incr); |
| *z = newz; |
| } |
| } |
| else { /* search to the right */ |
| #ifdef DEBUG_qbinom |
| REprintf("\tnew z=%7g < p = %7g --> search to right (y++) ..\n", z,p); |
| #endif |
| for(;;) { |
| y = fmin2(y + incr, n); |
| if(y == n || |
| (*z = pbinom(y, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p) |
| return y; |
| } |
| } |
| } |
| |
| |
| double qbinom(double p, double n, double pr, int lower_tail, int log_p) |
| { |
| double q, mu, sigma, gamma, z, y; |
| |
| #ifdef IEEE_754 |
| if (ISNAN(p) || ISNAN(n) || ISNAN(pr)) |
| return p + n + pr; |
| #endif |
| if(!R_FINITE(n) || !R_FINITE(pr)) |
| ML_ERR_return_NAN; |
| /* if log_p is true, p = -Inf is a legitimate value */ |
| if(!R_FINITE(p) && !log_p) |
| ML_ERR_return_NAN; |
| |
| if(n != floor(n + 0.5)) ML_ERR_return_NAN; |
| if (pr < 0 || pr > 1 || n < 0) |
| ML_ERR_return_NAN; |
| |
| R_Q_P01_boundaries(p, 0, n); |
| |
| if (pr == 0. || n == 0) return 0.; |
| |
| q = 1 - pr; |
| if(q == 0.) return n; /* covers the full range of the distribution */ |
| mu = n * pr; |
| sigma = sqrt(n * pr * q); |
| gamma = (q - pr) / sigma; |
| |
| #ifdef DEBUG_qbinom |
| REprintf("qbinom(p=%7g, n=%g, pr=%7g, l.t.=%d, log=%d): sigm=%g, gam=%g\n", |
| p,n,pr, lower_tail, log_p, sigma, gamma); |
| #endif |
| /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c -- |
| * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */ |
| if(!lower_tail || log_p) { |
| p = R_DT_qIv(p); /* need check again (cancellation!): */ |
| if (p == 0.) return 0.; |
| if (p == 1.) return n; |
| } |
| /* temporary hack --- FIXME --- */ |
| if (p + 1.01*DBL_EPSILON >= 1.) return n; |
| |
| /* y := approx.value (Cornish-Fisher expansion) : */ |
| z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE); |
| y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5); |
| |
| if(y > n) /* way off */ y = n; |
| |
| #ifdef DEBUG_qbinom |
| REprintf(" new (p,1-p)=(%7g,%7g), z=qnorm(..)=%7g, y=%5g\n", p, 1-p, z, y); |
| #endif |
| z = pbinom(y, n, pr, /*lower_tail*/TRUE, /*log_p*/FALSE); |
| |
| /* fuzz to ensure left continuity: */ |
| p *= 1 - 64*DBL_EPSILON; |
| |
| if(n < 1e5) return do_search(y, &z, p, n, pr, 1); |
| /* Otherwise be a bit cleverer in the search */ |
| { |
| double incr = floor(n * 0.001), oldincr; |
| do { |
| oldincr = incr; |
| y = do_search(y, &z, p, n, pr, incr); |
| incr = fmax2(1, floor(incr/100)); |
| } while(oldincr > 1 && incr > n*1e-15); |
| return y; |
| } |
| } |