blob: 889b02359a36cdb47d45b15902f9dc2295b72357 [file] [log] [blame]
/*
* R : A Computer Language for Statistical Data Analysis
* Modifications copyright (C) 2007-2017 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*/
/*
The orginal version of this file stated
** This file is in the public domain, so clarified as of
** 1996-06-05 by Arthur David Olson.
The modified version is copyrighted. Modifications include:
setting EOVERFLOW
where to find the zi database
Mingw-w64 changes
removing ATTRIBUTE_PURE, conditional parts for e.g. ALL_STATE
use of 'unknown' isdst
use of 64-bit time_t irrespective of platform.
use of tm_zone and tm_gmtoff on all platforms.
*/
#include <config.h>
#include <string.h>
#include <limits.h> /* for CHAR_BIT et al. */
// To get tm_zone, tm_gmtoff defined in glibc
// (although this file is not usually used there).
// Some other header, e.g. math.h, might define the macro.
#if defined HAVE_FEATURES_H
# include <features.h>
# ifdef __GNUC_PREREQ
# if __GNUC_PREREQ(2,20) && !defined(_DEFAULT_SOURCE_)
# define _DEFAULT_SOURCE 1
# endif
# endif
#endif
#if defined(HAVE_GLIBC2) && !defined(_DEFAULT_SOURCE_) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE 1
#endif
#include <time.h>
#include <errno.h>
#ifndef EOVERFLOW
# define EOVERFLOW 79
#endif
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h> // for open + modes
#ifndef _WIN32
# include <unistd.h> // for access, read, close
#endif
#include "datetime.h"
#define tzname R_tzname
#ifndef TRUE
#define TRUE 1
#endif /* !defined TRUE */
#ifndef FALSE
#define FALSE 0
#endif /* !defined FALSE */
/* merged from private.h */
#ifndef TYPE_BIT
#define TYPE_BIT(type) (sizeof (type) * CHAR_BIT)
#endif /* !defined TYPE_BIT */
#ifndef TYPE_SIGNED
#define TYPE_SIGNED(type) (((type) -1) < 0)
#endif /* !defined TYPE_SIGNED */
#define TWOS_COMPLEMENT(t) ((t) ~ (t) 0 < 0)
#define GRANDPARENTED "Local time zone must be set--see zic manual page"
#define YEARSPERREPEAT 400 /* years before a Gregorian repeat */
#define AVGSECSPERYEAR 31556952L
#define SECSPERREPEAT ((int_fast64_t) YEARSPERREPEAT * (int_fast64_t) AVGSECSPERYEAR)
#define SECSPERREPEAT_BITS 34 /* ceil(log2(SECSPERREPEAT)) */
#define is_digit(c) ((unsigned)(c) - '0' <= 9)
#define INITIALIZE(x) (x = 0)
/* Max and min values of the integer type T, of which only the bottom
B bits are used, and where the highest-order used bit is considered
to be a sign bit if T is signed. */
#define MAXVAL(t, b) \
((t) (((t) 1 << ((b) - 1 - TYPE_SIGNED(t))) \
- 1 + ((t) 1 << ((b) - 1 - TYPE_SIGNED(t)))))
#define MINVAL(t, b) \
((t) (TYPE_SIGNED(t) ? - TWOS_COMPLEMENT(t) - MAXVAL(t, b) : 0))
/* The minimum and maximum finite time values. This assumes no padding. */
static time_t const time_t_min = MINVAL(time_t, TYPE_BIT(time_t));
static time_t const time_t_max = MAXVAL(time_t, TYPE_BIT(time_t));
#include "tzfile.h"
#ifndef TZ_ABBR_MAX_LEN
#define TZ_ABBR_MAX_LEN 16
#endif /* !defined TZ_ABBR_MAX_LEN */
#ifndef TZ_ABBR_CHAR_SET
#define TZ_ABBR_CHAR_SET \
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
#endif /* !defined TZ_ABBR_CHAR_SET */
#ifndef TZ_ABBR_ERR_CHAR
#define TZ_ABBR_ERR_CHAR '_'
#endif /* !defined TZ_ABBR_ERR_CHAR */
/*
** SunOS 4.1.1 headers lack O_BINARY.
*/
#ifdef O_BINARY
#define OPEN_MODE (O_RDONLY | O_BINARY)
#endif /* defined O_BINARY */
#ifndef O_BINARY
#define OPEN_MODE O_RDONLY
#endif /* !defined O_BINARY */
#ifndef WILDABBR
/*
** Someone might make incorrect use of a time zone abbreviation:
** 1. They might reference tzname[0] before calling tzset (explicitly
** or implicitly).
** 2. They might reference tzname[1] before calling tzset (explicitly
** or implicitly).
** 3. They might reference tzname[1] after setting to a time zone
** in which Daylight Saving Time is never observed.
** 4. They might reference tzname[0] after setting to a time zone
** in which Standard Time is never observed.
** 5. They might reference tm.TM_ZONE after calling offtime.
** What's best to do in the above cases is open to debate;
** for now, we just set things up so that in any of the five cases
** WILDABBR is used. Another possibility: initialize tzname[0] to the
** string "tzname[0] used before set", and similarly for the other cases.
** And another: initialize tzname[0] to "ERA", with an explanation in the
** manual page of what this "time zone abbreviation" means (doing this so
** that tzname[0] has the "normal" length of three characters).
*/
#define WILDABBR " "
#endif /* !defined WILDABBR */
static char wildabbr[] = WILDABBR;
static const char gmt[] = "GMT";
/*
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
** We default to US rules as of 1999-08-17.
** POSIX 1003.1 section 8.1.1 says that the default DST rules are
** implementation dependent; for historical reasons, US rules are a
** common default.
*/
#ifndef TZDEFRULESTRING
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
#endif /* !defined TZDEFDST */
struct ttinfo { /* time type information */
int_fast32_t tt_gmtoff; /* UT offset in seconds */
int tt_isdst; /* used to set tm_isdst */
int tt_abbrind; /* abbreviation list index */
int tt_ttisstd; /* TRUE if transition is std time */
int tt_ttisgmt; /* TRUE if transition is UT */
};
struct lsinfo { /* leap second information */
time_t ls_trans; /* transition time */
int_fast64_t ls_corr; /* correction to apply */
};
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
#ifdef TZNAME_MAX
#define MY_TZNAME_MAX TZNAME_MAX
#endif /* defined TZNAME_MAX */
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX 255
#endif /* !defined TZNAME_MAX */
struct state {
int leapcnt;
int timecnt;
int typecnt;
int charcnt;
int goback;
int goahead;
time_t ats[TZ_MAX_TIMES];
unsigned char types[TZ_MAX_TIMES];
struct ttinfo ttis[TZ_MAX_TYPES];
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
(2 * (MY_TZNAME_MAX + 1)))];
struct lsinfo lsis[TZ_MAX_LEAPS];
int defaulttype; /* for early times or if no transitions */
};
struct rule {
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
int_fast32_t r_time; /* transition time of rule */
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
/*
** Prototypes for static functions.
*/
static int_fast32_t detzcode(const char * codep);
static int_fast64_t detzcode64(const char * codep);
static int differ_by_repeat(time_t t1, time_t t0);
static const char * getzname(const char * strp);
static const char * getqzname(const char * strp, const int delim);
static const char * getnum(const char * strp, int * nump, int min,
int max);
static const char * getsecs(const char * strp, int_fast32_t * secsp);
static const char * getoffset(const char * strp, int_fast32_t * offsetp);
static const char * getrule(const char * strp, struct rule * rulep);
static void gmtload(struct state * sp);
static stm * gmtsub(const time_t * timep, int_fast32_t offset, stm * tmp);
static stm * localsub(const time_t * timep, int_fast32_t offset, stm * tmp);
static int increment_overflow(int * number, int delta);
static int leaps_thru_end_of(int y);
static int increment_overflow32(int_fast32_t * number, int delta);
static int increment_overflow_time(time_t *t, int_fast32_t delta);
static int normalize_overflow32(int_fast32_t * tensptr,
int * unitsptr, int base);
static int normalize_overflow(int * tensptr, int * unitsptr,
int base);
static void settzname(void);
static time_t time1(stm * tmp,
stm * (*funcp)(const time_t *,
int_fast32_t, stm *),
int_fast32_t offset);
static time_t time2(stm *tmp,
stm * (*funcp)(const time_t *,
int_fast32_t, stm*),
int_fast32_t offset, int * okayp);
static time_t time2sub(stm *tmp,
stm * (*funcp)(const time_t *,
int_fast32_t, stm*),
int_fast32_t offset, int * okayp, int do_norm_secs);
static stm * timesub(const time_t * timep, int_fast32_t offset,
const struct state * sp, stm * tmp);
static int tmcomp(const stm * atmp,
const stm * btmp);
static int_fast32_t transtime(int year, const struct rule * rulep,
int_fast32_t offset);
static int typesequiv(const struct state * sp, int a, int b);
static int tzload(const char * name, struct state * sp,
int doextend);
static int tzparse(const char * name, struct state * sp,
int lastditch);
static struct state lclmem;
static struct state gmtmem;
#define lclptr (&lclmem)
#define gmtptr (&gmtmem)
/* These are abbreviated names, so 255 should be ample.
But this was not checked in strcpy below. */
#ifndef TZ_STRLEN_MAX
#define TZ_STRLEN_MAX 255
#endif /* !defined TZ_STRLEN_MAX */
static char lcl_TZname[TZ_STRLEN_MAX + 1];
static int lcl_is_set;
static int gmt_is_set;
char * tzname[2] = {
wildabbr,
wildabbr
};
/*
** Section 4.12.3 of X3.159-1989 requires that
** Except for the strftime function, these functions [asctime,
** ctime, gmtime, localtime] return values in one of two static
** objects: a broken-down time structure and an array of char.
** Thanks to Paul Eggert for noting this.
*/
static stm tm;
static int_fast32_t
detzcode(const char *const codep)
{
int_fast32_t result = (codep[0] & 0x80) ? -1 : 0;
for (int i = 0; i < 4; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
static int_fast64_t
detzcode64(const char *const codep)
{
int_fast64_t result = (codep[0] & 0x80) ? -1 : 0;
for (int i = 0; i < 8; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
static void
settzname(void)
{
struct state * const sp = lclptr;
tzname[0] = wildabbr;
tzname[1] = wildabbr;
/*
** And to get the latest zone names into tzname. . .
*/
for (int i = 0; i < sp->typecnt; ++i) {
const struct ttinfo * const ttisp = &sp->ttis[i];
tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
}
for (int i = 0; i < sp->timecnt; ++i) {
const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
}
/*
** Finally, scrub the abbreviations.
** First, replace bogus characters.
*/
for (int i = 0; i < sp->charcnt; ++i)
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
sp->chars[i] = TZ_ABBR_ERR_CHAR;
/*
** Second, truncate long abbreviations.
*/
for (int i = 0; i < sp->typecnt; ++i) {
const struct ttinfo * const ttisp = &sp->ttis[i];
char * cp = &sp->chars[ttisp->tt_abbrind];
if (strlen(cp) > TZ_ABBR_MAX_LEN && strcmp(cp, GRANDPARENTED) != 0)
*(cp + TZ_ABBR_MAX_LEN) = '\0';
}
}
static int
differ_by_repeat(const time_t t1, const time_t t0)
{
if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
return 0;
/* R change */
return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
}
extern const char *getTZinfo(void);
extern void Rf_warning(const char *, ...);
static int
tzload(const char * name, struct state * const sp, const int doextend)
{
const char * p;
int i;
int fid;
ssize_t nread;
typedef union {
struct tzhead tzhead;
char buf[2 * sizeof(struct tzhead) +
2 * sizeof *sp + 4 * TZ_MAX_TIMES];
} u_t;
u_t u;
u_t * const up = &u;
sp->goback = sp->goahead = FALSE;
/* if (name == NULL && (name = TZDEFAULT) == NULL) return -1; */
if (name == NULL) {
name = getTZinfo();
if( strcmp(name, "unknown") == 0 ) name = TZDEFAULT;
}
{
int doaccess;
/*
** Section 4.9.1 of the C standard says that
** "FILENAME_MAX expands to an integral constant expression
** that is the size needed for an array of char large enough
** to hold the longest file name string that the implementation
** guarantees can be opened."
*/
char fullname[FILENAME_MAX + 1];
const char *sname = name;
if (name[0] == ':')
++name;
doaccess = name[0] == '/';
if (!doaccess) {
char buf[1000];
p = getenv("TZDIR");
if (p == NULL) {
p = getenv("R_SHARE_DIR");
if(p)
snprintf(buf, 1000, "%s/zoneinfo", p);
else
snprintf(buf, 1000, "%s/share/zoneinfo", getenv("R_HOME"));
buf[999] = '\0';
p = buf;
}
/* if ((p = TZDIR) == NULL) return -1; */
if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
return -1;
(void) strcpy(fullname, p);
(void) strcat(fullname, "/");
(void) strcat(fullname, name);
/*
** Set doaccess if '.' (as in "../") shows up in name.
*/
if (strchr(name, '.') != NULL) doaccess = TRUE;
name = fullname;
}
if (doaccess && access(name, R_OK) != 0) {
Rf_warning("unknown timezone '%s'", sname);
return -1;
}
if ((fid = open(name, OPEN_MODE)) == -1) {
Rf_warning("unknown timezone '%s'", sname);
return -1;
}
}
nread = read(fid, up->buf, sizeof up->buf);
if (close(fid) < 0 || nread <= 0)
return -1;
for (int stored = 4; stored <= 8; stored *= 2) {
int ttisstdcnt, ttisgmtcnt, timecnt;
ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
return -1;
if (nread - (p - up->buf) <
sp->timecnt * stored + /* ats */
sp->timecnt + /* types */
sp->typecnt * 6 + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (stored + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
ttisgmtcnt) /* ttisgmts */
return -1;
timecnt = 0;
for (int i = 0; i < sp->timecnt; ++i) {
int_fast64_t at = stored == 4 ? detzcode(p) : detzcode64(p);
sp->types[i] = ((TYPE_SIGNED(time_t) ? time_t_min <= at : 0 <= at)
&& at <= time_t_max);
if (sp->types[i]) {
if (i && !timecnt && at != time_t_min) {
/*
** Keep the earlier record, but tweak
** it so that it starts with the
** minimum time_t value.
*/
sp->types[i - 1] = 1;
sp->ats[timecnt++] = time_t_min;
}
sp->ats[timecnt++] = at;
}
p += stored;
}
timecnt = 0;
for (int i = 0; i < sp->timecnt; ++i) {
unsigned char typ = *p++;
if (sp->typecnt <= typ) return -1;
if (sp->types[i])
sp->types[timecnt++] = typ;
}
sp->timecnt = timecnt;
for (int i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
return -1;
ttisp->tt_abbrind = (unsigned char) *p++;
if (ttisp->tt_abbrind < 0 ||
ttisp->tt_abbrind > sp->charcnt)
return -1;
}
for (i = 0; i < sp->charcnt; ++i)
sp->chars[i] = *p++;
sp->chars[i] = '\0'; /* ensure '\0' at end */
for (int i = 0; i < sp->leapcnt; ++i) {
struct lsinfo * lsisp;
lsisp = &sp->lsis[i];
lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p);
p += stored;
lsisp->ls_corr = detzcode(p);
p += 4;
}
for (int i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
if (ttisstdcnt == 0)
ttisp->tt_ttisstd = FALSE;
else {
ttisp->tt_ttisstd = *p++;
if (ttisp->tt_ttisstd != TRUE && ttisp->tt_ttisstd != FALSE)
return -1;
}
}
for (int i = 0; i < sp->typecnt; ++i) {
struct ttinfo * ttisp;
ttisp = &sp->ttis[i];
if (ttisgmtcnt == 0)
ttisp->tt_ttisgmt = FALSE;
else {
ttisp->tt_ttisgmt = *p++;
if (ttisp->tt_ttisgmt != TRUE && ttisp->tt_ttisgmt != FALSE)
return -1;
}
}
/*
** If this is an old file, we're done.
*/
if (up->tzhead.tzh_version[0] == '\0')
break;
nread -= p - up->buf;
for (int i = 0; i < nread; ++i)
up->buf[i] = p[i];
/*
** If this is a signed narrow time_t system, we're done.
*/
if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
break;
}
if (doextend && nread > 2 &&
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
sp->typecnt + 2 <= TZ_MAX_TYPES) {
struct state ts;
int result;
up->buf[nread - 1] = '\0';
result = tzparse(&up->buf[1], &ts, FALSE);
if (result == 0 && ts.typecnt == 2 &&
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
for (int i = 0; i < 2; ++i)
ts.ttis[i].tt_abbrind += sp->charcnt;
for (int i = 0; i < ts.charcnt; ++i)
sp->chars[sp->charcnt++] = ts.chars[i];
i = 0;
while (i < ts.timecnt && ts.ats[i] <= sp->ats[sp->timecnt - 1])
++i;
while (i < ts.timecnt &&
sp->timecnt < TZ_MAX_TIMES) {
sp->ats[sp->timecnt] = ts.ats[i];
sp->types[sp->timecnt] =
(unsigned char)(sp->typecnt + ts.types[i]);
++sp->timecnt;
++i;
}
sp->ttis[sp->typecnt++] = ts.ttis[0];
sp->ttis[sp->typecnt++] = ts.ttis[1];
}
}
if (sp->timecnt > 1) {
for (int i = 1; i < sp->timecnt; ++i)
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
differ_by_repeat(sp->ats[i], sp->ats[0])) {
sp->goback = TRUE;
break;
}
for (int i = sp->timecnt - 2; i >= 0; --i)
if (typesequiv(sp, sp->types[sp->timecnt - 1],
sp->types[i]) &&
differ_by_repeat(sp->ats[sp->timecnt - 1],
sp->ats[i])) {
sp->goahead = TRUE;
break;
}
}
/*
** If type 0 is is unused in transitions,
** it's the type to use for early times.
*/
for (i = 0; i < sp->typecnt; ++i)
if (sp->types[i] == 0)
break;
i = (i >= sp->typecnt) ? 0 : -1;
/*
** Absent the above,
** if there are transition times
** and the first transition is to a daylight time
** find the standard type less than and closest to
** the type of the first transition.
*/
if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
i = sp->types[0];
while (--i >= 0)
if (!sp->ttis[i].tt_isdst)
break;
}
/*
** If no result yet, find the first standard type.
** If there is none, punt to type zero.
*/
if (i < 0) {
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt) {
i = 0;
break;
}
}
sp->defaulttype = i;
return 0;
}
static int
typesequiv(const struct state * const sp, const int a, const int b)
{
int result;
if (sp == NULL ||
a < 0 || a >= sp->typecnt ||
b < 0 || b >= sp->typecnt)
result = FALSE;
else {
const struct ttinfo * ap = &sp->ttis[a];
const struct ttinfo * bp = &sp->ttis[b];
result = ap->tt_gmtoff == bp->tt_gmtoff &&
ap->tt_isdst == bp->tt_isdst &&
ap->tt_ttisstd == bp->tt_ttisstd &&
ap->tt_ttisgmt == bp->tt_ttisgmt &&
strcmp(&sp->chars[ap->tt_abbrind],
&sp->chars[bp->tt_abbrind]) == 0;
}
return result;
}
static const int mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
/*
** Given a pointer into a time zone string, scan until a character that is not
** a valid character in a zone name is found. Return a pointer to that
** character.
*/
static const char *
getzname(const char * strp)
{
char c;
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
c != '+')
++strp;
return strp;
}
/*
** Given a pointer into an extended time zone string, scan until the ending
** delimiter of the zone name is located. Return a pointer to the delimiter.
**
** As with getzname above, the legal character set is actually quite
** restricted, with other characters producing undefined results.
** We don't do any checking here; checking is done later in common-case code.
*/
static const char *
getqzname(const char *strp, const int delim)
{
int c;
while ((c = *strp) != '\0' && c != delim)
++strp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a number from that string.
** Check that the number is within a specified range; if it is not, return
** NULL.
** Otherwise, return a pointer to the first character not part of the number.
*/
static const char *
getnum(const char * strp, int * const nump, const int min, const int max)
{
char c;
int num;
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do {
num = num * 10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
c = *++strp;
} while (is_digit(c));
if (num < min)
return NULL; /* illegal value */
*nump = num;
return strp;
}
/*
** Given a pointer into a time zone string, extract a number of seconds,
** in hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the number
** of seconds.
*/
static const char *
getsecs(const char *strp, int_fast32_t *const secsp)
{
int num;
/*
** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
** "M10.4.6/26", which does not conform to Posix,
** but which specifies the equivalent of
** "02:00 on the first Sunday on or after 23 Oct".
*/
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (int_fast32_t) SECSPERHOUR;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':') {
++strp;
/* 'SECSPERMIN' allows for leap seconds. */
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*
** Given a pointer into a time zone string, extract an offset, in
** [+-]hh[:mm[:ss]] form, from the string.
** If any error occurs, return NULL.
** Otherwise, return a pointer to the first character not part of the time.
*/
static const char *
getoffset(const char *strp, int_fast32_t *const offsetp)
{
int neg = 0;
if (*strp == '-') {
neg = 1;
++strp;
} else if (*strp == '+')
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
** Given a pointer into a time zone string, extract a rule in the form
** date[/time]. See POSIX section 8 for the format of "date" and "time".
** If a valid rule is not found, return NULL.
** Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *
getrule(const char * strp, struct rule * const rulep)
{
if (*strp == 'J') {
/*
** Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
} else if (*strp == 'M') {
/*
** Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
} else if (is_digit(*strp)) {
/*
** Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
} else return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/') {
/*
** Time specified.
*/
++strp;
strp = getoffset(strp, &rulep->r_time);
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
return strp;
}
/*
** Given a year, a rule, and the offset from UT at the time that rule takes
** effect, calculate the year-relative time that rule takes effect.
*/
static int_fast32_t
transtime(const int year, const struct rule *const rulep,
const int_fast32_t offset)
{
int leapyear;
int_fast32_t value;
int d, m1, yy0, yy1, yy2, dow;
INITIALIZE(value);
leapyear = isleap(year);
switch (rulep->r_type) {
case JULIAN_DAY:
/*
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
** years.
** In non-leap years, or if the day number is 59 or less, just
** add SECSPERDAY times the day number-1 to the time of
** January 1, midnight, to get the day.
*/
value = (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
case DAY_OF_YEAR:
/*
** n - day of year.
** Just add SECSPERDAY times the day number to the time of
** January 1, midnight, to get the day.
*/
value = rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
** Mm.n.d - nth "dth day" of month m.
*/
/*
** Use Zeller's Congruence to get day-of-week of first day of
** month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
** "dow" is the day-of-week of the first day of the month. Get
** the day-of-month (zero-origin) of the first "dow" day of the
** month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (int i = 1; i < rulep->r_week; ++i) {
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYSPERWEEK;
}
/*
** "d" is the day-of-month (zero-origin) of the day we want.
*/
value = d * SECSPERDAY;
for (int i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
break;
}
/*
** "value" is the year-relative time of 00:00:00 UT on the day in
** question. To get the year-relative time of the specified local
** time on that day, add the transition time and the current offset
** from UT.
*/
return value + rulep->r_time + offset;
}
/*
** Given a POSIX section 8-style TZ string, fill in the rule tables as
** appropriate.
*/
static int
tzparse(const char * name, struct state * const sp, const int lastditch)
{
const char * stdname;
const char * dstname;
size_t stdlen;
size_t dstlen;
int_fast32_t stdoffset;
int_fast32_t dstoffset;
char * cp;
int load_result;
static struct ttinfo zttinfo;
INITIALIZE(dstname);
stdname = name;
if (lastditch) {
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
} else {
if (*name == '<') {
name++;
stdname = name;
name = getqzname(name, '>');
if (*name != '>')
return (-1);
stdlen = name - stdname;
name++;
} else {
name = getzname(name);
stdlen = name - stdname;
}
if (*name == '\0')
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
}
load_result = tzload(TZDEFRULES, sp, FALSE);
if (load_result != 0)
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0') {
if (*name == '<') {
dstname = ++name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
dstlen = name - dstname;
name++;
} else {
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
}
if (*name != '\0' && *name != ',' && *name != ';') {
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
} else dstoffset = stdoffset - SECSPERHOUR;
if (*name == '\0' && load_result != 0)
name = TZDEFRULESTRING;
if (*name == ',' || *name == ';') {
struct rule start;
struct rule end;
int year;
int yearlim;
int timecnt;
time_t janfirst;
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
/*
** Two transitions per year, from EPOCH_YEAR forward.
*/
sp->ttis[0] = sp->ttis[1] = zttinfo;
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
timecnt = 0;
janfirst = 0;
yearlim = EPOCH_YEAR + YEARSPERREPEAT;
for (year = EPOCH_YEAR; year < yearlim; year++) {
int_fast32_t
starttime = transtime(year, &start, stdoffset),
endtime = transtime(year, &end, dstoffset);
int_fast32_t
yearsecs = (year_lengths[isleap(year)]
* SECSPERDAY);
int reversed = endtime < starttime;
if (reversed) {
int_fast32_t swap = starttime;
starttime = endtime;
endtime = swap;
}
if (reversed
|| (starttime < endtime
&& (endtime - starttime
< (yearsecs
+ (stdoffset - dstoffset))))) {
if (TZ_MAX_TIMES - 2 < timecnt)
break;
yearlim = year + YEARSPERREPEAT + 1;
sp->ats[timecnt] = janfirst;
if (increment_overflow_time
(&sp->ats[timecnt], starttime))
break;
sp->types[timecnt++] = (unsigned char) reversed;
sp->ats[timecnt] = janfirst;
if (increment_overflow_time
(&sp->ats[timecnt], endtime))
break;
sp->types[timecnt++] = !reversed;
}
if (increment_overflow_time(&janfirst, yearsecs))
break;
}
sp->timecnt = timecnt;
if (!timecnt)
sp->typecnt = 1; /* Perpetual DST. */
} else {
int_fast32_t theirstdoffset, theirdstoffset, theiroffset;
int isdst;
if (*name != '\0')
return -1;
/*
** Initial values of theirstdoffset and theirdstoffset.
*/
theirstdoffset = 0;
for (int i = 0; i < sp->timecnt; ++i) {
int j = sp->types[i];
if (!sp->ttis[j].tt_isdst) {
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (int i = 0; i < sp->timecnt; ++i) {
int j = sp->types[i];
if (sp->ttis[j].tt_isdst) {
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
/*
** Initially we're assumed to be in standard time.
*/
isdst = FALSE;
theiroffset = theirstdoffset;
/*
** Now juggle transition times and types
** tracking offsets as you do.
*/
for (int i = 0; i < sp->timecnt; ++i) {
int j = sp->types[i];
sp->types[i] = (unsigned char)sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt) {
/* No adjustment to transition time */
} else {
/*
** If summer time is in effect, and the
** transition time was not specified as
** standard time, add the summer time
** offset to the transition time;
** otherwise, add the standard time
** offset to the transition time.
*/
/*
** Transitions from DST to DDST
** will effectively disappear since
** POSIX provides for only one DST
** offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd) {
sp->ats[i] += dstoffset -
theirdstoffset;
} else {
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else theirstdoffset = theiroffset;
}
/*
** Finally, fill in ttis.
*/
sp->ttis[0] = sp->ttis[1] = zttinfo;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = FALSE;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = TRUE;
sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
sp->typecnt = 2;
}
} else {
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0] = zttinfo;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = (int)(stdlen + 1);
if (dstlen != 0)
sp->charcnt += dstlen + 1;
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0) {
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
static void
gmtload(struct state * const sp)
{
if (tzload(gmt, sp, TRUE) != 0)
(void) tzparse(gmt, sp, TRUE);
}
void
R_tzsetwall(void)
{
if (lcl_is_set < 0) return;
lcl_is_set = -1;
if (tzload((char *) NULL, lclptr, TRUE) != 0) gmtload(lclptr);
settzname();
}
void
tzset(void)
{
const char * name;
name = getenv("TZ");
if (name == NULL) {
R_tzsetwall();
return;
}
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
return;
lcl_is_set = strlen(name) < sizeof lcl_TZname;
/* R change: was strcpy before. */
if (lcl_is_set) {
(void) strncpy(lcl_TZname, name, TZ_STRLEN_MAX);
lcl_TZname[TZ_STRLEN_MAX] = '\0';
}
if (*name == '\0') {
/*
** User wants it fast rather than right.
*/
lclptr->leapcnt = 0; /* so, we're off a little */
lclptr->timecnt = 0;
lclptr->typecnt = 0;
lclptr->ttis[0].tt_isdst = 0;
lclptr->ttis[0].tt_gmtoff = 0;
lclptr->ttis[0].tt_abbrind = 0;
(void) strcpy(lclptr->chars, gmt);
} else if (tzload(name, lclptr, TRUE) != 0)
if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
(void) gmtload(lclptr);
settzname();
}
/*
** The easy way to behave "as if no library function calls" localtime
** is to not call it--so we drop its guts into "localsub", which can be
** freely called. (And no, the PANS doesn't require the above behavior--
** but it *is* desirable.)
**
** The unused offset argument is for the benefit of mktime variants.
*/
/*ARGSUSED*/
static stm *
localsub(const time_t *const timep, const int_fast32_t offset, stm *const tmp)
{
struct state * sp;
const struct ttinfo * ttisp;
int i;
stm * result;
const time_t t = *timep;
sp = lclptr;
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
time_t newt = t;
time_t seconds;
time_t years;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
seconds = years * AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return NULL; /* "cannot happen" */
result = localsub(&newt, offset, tmp);
if (result == tmp) {
time_t newy;
newy = tmp->tm_year;
if (t < sp->ats[0])
newy -= years;
else newy += years;
tmp->tm_year = (int)newy;
if (tmp->tm_year != newy)
return NULL;
}
return result;
}
if (sp->timecnt == 0 || t < sp->ats[0]) {
i = sp->defaulttype;
} else {
int lo = 1;
int hi = sp->timecnt;
while (lo < hi) {
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else lo = mid + 1;
}
i = (int) sp->types[lo - 1];
}
ttisp = &sp->ttis[i];
/*
** To get (wrong) behavior that's compatible with System V Release 2.0
** you'd replace the statement below with
** t += ttisp->tt_gmtoff;
** timesub(&t, 0L, sp, tmp);
*/
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
tmp->tm_isdst = ttisp->tt_isdst;
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
//#ifdef HAVE_TM_ZONE
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
//#endif
return result;
}
stm * localtime(const time_t * const timep)
{
tzset();
return localsub(timep, 0L, &tm);
}
/*
** Re-entrant version of localtime.
*/
stm *
localtime_r(const time_t *const timep, stm *tmp)
{
return localsub(timep, 0L, tmp);
}
/*
** gmtsub is to gmtime as localsub is to localtime.
*/
static stm *
gmtsub(const time_t *const timep, const int_fast32_t offset, stm *const tmp)
{
stm * result;
if (!gmt_is_set) {
gmt_is_set = TRUE;
gmtload(gmtptr);
}
result = timesub(timep, offset, gmtptr, tmp);
return result;
}
stm * gmtime(const time_t * const timep)
{
return gmtsub(timep, 0L, &tm);
}
/*
* Re-entrant version of gmtime.
*/
stm *
gmtime_r(const time_t *const timep, stm *tmp)
{
return gmtsub(timep, 0L, tmp);
}
/*
** Return the number of leap years through the end of the given year
** where, to make the math easy, the answer for year zero is defined as zero.
*/
static int leaps_thru_end_of(const int y)
{
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
-(leaps_thru_end_of(-(y + 1)) + 1);
}
static stm *
timesub(const time_t *const timep, const int_fast32_t offset,
const struct state *const sp, stm *const tmp)
{
const struct lsinfo * lp;
time_t tdays;
int idays; /* unsigned would be so 2003 */
int_fast64_t rem;
int y;
const int * ip;
int_fast64_t corr;
int hit;
int i;
corr = 0;
hit = 0;
i = sp->leapcnt;
while (--i >= 0) {
lp = &sp->lsis[i];
if (*timep >= lp->ls_trans) {
if (*timep == lp->ls_trans) {
hit = ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1) {
++hit;
--i;
}
}
corr = lp->ls_corr;
break;
}
}
y = EPOCH_YEAR;
tdays = *timep / SECSPERDAY;
rem = *timep - tdays * SECSPERDAY;
while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
int newy;
time_t tdelta;
int idelta;
int leapdays;
tdelta = tdays / DAYSPERLYEAR;
if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
&& tdelta <= INT_MAX))
return NULL;
idelta = (int)tdelta;
if (idelta == 0)
idelta = (tdays < 0) ? -1 : 1;
newy = y;
if (increment_overflow(&newy, idelta))
return NULL;
leapdays = leaps_thru_end_of(newy - 1) -
leaps_thru_end_of(y - 1);
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
tdays -= leapdays;
y = newy;
}
{
int_fast32_t seconds;
seconds = (int_fast32_t)(tdays * SECSPERDAY);
tdays = seconds / SECSPERDAY;
rem += seconds - tdays * SECSPERDAY;
}
/*
** Given the range, we can now fearlessly cast...
*/
idays = (int)tdays;
rem += offset - corr;
while (rem < 0) {
rem += SECSPERDAY;
--idays;
}
while (rem >= SECSPERDAY) {
rem -= SECSPERDAY;
++idays;
}
while (idays < 0) {
if (increment_overflow(&y, -1))
return NULL;
idays += year_lengths[isleap(y)];
}
while (idays >= year_lengths[isleap(y)]) {
idays -= year_lengths[isleap(y)];
if (increment_overflow(&y, 1))
return NULL;
}
tmp->tm_year = y;
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
return NULL;
tmp->tm_yday = idays;
/*
** The "extra" mods below avoid overflow problems.
*/
tmp->tm_wday = EPOCH_WDAY +
((y - EPOCH_YEAR) % DAYSPERWEEK) *
(DAYSPERNYEAR % DAYSPERWEEK) +
leaps_thru_end_of(y - 1) -
leaps_thru_end_of(EPOCH_YEAR - 1) +
idays;
tmp->tm_wday %= DAYSPERWEEK;
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem %= SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
/*
** A positive leap second requires a special
** representation. This uses "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
ip = mon_lengths[isleap(y)];
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
idays -= ip[tmp->tm_mon];
tmp->tm_mday = (int) (idays + 1);
tmp->tm_isdst = 0;
//#ifdef HAVE_TM_GMTOFF
tmp->tm_gmtoff = offset;
//#endif
return tmp;
}
#ifdef UNUSED
char *
ctime(const time_t *const timep)
{
/*
** Section 4.12.3.2 of X3.159-1989 requires that
** The ctime function converts the calendar time pointed to by timer
** to local time in the form of a string. It is equivalent to
** asctime(localtime(timer))
*/
return asctime(localtime(timep));
}
char *
ctime_r(const time_t *const timep, char *buf)
{
stm mytm;
return asctime_r(localtime_r(timep, &mytm), buf);
}
#endif
/*
** Adapted from code provided by Robert Elz, who writes:
** The "best" way to do mktime I think is based on an idea of Bob
** Kridle's (so its said...) from a long time ago.
** It does a binary search of the time_t space. Since time_t's are
** just 32 bits, its a max of 32 iterations (even at 64 bits it
** would still be very reasonable).
*/
#ifndef WRONG
#define WRONG (-1)
#endif /* !defined WRONG */
/*
** Normalize logic courtesy Paul Eggert.
*/
static int
increment_overflow(int *const ip, int j)
{
int const i = *ip;
/*
** If i >= 0 there can only be overflow if i + j > INT_MAX
** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
** If i < 0 there can only be overflow if i + j < INT_MIN
** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
*/
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
return TRUE;
*ip += j;
return FALSE;
}
static int
increment_overflow32(int_fast32_t *const lp, int const m)
{
int_fast32_t const l = *lp;
if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
return TRUE;
*lp += m;
return FALSE;
}
static int
increment_overflow_time(time_t *tp, int_fast32_t j)
{
/*
** This is like
** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
** except that it does the right thing even if *tp + j would overflow.
*/
if (! (j < 0
? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
: *tp <= time_t_max - j))
return TRUE;
*tp += j;
return FALSE;
}
static int
normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
{
int tensdelta;
tensdelta = (*unitsptr >= 0) ?
(*unitsptr / base) :
(-1 - (-1 - *unitsptr) / base);
*unitsptr -= tensdelta * base;
return increment_overflow(tensptr, tensdelta);
}
static int
normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
const int base)
{
int tensdelta;
tensdelta = (*unitsptr >= 0) ?
(*unitsptr / base) :
(-1 - (-1 - *unitsptr) / base);
*unitsptr -= tensdelta * base;
return increment_overflow32(tensptr, tensdelta);
}
static int
tmcomp(const stm * const atmp, const stm * const btmp)
{
int result;
if (atmp->tm_year != btmp->tm_year)
return atmp->tm_year < btmp->tm_year ? -1 : 1;
if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
(result = (atmp->tm_min - btmp->tm_min)) == 0)
result = atmp->tm_sec - btmp->tm_sec;
return result;
}
static time_t
time2sub(stm *const tmp,
stm *(*const funcp)(const time_t *, int_fast32_t, stm *),
const int_fast32_t offset,
int *const okayp,
const int do_norm_secs)
{
const struct state * sp;
int dir;
int i;
int saved_seconds;
int_fast32_t li;
time_t lo, hi;
int_fast32_t y;
time_t newt, t;
stm yourtm = *tmp, mytm;
*okayp = FALSE;
if (do_norm_secs) {
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN)) {
errno = EOVERFLOW;
return WRONG;
}
}
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) {
errno = EOVERFLOW;
return WRONG;
}
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) {
errno = EOVERFLOW;
return WRONG;
}
y = yourtm.tm_year;
if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) {
errno = EOVERFLOW;
return WRONG;
}
/*
** Turn y into an actual year number for now.
** It is converted back to an offset from TM_YEAR_BASE later.
*/
if (increment_overflow32(&y, TM_YEAR_BASE)) {
errno = EOVERFLOW;
return WRONG;
}
while (yourtm.tm_mday <= 0) {
if (increment_overflow32(&y, -1)) {
errno = EOVERFLOW;
return WRONG;
}
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday += year_lengths[isleap(li)];
}
while (yourtm.tm_mday > DAYSPERLYEAR) {
li = y + (1 < yourtm.tm_mon);
yourtm.tm_mday -= year_lengths[isleap(li)];
if (increment_overflow32(&y, 1)) {
errno = EOVERFLOW;
return WRONG;
}
}
for ( ; ; ) {
i = mon_lengths[isleap(y)][yourtm.tm_mon];
if (yourtm.tm_mday <= i)
break;
yourtm.tm_mday -= i;
if (++yourtm.tm_mon >= MONSPERYEAR) {
yourtm.tm_mon = 0;
if (increment_overflow32(&y, 1)) {
errno = EOVERFLOW;
return WRONG;
}
}
}
if (increment_overflow32(&y, -TM_YEAR_BASE)) {
errno = EOVERFLOW;
return WRONG;
}
yourtm.tm_year = y;
if (yourtm.tm_year != y) {
errno = EOVERFLOW;
return WRONG;
}
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
saved_seconds = 0;
else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
/*
** We can't set tm_sec to 0, because that might push the
** time below the minimum representable time.
** Set tm_sec to 59 instead.
** This assumes that the minimum representable time is
** not in the same minute that a leap second was deleted from,
** which is a safer assumption than using 58 would be.
*/
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) {
errno = EOVERFLOW;
return WRONG;
}
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = SECSPERMIN - 1;
} else {
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = 0;
}
/*
** Do a binary search (this works whatever time_t's type is).
*/
lo = time_t_min;
hi = time_t_max;
for ( ; ; ) {
t = lo / 2 + hi / 2;
if (t < lo)
t = lo;
else if (t > hi)
t = hi;
if ((*funcp)(&t, offset, &mytm) == NULL) {
/*
** Assume that t is too extreme to be represented in
** a struct tm; arrange things so that it is less
** extreme on the next pass.
*/
dir = (t > 0) ? 1 : -1;
} else dir = tmcomp(&mytm, &yourtm);
if (dir != 0) {
if (t == lo) {
if (t == time_t_max) {
errno = EOVERFLOW;
return WRONG;
}
++t;
++lo;
} else if (t == hi) {
if (t == time_t_min) {
errno = EOVERFLOW;
return WRONG;
}
--t;
--hi;
}
if (lo > hi) {
errno = EOVERFLOW;
return WRONG;
}
if (dir > 0)
hi = t;
else lo = t;
continue;
}
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
break;
/*
** Right time, wrong type.
** Hunt for right time, right type.
** It's okay to guess wrong since the guess
** gets checked.
*/
sp = (const struct state *)
((funcp == localsub) ? lclptr : gmtptr);
for (int i = sp->typecnt - 1; i >= 0; --i) {
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
continue;
for (int j = sp->typecnt - 1; j >= 0; --j) {
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
continue;
newt = t + sp->ttis[j].tt_gmtoff -
sp->ttis[i].tt_gmtoff;
if ((*funcp)(&newt, offset, &mytm) == NULL)
continue;
if (tmcomp(&mytm, &yourtm) != 0)
continue;
if (mytm.tm_isdst != yourtm.tm_isdst)
continue;
/*
** We have a match.
*/
t = newt;
goto label;
}
}
errno = EOVERFLOW;
return WRONG;
}
label:
newt = t + saved_seconds;
if ((newt < t) != (saved_seconds < 0)) {
errno = EOVERFLOW;
return WRONG;
}
t = newt;
if ((*funcp)(&t, offset, tmp))
*okayp = TRUE;
return t;
}
static time_t
time2(stm * const tmp,
stm * (*const funcp)(const time_t *, int_fast32_t, stm *),
const int_fast32_t offset,
int *const okayp)
{
time_t t;
/*
** First try without normalization of seconds
** (in case tm_sec contains a value associated with a leap second).
** If that fails, try with normalization of seconds.
*/
t = time2sub(tmp, funcp, offset, okayp, FALSE);
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
}
static time_t
time1(stm *const tmp,
stm *(*const funcp) (const time_t *, int_fast32_t, stm *),
const int_fast32_t offset)
{
time_t t;
const struct state *sp;
int seen[TZ_MAX_TYPES];
int types[TZ_MAX_TYPES];
int okay;
if (tmp == NULL) {
errno = EINVAL;
return WRONG;
}
if (tmp->tm_isdst > 1)
tmp->tm_isdst = 1;
t = time2(tmp, funcp, offset, &okay);
if (okay || tmp->tm_isdst < 0)
return t;
/* R change. This appears to be required by POSIX (it says
the setting is used 'initially') and is documented for
Solaris.
Try unknown DST setting, if it was set.
*/
if (tmp->tm_isdst >= 0) {
tmp->tm_isdst = -1;
errno = 0; // previous attempt will have set it
t = time2(tmp, funcp, offset, &okay);
if (okay) return t;
}
/*
** We're supposed to assume that somebody took a time of one type
** and did some math on it that yielded a "struct tm" that's bad.
** We try to divine the type they started from and adjust to the
** type they need.
*/
sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
for (int i = 0; i < sp->typecnt; ++i)
seen[i] = FALSE;
int nseen = 0;
for (int i = sp->timecnt - 1; i >= 0; --i)
if (!seen[sp->types[i]]) {
seen[sp->types[i]] = TRUE;
types[nseen++] = sp->types[i];
}
for (int sameind = 0; sameind < nseen; ++sameind) {
int samei = types[sameind];
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
continue;
for (int otherind = 0; otherind < nseen; ++otherind) {
int otheri = types[otherind];
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
continue;
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
t = time2(tmp, funcp, offset, &okay);
if (okay)
return t;
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
sp->ttis[samei].tt_gmtoff;
tmp->tm_isdst = !tmp->tm_isdst;
}
}
errno = EOVERFLOW;
return WRONG;
}
time_t mktime(stm * const tmp)
{
tzset();
return time1(tmp, localsub, 0L);
}
time_t
R_timegm(stm *tmp)
{
if (tmp != NULL)
tmp->tm_isdst = 0;
return time1(tmp, gmtsub, 0L);
}
#ifdef STD_INSPIRED
time_t
timelocal(stm *const tmp)
{
if (tmp != NULL)
tmp->tm_isdst = -1; /* in case it wasn't initialized */
return mktime(tmp);
}
time_t
timeoff(stm *const tmp, const long offset)
{
if (tmp != NULL)
tmp->tm_isdst = 0;
return time1(tmp, gmtsub, offset);
}
#endif /* defined STD_INSPIRED */