blob: d5c45ce2585b41c12ac3096306cf2743544020d0 [file] [log] [blame]
/*
* R : A Computer Language for Statistical Data Analysis
* Copyright (C) 2000--2015 The R Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* https://www.R-project.org/Licenses/
*/
/* Utilities for `dpq' handling (density/probability/quantile) */
/* give_log in "d"; log_p in "p" & "q" : */
#define give_log log_p
/* "DEFAULT" */
/* --------- */
#define R_D__0 (log_p ? ML_NEGINF : 0.) /* 0 */
#define R_D__1 (log_p ? 0. : 1.) /* 1 */
#define R_DT_0 (lower_tail ? R_D__0 : R_D__1) /* 0 */
#define R_DT_1 (lower_tail ? R_D__1 : R_D__0) /* 1 */
#define R_D_half (log_p ? -M_LN2 : 0.5) // 1/2 (lower- or upper tail)
/* Use 0.5 - p + 0.5 to perhaps gain 1 bit of accuracy */
#define R_D_Lval(p) (lower_tail ? (p) : (0.5 - (p) + 0.5)) /* p */
#define R_D_Cval(p) (lower_tail ? (0.5 - (p) + 0.5) : (p)) /* 1 - p */
#define R_D_val(x) (log_p ? log(x) : (x)) /* x in pF(x,..) */
#define R_D_qIv(p) (log_p ? exp(p) : (p)) /* p in qF(p,..) */
#define R_D_exp(x) (log_p ? (x) : exp(x)) /* exp(x) */
#define R_D_log(p) (log_p ? (p) : log(p)) /* log(p) */
#define R_D_Clog(p) (log_p ? log1p(-(p)) : (0.5 - (p) + 0.5)) /* [log](1-p) */
// log(1 - exp(x)) in more stable form than log1p(- R_D_qIv(x)) :
#define R_Log1_Exp(x) ((x) > -M_LN2 ? log(-expm1(x)) : log1p(-exp(x)))
/* log(1-exp(x)): R_D_LExp(x) == (log1p(- R_D_qIv(x))) but even more stable:*/
#define R_D_LExp(x) (log_p ? R_Log1_Exp(x) : log1p(-x))
#define R_DT_val(x) (lower_tail ? R_D_val(x) : R_D_Clog(x))
#define R_DT_Cval(x) (lower_tail ? R_D_Clog(x) : R_D_val(x))
/*#define R_DT_qIv(p) R_D_Lval(R_D_qIv(p)) * p in qF ! */
#define R_DT_qIv(p) (log_p ? (lower_tail ? exp(p) : - expm1(p)) \
: R_D_Lval(p))
/*#define R_DT_CIv(p) R_D_Cval(R_D_qIv(p)) * 1 - p in qF */
#define R_DT_CIv(p) (log_p ? (lower_tail ? -expm1(p) : exp(p)) \
: R_D_Cval(p))
#define R_DT_exp(x) R_D_exp(R_D_Lval(x)) /* exp(x) */
#define R_DT_Cexp(x) R_D_exp(R_D_Cval(x)) /* exp(1 - x) */
#define R_DT_log(p) (lower_tail? R_D_log(p) : R_D_LExp(p))/* log(p) in qF */
#define R_DT_Clog(p) (lower_tail? R_D_LExp(p): R_D_log(p))/* log(1-p) in qF*/
#define R_DT_Log(p) (lower_tail? (p) : R_Log1_Exp(p))
// == R_DT_log when we already "know" log_p == TRUE
#define R_Q_P01_check(p) \
if ((log_p && p > 0) || \
(!log_p && (p < 0 || p > 1)) ) \
ML_ERR_return_NAN
/* Do the boundaries exactly for q*() functions :
* Often _LEFT_ = ML_NEGINF , and very often _RIGHT_ = ML_POSINF;
*
* R_Q_P01_boundaries(p, _LEFT_, _RIGHT_) :<==>
*
* R_Q_P01_check(p);
* if (p == R_DT_0) return _LEFT_ ;
* if (p == R_DT_1) return _RIGHT_;
*
* the following implementation should be more efficient (less tests):
*/
#define R_Q_P01_boundaries(p, _LEFT_, _RIGHT_) \
if (log_p) { \
if(p > 0) \
ML_ERR_return_NAN; \
if(p == 0) /* upper bound*/ \
return lower_tail ? _RIGHT_ : _LEFT_; \
if(p == ML_NEGINF) \
return lower_tail ? _LEFT_ : _RIGHT_; \
} \
else { /* !log_p */ \
if(p < 0 || p > 1) \
ML_ERR_return_NAN; \
if(p == 0) \
return lower_tail ? _LEFT_ : _RIGHT_; \
if(p == 1) \
return lower_tail ? _RIGHT_ : _LEFT_; \
}
#define R_P_bounds_01(x, x_min, x_max) \
if(x <= x_min) return R_DT_0; \
if(x >= x_max) return R_DT_1
/* is typically not quite optimal for (-Inf,Inf) where
* you'd rather have */
#define R_P_bounds_Inf_01(x) \
if(!R_FINITE(x)) { \
if (x > 0) return R_DT_1; \
/* x < 0 */return R_DT_0; \
}
/* additions for density functions (C.Loader) */
#define R_D_fexp(f,x) (give_log ? -0.5*log(f)+(x) : exp(x)/sqrt(f))
/* [neg]ative or [non int]eger : */
#define R_D_negInonint(x) (x < 0. || R_nonint(x))
// for discrete d<distr>(x, ...) :
#define R_D_nonint_check(x) \
if(R_nonint(x)) { \
MATHLIB_WARNING(_("non-integer x = %f"), x); \
return R_D__0; \
}