blob: 549779c9e33850191f0a236de1dce9d2598fdf8e [file] [log] [blame]
% File src/library/stats/man/Exponential.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2014 R Core Team
% Distributed under GPL 2 or later
\name{Exponential}
\alias{Exponential}
\alias{dexp}
\alias{pexp}
\alias{qexp}
\alias{rexp}
\title{The Exponential Distribution}
\description{
Density, distribution function, quantile function and random
generation for the exponential distribution with rate \code{rate}
(i.e., mean \code{1/rate}).
}
\usage{
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
}
\arguments{
\item{x, q}{vector of quantiles.}
\item{p}{vector of probabilities.}
\item{n}{number of observations. If \code{length(n) > 1}, the length
is taken to be the number required.}
\item{rate}{vector of rates.}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dexp} gives the density,
\code{pexp} gives the distribution function,
\code{qexp} gives the quantile function, and
\code{rexp} generates random deviates.
The length of the result is determined by \code{n} for
\code{rexp}, and is the maximum of the lengths of the
numerical arguments for the other functions.
The numerical arguments other than \code{n} are recycled to the
length of the result. Only the first elements of the logical
arguments are used.
}
\details{
If \code{rate} is not specified, it assumes the default value of
\code{1}.
The exponential distribution with rate \eqn{\lambda} has density
\deqn{f(x) = \lambda {e}^{- \lambda x}} for \eqn{x \ge 0}.
}
\source{
\code{dexp}, \code{pexp} and \code{qexp} are all calculated
from numerically stable versions of the definitions.
\code{rexp} uses
Ahrens, J. H. and Dieter, U. (1972).
Computer methods for sampling from the exponential and normal distributions.
\emph{Communications of the ACM}, \bold{15}, 873--882.
}
\references{
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
\emph{The New S Language}.
Wadsworth & Brooks/Cole.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)
\emph{Continuous Univariate Distributions}, volume 1, chapter 19.
Wiley, New York.
}
\seealso{
\code{\link{exp}} for the exponential function.
\link{Distributions} for other standard distributions, including
\code{\link{dgamma}} for the gamma distribution and
\code{\link{dweibull}} for the Weibull distribution, both of which
generalize the exponential.
}
\note{
The cumulative hazard \eqn{H(t) = - \log(1 - F(t))}{H(t) = - log(1 - F(t))}
is \code{-pexp(t, r, lower = FALSE, log = TRUE)}.
}
\examples{
dexp(1) - exp(-1) #-> 0
## a fast way to generate *sorted* U[0,1] random numbers:
rsunif <- function(n) { n1 <- n+1
cE <- cumsum(rexp(n1)); cE[seq_len(n)]/cE[n1] }
plot(rsunif(1000), ylim=0:1, pch=".")
abline(0,1/(1000+1), col=adjustcolor(1, 0.5))
}
\keyword{distribution}