blob: bbbe68247300f6eb16af9fea51130dceabd35129 [file] [log] [blame]
% File src/library/stats/man/ansari.test.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2018 R Core Team
% Distributed under GPL 2 or later
\name{ansari.test}
\alias{ansari.test}
\alias{ansari.test.default}
\alias{ansari.test.formula}
\title{Ansari-Bradley Test}
\description{
Performs the Ansari-Bradley two-sample test for a difference in scale
parameters.
}
\usage{
ansari.test(x, \dots)
\method{ansari.test}{default}(x, y,
alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,
\dots)
\method{ansari.test}{formula}(formula, data, subset, na.action, \dots)
}
\arguments{
\item{x}{numeric vector of data values.}
\item{y}{numeric vector of data values.}
\item{alternative}{indicates the alternative hypothesis and must be
one of \code{"two.sided"}, \code{"greater"} or \code{"less"}. You
can specify just the initial letter.}
\item{exact}{a logical indicating whether an exact p-value
should be computed.}
\item{conf.int}{a logical,indicating whether a confidence interval
should be computed.}
\item{conf.level}{confidence level of the interval.}
\item{formula}{a formula of the form \code{lhs ~ rhs} where \code{lhs}
is a numeric variable giving the data values and \code{rhs} a factor
with two levels giving the corresponding groups.}
\item{data}{an optional matrix or data frame (or similar: see
\code{\link{model.frame}}) containing the variables in the
formula \code{formula}. By default the variables are taken from
\code{environment(formula)}.}
\item{subset}{an optional vector specifying a subset of observations
to be used.}
\item{na.action}{a function which indicates what should happen when
the data contain \code{NA}s. Defaults to
\code{getOption("na.action")}.}
\item{\dots}{further arguments to be passed to or from methods.}
}
\details{
Suppose that \code{x} and \code{y} are independent samples from
distributions with densities \eqn{f((t-m)/s)/s} and \eqn{f(t-m)},
respectively, where \eqn{m} is an unknown nuisance parameter and
\eqn{s}, the ratio of scales, is the parameter of interest. The
Ansari-Bradley test is used for testing the null that \eqn{s} equals
1, the two-sided alternative being that \eqn{s \ne 1}{s != 1} (the
distributions differ only in variance), and the one-sided alternatives
being \eqn{s > 1} (the distribution underlying \code{x} has a larger
variance, \code{"greater"}) or \eqn{s < 1} (\code{"less"}).
By default (if \code{exact} is not specified), an exact p-value
is computed if both samples contain less than 50 finite values and
there are no ties. Otherwise, a normal approximation is used.
Optionally, a nonparametric confidence interval and an estimator for
\eqn{s} are computed. If exact p-values are available, an exact
confidence interval is obtained by the algorithm described in Bauer
(1972), and the Hodges-Lehmann estimator is employed. Otherwise, the
returned confidence interval and point estimate are based on normal
approximations.
Note that mid-ranks are used in the case of ties rather than average
scores as employed in Hollander & Wolfe (1973). See, e.g., Hajek,
Sidak and Sen (1999), pages 131ff, for more information.
}
\value{
A list with class \code{"htest"} containing the following components:
\item{statistic}{the value of the Ansari-Bradley test statistic.}
\item{p.value}{the p-value of the test.}
\item{null.value}{the ratio of scales \eqn{s} under the null, 1.}
\item{alternative}{a character string describing the alternative
hypothesis.}
\item{method}{the string \code{"Ansari-Bradley test"}.}
\item{data.name}{a character string giving the names of the data.}
\item{conf.int}{a confidence interval for the scale parameter.
(Only present if argument \code{conf.int = TRUE}.)}
\item{estimate}{an estimate of the ratio of scales.
(Only present if argument \code{conf.int = TRUE}.)}
}
\note{
To compare results of the Ansari-Bradley test to those of the F test
to compare two variances (under the assumption of normality), observe
that \eqn{s} is the ratio of scales and hence \eqn{s^2} is the ratio
of variances (provided they exist), whereas for the F test the ratio
of variances itself is the parameter of interest. In particular,
confidence intervals are for \eqn{s} in the Ansari-Bradley test but
for \eqn{s^2} in the F test.
}
\references{
David F. Bauer (1972).
Constructing confidence sets using rank statistics.
\emph{Journal of the American Statistical Association},
\bold{67}, 687--690.
\doi{10.1080/01621459.1972.10481279}.
Jaroslav Hajek, Zbynek Sidak and Pranab K. Sen (1999).
\emph{Theory of Rank Tests}.
San Diego, London: Academic Press.
Myles Hollander and Douglas A. Wolfe (1973).
\emph{Nonparametric Statistical Methods}.
New York: John Wiley & Sons.
Pages 83--92.
}
\seealso{
\code{\link{fligner.test}} for a rank-based (nonparametric)
\eqn{k}-sample test for homogeneity of variances;
\code{\link{mood.test}} for another rank-based two-sample test for a
difference in scale parameters;
\code{\link{var.test}} and \code{\link{bartlett.test}} for parametric
tests for the homogeneity in variance.
\code{\link[coin:ScaleTests]{ansari_test}} in package \CRANpkg{coin}
for exact and approximate \emph{conditional} p-values for the
Ansari-Bradley test, as well as different methods for handling ties.
}
\examples{
## Hollander & Wolfe (1973, p. 86f):
## Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
ansari.test(ramsay, jung.parekh)
ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)
## try more points - failed in 2.4.1
ansari.test(rnorm(100), rnorm(100, 0, 2), conf.int = TRUE)
}
\keyword{htest}