blob: d63847f4ecce86899cf915c09a10a924ca6fa84f [file] [log] [blame]
% File src/library/stats/man/summary.nls.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2009 R Core Team
% Distributed under GPL 2 or later
\name{summary.nls}
\alias{summary.nls}
\alias{print.summary.nls}
\title{Summarizing Non-Linear Least-Squares Model Fits}
\description{
\code{summary} method for class \code{"nls"}.
}
\usage{
\method{summary}{nls}(object, correlation = FALSE, symbolic.cor = FALSE, \dots)
\method{print}{summary.nls}(x, digits = max(3, getOption("digits") - 3),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), \dots)
}
\arguments{
\item{object}{an object of class \code{"nls"}.}
\item{x}{an object of class \code{"summary.nls"}, usually the result of a
call to \code{summary.nls}.}
\item{correlation}{logical; if \code{TRUE}, the correlation matrix of
the estimated parameters is returned and printed.}
\item{digits}{the number of significant digits to use when printing.}
\item{symbolic.cor}{logical. If \code{TRUE}, print the correlations in
a symbolic form (see \code{\link{symnum}}) rather than as numbers.}
\item{signif.stars}{logical. If \code{TRUE}, \sQuote{significance stars}
are printed for each coefficient.}
\item{\dots}{further arguments passed to or from other methods.}
}
\details{
The distribution theory used to find the distribution of the
standard errors and of the residual standard error (for t ratios) is
based on linearization and is approximate, maybe very approximate.
\code{print.summary.nls} tries to be smart about formatting the
coefficients, standard errors, etc. and additionally gives
\sQuote{significance stars} if \code{signif.stars} is \code{TRUE}.
Correlations are printed to two decimal places (or symbolically): to
see the actual correlations print \code{summary(object)$correlation}
directly.
}
\value{
The function \code{summary.nls} computes and returns a list of summary
statistics of the fitted model given in \code{object}, using
the component \code{"formula"} from its argument, plus
\item{residuals}{the \emph{weighted} residuals, the usual residuals
rescaled by the square root of the weights specified in the call to
\code{nls}.}
\item{coefficients}{a \eqn{p \times 4}{p x 4} matrix with columns for
the estimated coefficient, its standard error, t-statistic and
corresponding (two-sided) p-value.}
\item{sigma}{the square root of the estimated variance of the random
error
\deqn{\hat\sigma^2 = \frac{1}{n-p}\sum_i{R_i^2},}{\sigma^2 = 1/(n-p) Sum(R[i]^2),}
where \eqn{R_i}{R[i]} is the \eqn{i}-th weighted residual.}
\item{df}{degrees of freedom, a 2-vector \eqn{(p, n-p)}. (Here and
elsewhere \eqn{n} omits observations with zero weights.)}
\item{cov.unscaled}{a \eqn{p \times p}{p x p} matrix of (unscaled)
covariances of the parameter estimates.}
\item{correlation}{the correlation matrix corresponding to the above
\code{cov.unscaled}, if \code{correlation = TRUE} is specified and
there are a non-zero number of residual degrees of freedom.}
\item{symbolic.cor}{(only if \code{correlation} is true.) The value
of the argument \code{symbolic.cor}.}
}
\seealso{
The model fitting function \code{\link{nls}}, \code{\link{summary}}.
Function \code{\link{coef}} will extract the matrix of coefficients
with standard errors, t-statistics and p-values.
}
\keyword{regression}
\keyword{models}