blob: 7104238fad0b98fd2a51bc5bf9a7315c2e8d9b4f [file] [log] [blame]
<!--#include virtual="header.txt"-->
<h1>Slurm Burst Buffer Guide</h1>
<ul>
<li><a href="#overview">Overview</a></li>
<li><a href="#configuration">Configuration (for system administrators)</a>
<ul>
<li><a href="#common_config">Common Configuration</a></li>
<li><a href="#datawarp_config">Datawarp</a></li>
<li><a href="#lua_config">Lua</a></li>
</ul>
</li>
<li><a href="#lua-implementation">Lua Implementation (for system
administrators)</a>
<ul>
<li><a href="#burst_buffer_lua">How does burst_buffer.lua run?</a></li>
<li><a href="#lua_warnings">Warnings</a></li>
</ul>
</li>
<li><a href="#resources">Burst Buffer Resources</a>
<ul>
<li><a href="#datawarp_resources">Datawarp</a></li>
<li><a href="#lua_resources">Lua</a></li>
</ul>
</li>
<li><a href="#submit">Job Submission Commands</a>
<ul>
<li><a href="#submit_dw">Datawarp</a></li>
<li><a href="#submit_lua">Lua</a></li>
</ul>
</li>
<li><a href="#persist">Persistent Burst Buffer Creation and Deletion Directives</a></li>
<li><a href="#het-job-support">Heterogeneous Job Support</a></li>
<li><a href="#command-line">Command-line Job Options</a>
<ul>
<li><a href="#command-line-dw">Datawarp</a></li>
<li><a href="#command-line-lua">Lua</a></li>
</ul>
</li>
<li><a href="#symbols">Symbol Replacement</a></li>
<li><a href="#status">Status Commands</a></li>
<li><a href="#reservation">Advanced Reservations</a></li>
<li><a href="#dependencies">Job Dependencies</a></li>
<li><a href="#states">Burst Buffer States and Job States</a></li>
</ul>
<h2 id="overview">Overview<a class="slurm_link" href="#overview"></a></h2>
<p>This guide explains how to use Slurm burst buffer plugins. Where appropriate,
it explains how these plugins work in order to give guidance about how to best
use these plugins.</p>
<p>The Slurm burst buffer plugins call a script at different points during the
lifetime of a job:</p>
<ol>
<li>At job submission</li>
<li>While the job is pending after an estimated start time is
established. This is called "stage-in."</li>
<li>Once the job has been scheduled but has not started running yet.
This is called "pre-run."</li>
<li>Once the job has completed or been cancelled, but Slurm has not
released resources for the job yet. This is called "stage-out."</li>
<li>Once the job has completed, and Slurm has released resources for
the job. This is called "teardown."</li>
</ol>
<p>This script runs on the slurmctld node. These are the supported plugins:</p>
<ul>
<li>datawarp</li>
<li>lua</li>
</ul>
<h3 id="overview-dw">Datawarp
<a class="slurm_link" href="#overview-dw"></a>
</h3>
<p>This plugin provides hooks to Cray's Datawarp APIs. Datawarp implements burst
buffers, which are a shared high-speed storage resource. Slurm provides support
for allocating these resources, staging files in, scheduling compute nodes for
jobs using these resources, and staging files out. Burst buffers can also be
used as temporary storage during a job's lifetime, without file staging.
Another typical use case is for persistent storage, not associated with any
specific job.</p>
<h3 id="overview-lua">Lua
<a class="slurm_link" href="#overview-lua"></a>
</h3>
<p>This plugin provides hooks to an API that is defined by a Lua script. This
plugin was developed to provide system administrators with a way to do any task
(not only file staging) at different points in a job's life cycle. These tasks
might include file staging, node maintenance, or any other task that is desired
to run during one or more of the five job states listed above.</p>
<p>The burst buffer APIs will only be called for a job that specifically
requests using them. The <a href="#submit">Job Submission Commands</a> section
explains how a job can request using the burst buffer APIs.</p>
<h2 id="configuration">Configuration (for system administrators)
<a class="slurm_link" href="#configuration"></a>
</h2>
<h3 id="common_config">Common Configuration
<a class="slurm_link" href="#common_config"></a>
</h3>
<ul>
<li>To enable a burst buffer plugin, set <code>BurstBufferType</code> in
slurm.conf. If it is not set, then no burst buffer plugin will be loaded.
Only one burst buffer plugin may be specified.</li>
<li>In slurm.conf, you may set <code>DebugFlags=BurstBuffer</code> for detailed
logging from the burst buffer plugin. This will result in very verbose logging
and is not intended for prolonged use in a production system, but this may be
useful for debugging.</li>
<li><a href="resource_limits.html">TRES limits</a> for burst buffers can be
configured by association or QOS in the same way that TRES limits can be
configured for nodes, CPUs, or any GRES. To make Slurm track burst buffer
resources, add <code>bb/datawarp</code> (for the datawarp plugin) or
<code>bb/lua</code> (for the lua plugin) to <code>AccountingStorageTres</code>
in slurm.conf.</li>
<li>The size of a job's burst buffer requirements can be used as a factor in
setting the job priority as described in the
<a href="priority_multifactor.html">multifactor priority document</a>.
The <a href="#resources">Burst Buffer Resources</a> section explains how
these resources are defined.</li>
<li>Burst-buffer-specific configurations can be set in burst_buffer.conf.
Configuration settings include things like which users may use burst buffers,
timeouts, paths to burst buffer scripts, etc. See the
<a href="burst_buffer.conf.html">burst_buffer.conf</a> manual
for more information.</li>
<li>The JSON-C library must be installed in order to build Slurm's
<code>burst_buffer/datawarp</code> and <code>burst_buffer/lua</code> plugins,
which must parse JSON format data. See Slurm's
<a href="related_software.html#json">JSON installation information</a> for
details.</li>
</ul>
<h3 id="datawarp_config">Datawarp
<a class="slurm_link" href="#datawarp_config"></a>
</h3>
<p>slurm.conf:</p>
<pre>
BurstBufferType=burst_buffer/datawarp
</pre>
<p>The datawarp plugin calls two scripts:</p>
<ul>
<li><b>dw_wlm_cli</b> - the Slurm burst_buffer/datawarp plugin calls this
script to perform burst buffer functions. It should have been provided by Cray.
The location of this script is defined by GetSysState in burst_buffer.conf. A
template of this script is provided with Slurm:</li>
<code>src/plugins/burst_buffer/datawarp/dw_wlm_cli</code>
<li><b>dwstat</b> - the Slurm burst_buffer/datawarp plugin calls this script to
get status information. It should have been provided by Cray. The location of
this script is defined by GetSysStatus in burst_buffer.conf. A template of this
script is provided with Slurm:</li>
<code>src/plugins/burst_buffer/datawarp/dwstat</code>
</ul>
<h3 id="lua_config">Lua<a class="slurm_link" href="#lua_config"></a></h3>
<p>slurm.conf:</p>
<pre>
BurstBufferType=burst_buffer/lua
</pre>
<p>The lua plugin calls a single script which must be named burst_buffer.lua.
This script needs to exist in the same directory as slurm.conf. The following
functions are required to exist, although they may do nothing but return
success:</p>
<ul>
<li><code>slurm_bb_job_process</code></li>
<li><code>slurm_bb_pools</code></li>
<li><code>slurm_bb_job_teardown</code></li>
<li><code>slurm_bb_setup</code></li>
<li><code>slurm_bb_data_in</code></li>
<li><code>slurm_bb_test_data_in</code></li>
<li><code>slurm_bb_real_size</code></li>
<li><code>slurm_bb_paths</code></li>
<li><code>slurm_bb_pre_run</code></li>
<li><code>slurm_bb_post_run</code></li>
<li><code>slurm_bb_data_out</code></li>
<li><code>slurm_bb_test_data_out</code></li>
<li><code>slurm_bb_get_status</code></li>
</ul>
<p>A template of burst_buffer.lua is provided with Slurm:
<code>etc/burst_buffer.lua.example</code></p>
<p>This template documents many more details about the functions such as
required parameters, when each function is called, return values for each
function, and some simple examples.</p>
<h2 id="lua-implementation">Lua Implementation
<a class="slurm_link" href="#lua-implementation"></a>
</h2>
<p>This purpose of this section is to provide additional information about the
Lua plugin to help system administrators who desire to implement the Lua API.
The most important points in this section are:</p>
<ul>
<li>Some functions in burst_buffer.lua must run quickly and cannot be killed;
the remaining functions are allowed to run for as long as needed and can be
killed.</li>
<li>A maximum of 512 copies of burst_buffer.lua are allowed to run concurrently
in order to avoid exceeding system limits.</li>
</ul>
<h3 id="burst_buffer_lua">How does burst_buffer.lua run?
<a class="slurm_link" href="#burst_buffer_lua"></a>
</h3>
<p>Lua scripts may either be run by themselves in a separate process via the
<code>fork()</code> and <code>exec()</code> system calls, or they may be called
via Lua's C API from within an existing process. One of the goals of the lua
plugin was to avoid calling <code>fork()</code> from within slurmctld because
it can severely harm performance of the slurmctld. The datawarp plugin calls
<code>fork()</code> and <code>exec()</code> from slurmctld for every burst
buffer API call, and this has been shown to severely harm slurmctld
performance. Therefore, slurmctld calls burst_buffer.lua using Lua's C API
instead of using <code>fork()</code>.</p>
<p>Some functions in burst_buffer.lua are allowed to run for a long time, but
they may need to be killed if the job is cancelled, if slurmctld is restarted,
or if they run for longer than the configured timeout in burst_buffer.conf.
However, a call to a Lua script via Lua's C API cannot be killed from within
the same process; only killing the entire process that called the Lua
script can kill the Lua script.</p>
<p>To address this situation, burst_buffer.lua is called in two different
ways:</p>
<ul>
<li>The <code>slurm_bb_job_process</code>, <code>slurm_bb_pools</code> and
<code>slurm_bb_paths</code> functions are called from slurmctld.
Because of the explanation above,
a script running one of these functions cannot be killed. Since these functions
are called while slurmctld holds some mutexes, it will be extremely harmful to
slurmctld performance and responsiveness if they are slow. Because it is faster
to call these functions directly than to call <code>fork()</code> to create a
new process, this was deemed an acceptable tradeoff. As a result, <i>these
functions cannot be killed</i>.</li>
<li>The remaining functions in burst_buffer.lua are able to run longer without
adverse effects. These need to be able to be killed. These functions are called
from a lightweight Slurm daemon called slurmscriptd. Whenever one of these
functions needs to run, slurmctld tells slurmscriptd to run that function;
slurmscriptd then calls <code>fork()</code> to create a new process, then calls
the appropriate function. This avoids calling <code>fork()</code> from
slurmctld while still providing a way to kill running copies of burst_buffer.lua
when needed. As a result, <i>these functions can be killed, and they will be
killed if they run for longer than the appropriate timeout value as configured
in burst_buffer.conf</i>.</li>
</ul>
<p>The way in which each function is called is also documented in the
burst_buffer.lua.example file.</p>
<h3 id="lua_warnings">Warnings
<a class="slurm_link" href="#lua_warnings"></a>
</h3>
<p>Do not install a signal handler in burst_buffer.lua because
it is called directly from slurmctld. If slurmctld receives a signal, it
could attempt to run the signal handler from burst_buffer.lua, even after a call
to burst_buffer.lua is completed, which results in a crash.</p>
<h2 id="resources">Burst Buffer Resources
<a class="slurm_link" href="#resources"></a>
</h2>
<p>The burst buffer API may define burst buffer resource "pools" from which a
job may request a certain amount of pool space. If a pool does not have
sufficient space to fulfill a job's request, that job will remain pending until
the pool does have enough space. Once the pool has enough space, Slurm may begin
stage-in for the job. When stage-in begins, Slurm subtracts the job's requested
space from the pool's available space. When teardown completes, Slurm adds the
job's requested space back into the pool's available space. The
<a href="#submit">Job Submission Commands</a> section explains how a job may
request space from a pool. Pool space is a scalar quantity.</p>
<h3 id="datawarp_resources">Datawarp
<a class="slurm_link" href="#datawarp_resources"></a>
</h3>
<ul>
<li>Pools are defined by <code>dw_wlm_cli</code>, and represent bytes. This
script prints a JSON-formatted string defining the pools to stdout.</li>
<li>If a job does not request a pool, then the pool defined by
<code>DefaultPool</code> in burst_buffer.conf will be used. If a job does
not request a pool and <code>DefaultPool</code>
is not defined, then the job will be rejected.</li>
</ul>
<h3 id="lua_resources">Lua
<a class="slurm_link" href="#lua_resources"></a>
</h3>
<ul>
<li>Pools are optional in this plugin, and can represent anything.</li>
<li><code>DefaultPool</code> in burst_buffer.conf is not used in this
plugin.</li>
<li>Pools are defined by burst_buffer.lua in the function
<code>slurm_bb_pools</code>. If pools are not desired, then this function should
just return <code>slurm.SUCCESS</code>. If pools are desired, then this function
should return two values: (1) <code>slurm.SUCCESS</code>, and (2) a
JSON-formatted string defining the pools. An example is provided in
burst_buffer.lua.example. The current valid fields in the JSON string are:</li>
<ul>
<li><b>id</b> - a string defining the name of the pool</li>
<li><b>quantity</b> - a number defining the amount of space in the
pool</li>
<li><b>granularity</b> - a number defining the lowest resolution of
space that may be allocated from this pool. If a job does not request a
number that is a multiple of granularity, then the job's request will
be rounded up to the nearest multiple of granularity. For example,
if granularity equals 1000, then the smallest amount of space that may
be allocated from this pool for a single job is 1000. If a job requests
less than 1000 units from this pool, then the job's request will be
rounded up to 1000.</li>
</ul>
</ul>
<h2 id="submit">Job Submission Commands
<a class="slurm_link" href="#submit"></a>
</h2>
<p>The normal mode of operation is for batch jobs to specify burst buffer
requirements within the batch script. Commented batch script lines containing a
specific directive (depending on which plugin is being used) will inform Slurm
that it should run the burst buffer stages for that job. These lines will also
describe the burst buffer requirements for the job.</p>
<p>The salloc and srun commands can specify burst buffer requirements with the
<code>--bb</code> and <code>--bbf</code> options. This is described in the
<a href="#command-line">Command-line Job Options</a> section.</p>
<p>All burst buffer directives should be specified in comments at the top of
the batch script. They may be placed before, after, or interspersed with any
<code>#SBATCH</code> directives. All burst buffer stages happen at specific
points in the job's life cycle, as described in the
<a href="#overview">Overview</a> section; they do not happen during the job's
execution. For example, all of the persistent burst buffer (used only by the
datawarp plugin) creations and deletions happen before the job's compute
portion happens. In a similar fashion, you can't run stage-in at various points
in the script execution; burst buffer stage-in is performed before the job
begins and stage-out is performed after the job completes.</p>
<p>For both plugins, a job may request a certain amount of space (size or
<b>capacity</b>) from a burst buffer resource <b>pool</b>.</p>
<ul>
<li>A <b>pool</b> specification is simply a string that matches the name of the
pool. For example: <code>pool=pool1</code></li>
<li>A <b>capacity</b> specification is a number indicating the amount of space
required from the pool. A <b>capacity</b> specification can include a suffix of
"N" (nodes), "K|KiB", "M|MiB", "G|GiB", "T|TiB", "P|PiB" (for powers of 1024)
and "KB", "MB", "GB", "TB", "PB" (for powers of 1000). <b>NOTE</b>: Usually
Slurm interprets KB, MB, GB, TB, PB, units as powers of 1024, but for Burst
Buffers size specifications Slurm supports both IEC/SI formats. This is because
the CRAY API supports both formats.</li>
</ul>
<p>At job submission, Slurm performs basic directive validation and also runs a
function in the burst buffer script. This function can perform validation of
the directives used in the job script. If Slurm determines options are invalid,
or if the burst buffer script returns an error, the job will be rejected and an
error message will be returned directly to the user.</p>
<p>Note that unrecognized options may be ignored in order to support backward
compatibility (i.e. a job submission would not fail in the case of an option
recognized by some versions of Slurm, but not recognized by other versions). If
the job is accepted, but later fails (e.g. some problem staging files), the job
will be held and its "Reason" field will be set to an error message provided by
the underlying infrastructure.</p>
<p>Users may also request to be notified by email upon completion of burst
buffer stage out using the <code>--mail-type=stage_out</code> or
<code>--mail-type=all</code> option. The subject line of the email will be of
this form:</p>
<pre>
SLURM Job_id=12 Name=my_app Staged Out, StageOut time 00:05:07
</pre>
<p>The following plugin subsections give additional information that is
specific to each plugin and provide example job scripts. Command-line examples
are given in the
<a href="#command-line">Command-line Job Options</a> section.</p>
<h3 id="submit_dw">Datawarp
<a class="slurm_link" href="#submit_dw"></a>
</h3>
<p>The directive of <code>#DW</code> (for "DataWarp") is used for burst buffer
directives when using the <code>burst_buffer/datawarp</code> plugin. Please
reference Cray documentation for details about the DataWarp options. For
DataWarp systems, the directive of <code>#BB</code> can be used to create or
delete persistent burst buffer storage.
<br>
<b>NOTE</b>: The <code>#BB</code> directive is used since the
command is interpreted by Slurm and not by the Cray Datawarp software. This is
discussed more in the <a href="#persist">Persistent Burst Buffer</a>
section.</p>
<p>For job-specific burst buffers, it is required to specify a burst buffer
<b>capacity</b>. If the job does not specify <b>capacity</b> then the job will
be rejected. A job may also specify the pool from which it wants resources; if
the job does not specify a pool, then the pool specified by DefaultPool in
burst_buffer.conf will be used (if configured).</p>
<p>The following job script requests burst buffer resources from the default
pool and requests files to be staged in and staged out:</p>
<pre>
#!/bin/bash
#DW jobdw type=scratch capacity=1GB access_mode=striped,private pfs=/scratch
#DW stage_in type=file source=/tmp/a destination=/ss/file1
#DW stage_out type=file destination=/tmp/b source=/ss/file1
srun application.sh
</pre>
<h3 id="submit_lua">Lua
<a class="slurm_link" href="#submit_lua"></a>
</h3>
<p>The default directive for this plugin is <code>#BB_LUA</code>. The directive
used by this plugin may be changed by setting the <b>Directive</b> option in
burst_buffer.conf. Since the directive must always begin with a <code>#</code>
sign (which starts a comment in a shell script) this option should specify only
the string following the <code>#</code> sign. For example, if burst_buffer.conf
contains the following:</p>
<pre>Directive=BB_EXAMPLE</pre>
<p>then the burst buffer directive will be <code>#BB_EXAMPLE</code>.</p>
<p>If the <b>Directive</b> option is not specified in burst_buffer.conf, then
the default directive for this plugin (<code>#BB_LUA</code>) will be used.</p>
<p>Since this plugin was designed to be generic and flexible, this plugin only
requires the directive to be given. If the directive is given, Slurm will run
all burst buffer stages for the job.</p>
<p>Example of the minimum information required for all burst buffer stages to
run for the job:</p>
<pre>
#!/bin/bash
#BB_LUA
srun application.sh
</pre>
<p>Because burst buffer pools are optional for this plugin (see the <a
href="#resources">Burst Buffer Resources</a> section), a job is not required to
specify a pool or capacity. If pools are provided by the burst buffer API,
then a job may request a pool and capacity:</p>
<pre>
#!/bin/bash
#BB_LUA pool=pool1 capacity=1K
srun application.sh
</pre>
<p>A job may choose whether or not to specify a pool. If a job does not specify
a pool, then the job is still allowed to run and the burst buffer stages will
still run for this job (as long as the burst buffer directive was given). If
the job specifies a pool but that pool is not found, then the job is
rejected.</p>
<p>The system administrator may validate burst buffer options in the
<code>slurm_bb_job_process</code> function in burst_buffer.lua. This might
include requiring a job to specify a pool or validating any additional options
that the system administrator decides to implement.</p>
<h2 id="persist">Persistent Burst Buffer Creation and Deletion Directives
<a class="slurm_link" href="#persist"></a>
</h2>
<p>This section only applies to the datawarp plugin, since persistent burst
buffers are not used in any other burst buffer plugin.</p>
<p>These options are used to create and delete persistent burst buffers:</p>
<ul>
<li><code>#BB create_persistent name=&lt;name&gt; capacity=&lt;number&gt;
[access=&lt;access&gt;] [pool=&lt;pool&gt; [type=&lt;type&gt;]</code></li>
<li><code>#BB destroy_persistent name=&lt;name&gt; [hurry]</code></li>
</ul>
<p>Options for creating and deleting persistent burst buffers:</p>
<ul>
<li><b>name</b> - The persistent burst buffer name may not start with a numeric
value (numeric names are reserved for job-specific burst buffers).</li>
<li><b>capacity</b> - Described in the
<a href="#submit">Job Submission Commands</a> section.</li>
<li><b>pool</b> - Described in the
<a href="#submit">Job Submission Commands</a> section.</li>
<li><b>access</b> - The access parameter identifies the buffer access mode.
Supported access modes for the datawarp plugin include:</li>
<ul>
<li>striped</li>
<li>private</li>
<li>ldbalance</li>
</ul>
<li><b>type</b> - The type parameter identifies the buffer type. Supported type
modes for the datawarp plugin include:</li>
<ul>
<li>cache</li>
<li>scratch</li>
</ul>
</ul>
<p>Multiple persistent burst buffers may be created or deleted within a single
job.</p>
<p>Example - Creating two persistent burst buffers:</p>
<pre>
#!/bin/bash
#BB create_persistent name=alpha capacity=32GB access=striped type=scratch
#BB create_persistent name=beta capacity=16GB access=striped type=scratch
srun application.sh
</pre>
<p>Example - Destroying two persistent burst buffers:</p>
<pre>
#!/bin/bash
#BB destroy_persistent name=alpha
#BB destroy_persistent name=beta
srun application.sh
</pre>
<p>Persistent burst buffers can be created and deleted by a job requiring no
compute resources. Submit a job with the desired burst buffer directives and
specify a node count of zero (e.g. <code>sbatch -N0 setup_buffers.bash</code>).
Attempts to submit a zero size job without burst buffer directives or with
job-specific burst buffer directives will generate an error. Note that zero
size jobs are not supported for job arrays or heterogeneous job
allocations.</p>
<p><b>NOTE</b>: The ability to create and destroy persistent burst buffers may
be limited by the <code>Flags</code> option in the burst_buffer.conf file.
See the <a href="burst_buffer.conf.html">burst_buffer.conf</a> man page for
more information.
By default only <a href="user_permissions.html">privileged users</a>
(i.e. Slurm operators and administrators)
can create or destroy persistent burst buffers.</p>
<h2 id="het-job-support">Heterogeneous Job Support
<a class="slurm_link" href="#het-job-support"></a>
</h2>
<p>Heterogeneous jobs may request burst buffers. Burst buffer hooks will run
once for each component that has burst buffer directives. For example, if a
heterogeneous job has three components and two of them have burst buffer
directives, the burst buffer hooks will run once for each of the two components
with burst buffer directives, but not for the third component without burst
buffer directives. Further information and examples can be found in the
<a href=heterogeneous_jobs.html#burst_buffer>heterogeneous jobs</a> page.
</p>
<h2 id="command-line">Command-line Job Options
<a class="slurm_link" href="#command-line"></a>
</h2>
<p>In addition to putting burst buffer directives in the batch script, the
command-line options <code>--bb</code> and <code>--bbf</code> may also include
burst buffer directives. These command-line options are available for salloc,
sbatch, and srun. Note that the <code>--bb</code> option cannot create or
destroy persistent burst buffers.</p>
<p>The <code>--bbf</code> option takes as an argument a filename and that file
should contain a collection of burst buffer operations identical to those used
for batch jobs.</p>
<p>Alternatively, the <code>--bb</code> option may be used to specify burst
buffer directives as the option argument. The behavior of this option depends
on which burst buffer plugin is used. When the <code>--bb</code> option is
used, Slurm parses this option and creates a temporary burst buffer script file
that is used internally by the burst buffer plugins.</p>
<h3 id="command-line-dw">Datawarp
<a class="slurm_link" href="#command-line-dw"></a>
</h3>
<p>When using the <code>--bb</code> option, the format of the directives can
either be identical to those used in a batch script OR a very limited set of
options can be used, which are translated to the equivalent script for later
processing. The following options are allowed:</p>
<ul>
<li><code>access=&ltaccess&gt</code></li>
<li><code>capacity=&ltnumber&gt</code></li>
<li><code>swap=&ltnumber&gt</code></li>
<li><code>type=&lttype&gt</code></li>
<li><code>pool=&ltname&gt</code></li>
</ul>
<p>Multiple options should be space separated. If a swap option is specified,
the job must also specify the required node count.</p>
<p>Example:</p>
<pre>
# Sample execute line:
srun --bb="capacity=1G access=striped type=scratch" a.out
# Equivalent script as generated by Slurm's burst_buffer/datawarp plugin
#DW jobdw capacity=1GiB access_mode=striped type=scratch
</pre>
<h3 id="command-line-lua">Lua
<a class="slurm_link" href="#command-line-lua"></a>
</h3>
<p>This plugin does not do any special parsing or translating of burst buffer
directives given by the <code>--bb</code> option. When using the
<code>--bb</code> option, the format is identical to the batch script: Slurm
only enforces that the burst buffer directive must be specified. See additional
information in the Lua subsection of <a href="#submit">Job Submission
Commands</a>.</p>
<p>Example:</p>
<pre>
# Sample execute line:
srun --bb="#BB_LUA pool=pool1 capacity=1K"
# Equivalent script as generated by Slurm's burst_buffer/lua plugin
#BB_LUA pool=pool1 capacity=1K
</pre>
<h2 id="symbols">Symbol Replacement
<a class="slurm_link" href="#symbols"></a>
</h2>
<p>Slurm supports a number of symbols that can be used to automatically
fill in certain job details, e.g. to make stage-in or stage-out directory
paths vary with each job submission.</p>
<p>Supported symbols include:
<table border=1 cellspacing=4 cellpadding=4>
<tr><td>%%</td><td>%</td></tr>
<tr><td>%A</td><td>Array Master Job Id</td></tr>
<tr><td>%a</td><td>Array Task Id</td></tr>
<tr><td>%d</td><td>Workdir</td></tr>
<tr><td>%j</td><td>Job Id</td></tr>
<tr><td>%u</td><td>User Name</td></tr>
<tr><td>%x</td><td>Job Name</td></tr>
<tr><td>\\</td><td>Stop further processing of the line</td></tr>
</table>
</p>
<h2 id="status">Status Commands<a class="slurm_link" href="#status"></a></h2>
<p>Burst buffer information that Slurm tracks is available by using the
<code>scontrol show burst</code> command or by using the sview command's
Burst Buffer tab. Examples follow.</p>
<p>Datawarp plugin example:</p>
<pre>
$ scontrol show burst
Name=datawarp DefaultPool=wlm_pool Granularity=200GiB TotalSpace=5800GiB FreeSpace=4600GiB UsedSpace=1600GiB
Flags=EmulateCray
StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300
GetSysState=/home/marshall/slurm/master/install/c1/sbin/dw_wlm_cli
GetSysStatus=/home/marshall/slurm/master/install/c1/sbin/dwstat
Allocated Buffers:
JobID=169509 CreateTime=2021-08-11T10:19:06 Pool=wlm_pool Size=1200GiB State=allocated UserID=marshall(1017)
JobID=169508 CreateTime=2021-08-11T10:18:46 Pool=wlm_pool Size=400GiB State=staged-in UserID=marshall(1017)
Per User Buffer Use:
UserID=marshall(1017) Used=1600GiB
</pre>
<p>Lua plugin example:</p>
<pre>
$ scontrol show burst
Name=lua DefaultPool=(null) Granularity=1 TotalSpace=0 FreeSpace=0 UsedSpace=0
PoolName[0]=pool1 Granularity=1KiB TotalSpace=10000KiB FreeSpace=9750KiB UsedSpace=250KiB
PoolName[1]=pool2 Granularity=2 TotalSpace=10 FreeSpace=10 UsedSpace=0
PoolName[2]=pool3 Granularity=1 TotalSpace=4 FreeSpace=4 UsedSpace=0
PoolName[3]=pool4 Granularity=1 TotalSpace=5GB FreeSpace=4GB UsedSpace=1GB
Flags=DisablePersistent
StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300
GetSysState=(null)
GetSysStatus=(null)
Allocated Buffers:
JobID=169504 CreateTime=2021-08-11T10:13:38 Pool=pool1 Size=250KiB State=allocated UserID=marshall(1017)
JobID=169502 CreateTime=2021-08-11T10:12:06 Pool=pool4 Size=1GB State=allocated UserID=marshall(1017)
Per User Buffer Use:
UserID=marshall(1017) Used=1000256KB
</pre>
<p>Access to a burst buffer status API is available from scontrol using the
<code>scontrol show bbstat ...</code> or <code>scontrol show dwstat ...</code>
commands. Options following <code>bbstat</code> or <code>dwstat</code> on the
scontrol execute line are passed directly to the bbstat or dwstat commands, as
shown below. In the datawarp plugin, this command calls Cray's dwstat script.
See Cray Datawarp documentation for details about dwstat options and output. In
the lua plugin, this command calls the <code>slurm_bb_get_status</code>
function in burst_buffer.lua.</p>
<p>Datawarp plugin example:</p>
<pre>
/opt/cray/dws/default/bin/dwstat
$ scontrol show dwstat
pool units quantity free gran'
wlm_pool bytes 7.28TiB 7.28TiB 1GiB'
$ scontrol show dwstat sessions
sess state token creator owner created expiration nodes
832 CA--- 783000000 tester 12345 2015-09-08T16:20:36 never 20
833 CA--- 784100000 tester 12345 2015-09-08T16:21:36 never 1
903 D---- 1875700000 tester 12345 2015-09-08T17:26:05 never 0
$ scontrol show dwstat configurations
conf state inst type access_type activs
715 CA--- 753 scratch stripe 1
716 CA--- 754 scratch stripe 1
759 D--T- 807 scratch stripe 0
760 CA--- 808 scratch stripe 1
</pre>
<p>A Lua plugin example can be found in the <code>slurm_bb_get_status</code>
function in the <code>etc/burst_buffer.lua.example</code> file provided
with Slurm.</p>
<h2 id="reservation">Advanced Reservations
<a class="slurm_link" href="#reservation"></a>
</h2>
<p>Burst buffer resources can be placed in an advanced reservation using the
<i>BurstBuffer</i> option.
The argument consists of four elements:<br>
<code>[plugin:][pool:]#[units]</code>
<ul>
<li><b>plugin</b> is the burst buffer plugin name, currently either "datawarp"
or "lua".</li>
<li><b>pool</b> specifies a burst buffer resource pool.
If "type" is not specified, the number is a measure of storage space.</li>
<li><b>#</b> (meaning number) should be replaced with a positive integer.</li>
<li><b>units</b> has the same format as the suffix of capacity in the
<a href="#submit">Job Submission Commands</a> section.</li>
<p>Jobs using this reservation are not restricted to these burst buffer
resources, but may use these reserved resources plus any which are generally
available. Some examples follow.</p>
<pre>
$ scontrol create reservation starttime=now duration=60 \
users=alan flags=any_nodes \
burstbuffer=datawarp:100G
$ scontrol create reservation StartTime=noon duration=60 \
users=brenda NodeCnt=8 \
BurstBuffer=datawarp:20G
$ scontrol create reservation StartTime=16:00 duration=60 \
users=joseph flags=any_nodes \
BurstBuffer=datawarp:pool_test:4G
</pre>
<h2 id="dependencies">Job Dependencies
<a class="slurm_link" href="#dependencies"></a>
</h2>
<p>If two jobs use burst buffers and one is dependent on the other (e.g.
<code>sbatch --dependency=afterok:123 ...</code>) then the second job will not
begin until the first job completes and its burst buffer stage-out completes.
If the second job does not use a burst buffer, but is dependent upon the first
job's completion, then it will not wait for the stage-out operation of the first
job to complete.
The second job can be made to wait for the first job's stage-out operation to
complete using the "afterburstbuffer" dependency option (e.g.
<code>sbatch --dependency=afterburstbuffer:123 ...</code>).</p>
<h2 id="states">Burst Buffer States and Job States
<a class="slurm_link" href="#states"></a>
</h2>
<p>These are the different possible burst buffer states:</p>
<ul>
<li><code>pending</code></li>
<li><code>allocating</code></li>
<li><code>allocated</code></li>
<li><code>deleting</code></li>
<li><code>deleted</code></li>
<li><code>staging-in</code></li>
<li><code>staged-in</code></li>
<li><code>pre-run</code></li>
<li><code>alloc-revoke</code></li>
<li><code>running</code></li>
<li><code>suspended</code></li>
<li><code>post-run</code></li>
<li><code>staging-out</code></li>
<li><code>teardown</code></li>
<li><code>teardown-fail</code></li>
<li><code>complete</code></li>
</ul>
<p>These states appear in the "BurstBufferState" field in the output of
<code>scontrol show job</code>. This field only appears for jobs that requested
a burst buffer. The states <code>allocating</code>, <code>allocated</code>,
<code>deleting</code> and <code>deleted</code> are used
for persistent burst buffers only (not for job-specific burst buffers). The
state <code>alloc-revoke</code> happens if a failure in Slurm's select plugin
occurs in between Slurm allocating resources for a job and actually starting
the job. This should never happen.</p>
<p>When a job requests a burst buffer, this is what the job and burst buffer
state transitions look like:</p>
<ol>
<li>Job is submitted. Job state and burst buffer state are both
<code>pending</code>.</li>
<li>Burst buffer stage-in starts. Job state: <code>pending</code> with reason:
<code>BurstBufferStageIn</code>. Burst buffer state: <code>staging-in</code>.
</li>
<li>When stage-in completes, the job is eligible to be scheduled (barring any
other limits). Job state: <code>pending</code>. Burst buffer state:
<code>staged-in</code>.</li>
<li>When the job is scheduled and allocated resources, the burst buffer pre-run
stage begins. Job state: <code>running+configuring</code>. Burst buffer state:
<code>pre-run</code>.</li>
<li>When pre-run finishes, the <code>configuring</code> flag is cleared from
the job and the job can actually start running. Job state and burst buffer
state are both <code>running</code>.</li>
<li>When the job completes (even if it fails), burst buffer stage-out starts.
Job state: <code>stage-out</code>. Burst buffer state:
<code>staging-out</code>.</li>
<li>When stage-out completes, teardown starts. Job state: <code>complete</code>.
Burst buffer state: <code>teardown</code>.</li>
</ol>
<p>There are some situations which will change the state transitions. Examples
include:</p>
<ul>
<li>Burst buffer operation failures:</li>
<ul>
<li>If teardown fails, then the burst buffer state changes to
teardown-fail. Teardown will be retried. For the burst_buffer/lua
plugin, teardown will run a maximum of 3 times before giving up and
destroying the burst buffer.</li>
<li>If either stage-in or stage-out fail and Flags=teardownFailure is
configured in burst_buffer.conf, then teardown runs. Otherwise, the job
is held and the burst buffer remains in the same state so it may be
inspected and manually destroyed with <code>scancel --hurry</code>.</li>
<li>If pre-run fails, then the job is held and teardown runs.</li>
</ul>
<li>When a job is cancelled, the current burst buffer script for that job
(if running) is killed. If <code>scancel --hurry</code> was used, or if the job
never ran, stage-out is skipped and it goes straight to teardown. Otherwise,
stage-out begins.</li>
<li>If slurmctld is stopped, Slurm kills all running burst buffer scripts for
all jobs and burst buffer state is saved for each job. When slurmctld restarts,
for each job it reads the burst buffer state and does one of the following:</li>
<ul>
<li><b>Pending</b> - Do nothing, since no burst buffer scripts were
killed.</li>
<li><b>Staging-in, staged-in</b> - run teardown, wait for a short time,
then restart stage-in.</li>
<li><b>Pre-run</b> - Restart pre-run.</li>
<li><b>Running</b> - Do nothing, since no burst buffer scripts were
killed.</li>
<li><b>Post-run, staging-out</b> - Restart post-run.</li>
<li><b>Teardown, teardown-fail</b> - Restart teardown.</li>
</ul>
</ul>
<p><b>NOTE</b>: There are many other things not listed here that affect the job
state. This document focuses on burst buffers and does not attempt to address
all possible job state transitions.</p>
<p style="text-align:center;">Last modified 21 August 2023</p>
<!--#include virtual="footer.txt"-->