blob: a19dc26cf5055fb4fad4a2c9572bca730e8a0b0b [file] [log] [blame]
/*****************************************************************************\
* topology_tree.c - Build configuration information for hierarchical
* switch topology
*****************************************************************************
* Copyright (C) 2009 Lawrence Livermore National Security.
* Copyright (C) 2023 NVIDIA CORPORATION.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Morris Jette <jette1@llnl.gov>
* CODE-OCEC-09-009. All rights reserved.
*
* This file is part of Slurm, a resource management program.
* For details, see <https://slurm.schedmd.com/>.
* Please also read the included file: DISCLAIMER.
*
* Slurm is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* In addition, as a special exception, the copyright holders give permission
* to link the code of portions of this program with the OpenSSL library under
* certain conditions as described in each individual source file, and
* distribute linked combinations including the two. You must obey the GNU
* General Public License in all respects for all of the code used other than
* OpenSSL. If you modify file(s) with this exception, you may extend this
* exception to your version of the file(s), but you are not obligated to do
* so. If you do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source files in
* the program, then also delete it here.
*
* Slurm is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with Slurm; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
\*****************************************************************************/
#include <math.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/types.h>
#include "src/common/slurm_xlator.h"
#include "slurm/slurm_errno.h"
#include "src/common/bitstring.h"
#include "src/common/log.h"
#include "src/common/node_conf.h"
#include "src/common/xstring.h"
#include "src/slurmctld/locks.h"
#include "src/slurmctld/slurmctld.h"
#include "eval_nodes_tree.h"
/* These are defined here so when we link with something other than
* the slurmctld we will have these symbols defined. They will get
* overwritten when linking with the slurmctld.
*/
#if defined (__APPLE__)
extern node_record_t **node_record_table_ptr __attribute__((weak_import));
extern int node_record_count __attribute__((weak_import));
extern int active_node_record_count __attribute__((weak_import));
#else
node_record_t **node_record_table_ptr;
int node_record_count;
int active_node_record_count;
#endif
/*
* These variables are required by the generic plugin interface. If they
* are not found in the plugin, the plugin loader will ignore it.
*
* plugin_name - a string giving a human-readable description of the
* plugin. There is no maximum length, but the symbol must refer to
* a valid string.
*
* plugin_type - a string suggesting the type of the plugin or its
* applicability to a particular form of data or method of data handling.
* If the low-level plugin API is used, the contents of this string are
* unimportant and may be anything. Slurm uses the higher-level plugin
* interface which requires this string to be of the form
*
* <application>/<method>
*
* where <application> is a description of the intended application of
* the plugin (e.g., "task" for task control) and <method> is a description
* of how this plugin satisfies that application. Slurm will only load
* a task plugin if the plugin_type string has a prefix of "task/".
*
* plugin_version - an unsigned 32-bit integer containing the Slurm version
* (major.minor.micro combined into a single number).
*/
const char plugin_name[] = "topology tree plugin";
const char plugin_type[] = "topology/tree";
const uint32_t plugin_id = TOPOLOGY_PLUGIN_TREE;
const uint32_t plugin_version = SLURM_VERSION_NUMBER;
const bool supports_exclusive_topo = false;
typedef topo_info_t topoinfo_switch_t;
typedef struct topoinfo_tree {
uint32_t record_count; /* number of records */
topoinfo_switch_t *topo_array; /* the switch topology records */
} topoinfo_tree_t;
extern int init(void)
{
verbose("%s loaded", plugin_name);
return SLURM_SUCCESS;
}
extern void fini(void)
{
return;
}
extern int topology_p_add_rm_node(node_record_t *node_ptr, char *unit,
topology_ctx_t *tctx)
{
tree_context_t *ctx = tctx->plugin_ctx;
bool *added = NULL;
int add_inx = -1;
char *tmp_str = NULL, *tok = NULL, *saveptr = NULL;
int rc = SLURM_SUCCESS;
if (unit) {
tmp_str = xstrdup(unit);
tok = strtok_r(tmp_str, ":", &saveptr);
}
while (tok) {
int inx = switch_record_get_switch_inx(tok, ctx);
if ((inx < 0) && (add_inx < 0)) {
error("Don't know where to add switch %s", tok);
rc = SLURM_ERROR;
goto fini;
}
if (inx < 0)
inx = switch_record_add_switch(tctx, tok, add_inx);
if (inx < 0) {
error("Failed to add switch %s", tok);
rc = SLURM_ERROR;
goto fini;
}
tok = strtok_r(NULL, ":", &saveptr);
add_inx = inx;
}
if ((add_inx >= 0) && (ctx->switch_table[add_inx].level != 0)) {
error("%s isn't a leaf switch", ctx->switch_table[add_inx].name);
rc = SLURM_ERROR;
goto fini;
}
added = xcalloc(ctx->switch_count, sizeof(bool));
for (int i = 0; i < ctx->switch_count; i++) {
bool add, in_switch;
int sw = i;
if (ctx->switch_table[i].level != 0)
continue;
in_switch = bit_test(ctx->switch_table[i].node_bitmap,
node_ptr->index);
add = (add_inx == i);
if ((!in_switch && !add) || (in_switch && add))
continue;
while (sw != SWITCH_NO_PARENT) {
if (added[sw])
break;
if (add && !in_switch) {
debug2("%s: add %s to %s",
__func__, node_ptr->name,
ctx->switch_table[sw].name);
bit_set(ctx->switch_table[sw].node_bitmap,
node_ptr->index);
added[sw] = true;
} else if (!add && in_switch) {
debug2("%s: remove %s from %s",
__func__, node_ptr->name,
ctx->switch_table[sw].name);
bit_clear(ctx->switch_table[sw].node_bitmap,
node_ptr->index);
}
xfree(ctx->switch_table[sw].nodes);
ctx->switch_table[sw].nodes =
bitmap2node_name(ctx->switch_table[sw]
.node_bitmap);
switch_record_update_block_config(tctx, sw);
sw = ctx->switch_table[sw].parent;
}
}
fini:
xfree(added);
xfree(tmp_str);
return rc;
}
/*
* topo_build_config - build or rebuild system topology information
* after a system startup or reconfiguration.
*/
extern int topology_p_build_config(topology_ctx_t *tctx)
{
if (node_record_count)
return switch_record_validate(tctx);
return SLURM_SUCCESS;
}
extern int topology_p_destroy_config(topology_ctx_t *tctx)
{
tree_context_t *ctx = tctx->plugin_ctx;
switch_record_table_destroy(ctx);
xfree(tctx->plugin_ctx);
return SLURM_SUCCESS;
}
extern int topology_p_eval_nodes(topology_eval_t *topo_eval)
{
topo_eval->eval_nodes = eval_nodes_tree;
topo_eval->trump_others = false;
return common_topo_choose_nodes(topo_eval);
}
extern int topology_p_whole_topo(bitstr_t *node_mask, void *tctx)
{
tree_context_t *ctx = tctx;
for (int i = 0; i < ctx->switch_count; i++) {
if (ctx->switch_table[i].level != 0)
continue;
if (bit_overlap_any(ctx->switch_table[i].node_bitmap,
node_mask)) {
bit_or(node_mask, ctx->switch_table[i].node_bitmap);
}
}
return SLURM_SUCCESS;
}
/*
* Get bitmap of nodes in switch
*
* IN name of block
* RET bitmap of nodes from ctx->switch_table (do not free)
*/
extern bitstr_t *topology_p_get_bitmap(char *name, void *tctx)
{
tree_context_t *ctx = tctx;
for (int i = 0; i < ctx->switch_count; i++) {
if (!xstrcmp(ctx->switch_table[i].name, name)) {
return ctx->switch_table[i].node_bitmap;
}
}
return NULL;
}
/*
* When TopologyParam=SwitchAsNodeRank is set, this plugin assigns a unique
* node_rank for all nodes belonging to the same leaf switch.
*/
extern bool topology_p_generate_node_ranking(topology_ctx_t *tctx)
{
/* By default, node_rank is 0, so start at 1 */
int switch_rank = 1;
tree_context_t *ctx;
if (!xstrcasestr(slurm_conf.topology_param, "SwitchAsNodeRank"))
return false;
/* Build a temporary topology to be able to find the leaf switches. */
switch_record_validate(tctx);
ctx = tctx->plugin_ctx;
if (ctx->switch_count == 0) {
topology_p_destroy_config(tctx);
return false;
}
for (int sw = 0; sw < ctx->switch_count; sw++) {
/* skip if not a leaf switch */
if (ctx->switch_table[sw].level != 0)
continue;
for (int n = 0; next_node(&n); n++) {
if (!bit_test(ctx->switch_table[sw].node_bitmap, n))
continue;
node_record_table_ptr[n]->node_rank = switch_rank;
debug("node=%s rank=%d",
node_record_table_ptr[n]->name, switch_rank);
}
switch_rank++;
}
/* Discard the temporary topology since it is using node bitmaps */
topology_p_destroy_config(tctx);
return true;
}
/*
* topo_get_node_addr - build node address and the associated pattern
* based on the topology information
*
* example of output :
* address : s0.s4.s8.tux1
* pattern : switch.switch.switch.node
*/
extern int topology_p_get_node_addr(char *node_name, char **paddr,
char **ppattern, void *tctx)
{
node_record_t *node_ptr;
hostlist_t *sl = NULL;
tree_context_t *ctx = tctx;
int s_max_level = 0;
int i, j;
/* no switches found, return */
if (ctx->switch_count == 0) {
*paddr = xstrdup(node_name);
*ppattern = xstrdup("node");
return SLURM_SUCCESS;
}
node_ptr = find_node_record(node_name);
/* node not found in configuration */
if ( node_ptr == NULL )
return SLURM_ERROR;
/* look for switches max level */
for (i = 0; i < ctx->switch_count; i++) {
if (ctx->switch_table[i].level > s_max_level)
s_max_level = ctx->switch_table[i].level;
}
/* initialize output parameters */
*paddr = xstrdup("");
*ppattern = xstrdup("");
/* build node topology address and the associated pattern */
for (j = s_max_level; j >= 0; j--) {
for (i = 0; i < ctx->switch_count; i++) {
if (ctx->switch_table[i].level != j)
continue;
if (!bit_test(ctx->switch_table[i].node_bitmap,
node_ptr->index))
continue;
if (sl == NULL) {
sl = hostlist_create(ctx->switch_table[i].name);
} else {
hostlist_push_host(sl,
ctx->switch_table[i].name);
}
}
if (sl) {
char *buf = hostlist_ranged_string_xmalloc(sl);
xstrcat(*paddr,buf);
xfree(buf);
hostlist_destroy(sl);
sl = NULL;
}
xstrcat(*paddr, ".");
xstrcat(*ppattern, "switch.");
}
/* append node name */
xstrcat(*paddr, node_name);
xstrcat(*ppattern, "node");
return SLURM_SUCCESS;
}
/*
* _subtree_split_hostlist() split a hostlist into topology aware subhostlists
*
* IN/OUT nodes_bitmap - bitmap of all hosts that need to be sent
* IN parent - location in ctx->switch_table
* IN/OUT msg_count - running count of how many messages we need to send
* IN/OUT sp_hl - array of subhostlists
* IN/OUT count - position in sp_hl array
*/
static int _subtree_split_hostlist(bitstr_t *nodes_bitmap, int parent,
int *msg_count, hostlist_t ***sp_hl,
int *count, tree_context_t *ctx)
{
int lst_count = 0, sw_count;
bitstr_t *fwd_bitmap = NULL; /* nodes in forward list */
for (int i = 0; i < ctx->switch_table[parent].num_switches; i++) {
int k = ctx->switch_table[parent].switch_index[i];
if (!fwd_bitmap)
fwd_bitmap = bit_copy(ctx->switch_table[k].node_bitmap);
else
bit_copybits(fwd_bitmap,
ctx->switch_table[k].node_bitmap);
bit_and(fwd_bitmap, nodes_bitmap);
sw_count = bit_set_count(fwd_bitmap);
if (sw_count == 0) {
continue; /* no nodes on this switch in message list */
}
(*sp_hl)[*count] = bitmap2hostlist(fwd_bitmap);
/* Now remove nodes from this switch from message list */
bit_and_not(nodes_bitmap, fwd_bitmap);
if (slurm_conf.debug_flags & DEBUG_FLAG_ROUTE) {
char *buf;
buf = hostlist_ranged_string_xmalloc((*sp_hl)[*count]);
debug("ROUTE: ... sublist[%d] switch=%s :: %s",
i, ctx->switch_table[i].name, buf);
xfree(buf);
}
(*count)++;
lst_count += sw_count;
if (lst_count == *msg_count)
break; /* all nodes in message are in a child list */
}
*msg_count -= lst_count;
FREE_NULL_BITMAP(fwd_bitmap);
return lst_count;
}
extern int topology_p_split_hostlist(hostlist_t *hl, hostlist_t ***sp_hl,
int *count, uint16_t tree_width,
void *tctx)
{
int i, j, k, msg_count, switch_count, switch_nodes_cnt, depth = 0,
upper_switch_level = 0;
int s_first, s_last;
char *buf;
bitstr_t *nodes_bitmap = NULL; /* nodes in message list */
bitstr_t *switch_bitmap = NULL; /* switches */
slurmctld_lock_t node_read_lock = { .node = READ_LOCK };
static pthread_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
tree_context_t *ctx = tctx;
if (!common_topo_route_tree()) {
return common_topo_split_hostlist_treewidth(
hl, sp_hl, count, tree_width);
}
slurm_mutex_lock(&init_lock);
if (ctx->switch_count == 0) {
if (running_in_slurmctld())
fatal_abort("%s: Somehow we have 0 for ctx->switch_count and we are here in the slurmctld. This should never happen.", __func__);
/* configs have not already been processed */
init_node_conf();
build_all_nodeline_info(false, 0);
rehash_node();
if (topology_g_build_config() != SLURM_SUCCESS) {
fatal("ROUTE: Failed to build topology config");
}
}
slurm_mutex_unlock(&init_lock);
/* Only acquire the slurmctld lock if running as the slurmctld. */
if (running_in_slurmctld())
lock_slurmctld(node_read_lock);
/* create bitmap of nodes to send message too */
if (hostlist2bitmap(hl, false, &nodes_bitmap) != SLURM_SUCCESS) {
buf = hostlist_ranged_string_xmalloc(hl);
fatal("ROUTE: Failed to make bitmap from hostlist=%s.", buf);
}
/* Find lowest level switches containing all the nodes in the list */
switch_bitmap = bit_alloc(ctx->switch_count);
for (j = 0; j < ctx->switch_count; j++) {
if ((ctx->switch_table[j].level == 0) &&
(switch_nodes_cnt =
bit_overlap(ctx->switch_table[j].node_bitmap,
nodes_bitmap))) {
/*
* Examine the standard forward tree depth for the leaf
* switches, and consider the final depth as the max
* value for all them
*/
int switch_nodes_tree_depth =
ceil(log2(switch_nodes_cnt * (tree_width - 1) +
1) / log2(tree_width));
depth = MAX(depth, switch_nodes_tree_depth);
bit_set(switch_bitmap, j);
}
}
switch_count = bit_set_count(switch_bitmap);
for (i = 1; i <= ctx->switch_levels; i++) {
/* All nodes in message list are in one switch */
if (switch_count < 2)
break;
for (j = 0; j < ctx->switch_count; j++) {
if (switch_count < 2)
break;
int level = ctx->switch_table[j].level;
if (level == i) {
int first_child = -1, child_cnt = 0, num_desc;
num_desc =
ctx->switch_table[j].num_desc_switches;
for (k = 0; k < num_desc; k++) {
int index =
ctx->switch_table[j]
.switch_desc_index[k];
if (bit_test(switch_bitmap, index)) {
child_cnt++;
if (child_cnt > 1) {
bit_clear(switch_bitmap,
index);
} else {
first_child = index;
}
}
}
if (child_cnt > 1) {
/*
* Track the uppermost level for all the
* intermediate switches
*/
upper_switch_level = MAX(
upper_switch_level,
level);
bit_clear(switch_bitmap, first_child);
bit_set(switch_bitmap, j);
switch_count -= (child_cnt - 1);
}
}
}
}
/*
* The final depth for this hostlist is: the sum of the max depth caused
* by the intermediate switches, plus the max depth of those standard
* forward trees hanging of the leaf switches
*/
depth += upper_switch_level;
s_first = bit_ffs(switch_bitmap);
if (s_first != -1)
s_last = bit_fls(switch_bitmap);
else
s_last = -2;
if (switch_count == 1 && ctx->switch_table[s_first].level == 0 &&
bit_super_set(nodes_bitmap,
ctx->switch_table[s_first].node_bitmap)) {
/* This is a leaf switch. Construct list based on TreeWidth */
if (running_in_slurmctld())
unlock_slurmctld(node_read_lock);
FREE_NULL_BITMAP(nodes_bitmap);
FREE_NULL_BITMAP(switch_bitmap);
/*
* We are here returning the depth directly, so we don't really
* need our previous calculation.
*/
return common_topo_split_hostlist_treewidth(hl, sp_hl, count,
tree_width);
}
*sp_hl = xcalloc(ctx->switch_count, sizeof(hostlist_t *));
msg_count = hostlist_count(hl);
*count = 0;
for (j = s_first; j <= s_last; j++) {
xassert(msg_count);
if (!bit_test(switch_bitmap, j))
continue;
_subtree_split_hostlist(nodes_bitmap, j, &msg_count, sp_hl,
count, ctx);
}
xassert(msg_count == bit_set_count(nodes_bitmap));
if (msg_count) {
size_t new_size = xsize(*sp_hl);
node_record_t *node_ptr;
if (slurm_conf.debug_flags & DEBUG_FLAG_ROUTE) {
buf = bitmap2node_name(nodes_bitmap);
debug("ROUTE: didn't find switch containing nodes=%s",
buf);
xfree(buf);
}
new_size += msg_count * sizeof(hostlist_t *);
xrealloc(*sp_hl, new_size);
for (j = 0; (node_ptr = next_node_bitmap(nodes_bitmap, &j));
j++) {
(*sp_hl)[*count] = hostlist_create(NULL);
hostlist_push_host((*sp_hl)[*count], node_ptr->name);
(*count)++;
}
}
if (running_in_slurmctld())
unlock_slurmctld(node_read_lock);
FREE_NULL_BITMAP(nodes_bitmap);
FREE_NULL_BITMAP(switch_bitmap);
return depth;
}
extern int topology_p_topology_free(void *topoinfo_ptr)
{
int i = 0;
topoinfo_tree_t *topoinfo = topoinfo_ptr;
if (topoinfo) {
if (topoinfo->topo_array) {
for (i = 0; i < topoinfo->record_count; i++) {
xfree(topoinfo->topo_array[i].name);
xfree(topoinfo->topo_array[i].nodes);
xfree(topoinfo->topo_array[i].switches);
}
xfree(topoinfo->topo_array);
}
xfree(topoinfo);
}
return SLURM_SUCCESS;
}
extern int topology_p_get(topology_data_t type, void *data, void *tctx)
{
int rc = SLURM_SUCCESS;
tree_context_t *ctx = tctx;
switch (type) {
case TOPO_DATA_TOPOLOGY_PTR:
{
dynamic_plugin_data_t **topoinfo_pptr = data;
topoinfo_tree_t *topoinfo_ptr =
xmalloc(sizeof(topoinfo_tree_t));
*topoinfo_pptr = xmalloc(sizeof(dynamic_plugin_data_t));
(*topoinfo_pptr)->data = topoinfo_ptr;
(*topoinfo_pptr)->plugin_id = plugin_id;
topoinfo_ptr->record_count = ctx->switch_count;
topoinfo_ptr->topo_array = xcalloc(topoinfo_ptr->record_count,
sizeof(topoinfo_switch_t));
for (int i = 0; i < topoinfo_ptr->record_count; i++) {
topoinfo_ptr->topo_array[i].level =
ctx->switch_table[i].level;
topoinfo_ptr->topo_array[i].link_speed =
ctx->switch_table[i].link_speed;
topoinfo_ptr->topo_array[i].name =
xstrdup(ctx->switch_table[i].name);
topoinfo_ptr->topo_array[i].nodes =
xstrdup(ctx->switch_table[i].nodes);
topoinfo_ptr->topo_array[i].switches =
xstrdup(ctx->switch_table[i].switches);
}
break;
}
case TOPO_DATA_REC_CNT:
{
int *rec_cnt = data;
*rec_cnt = ctx->switch_count;
break;
}
case TOPO_DATA_EXCLUSIVE_TOPO:
{
int *exclusive_topo = data;
*exclusive_topo = 0;
break;
}
default:
error("Unsupported option %d", type);
rc = SLURM_ERROR;
break;
}
return rc;
}
extern int topology_p_topology_pack(void *topoinfo_ptr, buf_t *buffer,
uint16_t protocol_version)
{
int i;
topoinfo_tree_t *topoinfo = topoinfo_ptr;
pack32(topoinfo->record_count, buffer);
for (i = 0; i < topoinfo->record_count; i++) {
pack16(topoinfo->topo_array[i].level, buffer);
pack32(topoinfo->topo_array[i].link_speed, buffer);
packstr(topoinfo->topo_array[i].name, buffer);
packstr(topoinfo->topo_array[i].nodes, buffer);
packstr(topoinfo->topo_array[i].switches, buffer);
}
return SLURM_SUCCESS;
}
void _print_topo_record(topoinfo_switch_t * topo_ptr, char **out)
{
char *env, *line = NULL, *pos = NULL;
/****** Line 1 ******/
xstrfmtcatat(line, &pos, "SwitchName=%s Level=%u LinkSpeed=%u",
topo_ptr->name, topo_ptr->level, topo_ptr->link_speed);
if (topo_ptr->nodes)
xstrfmtcatat(line, &pos, " Nodes=%s", topo_ptr->nodes);
if (topo_ptr->switches)
xstrfmtcatat(line, &pos, " Switches=%s", topo_ptr->switches);
if ((env = getenv("SLURM_TOPO_LEN")))
xstrfmtcat(*out, "%.*s\n", atoi(env), line);
else
xstrfmtcat(*out, "%s\n", line);
xfree(line);
}
extern int topology_p_topology_print(void *topoinfo_ptr, char *nodes_list,
char *unit, char **out)
{
int i, match, match_cnt = 0;;
topoinfo_tree_t *topoinfo = topoinfo_ptr;
*out = NULL;
if ((!nodes_list || (nodes_list[0] == '\0')) &&
(!unit || (unit[0] == '\0'))) {
if (topoinfo->record_count == 0) {
error("No topology information available");
return SLURM_SUCCESS;
}
for (i = 0; i < topoinfo->record_count; i++)
_print_topo_record(&topoinfo->topo_array[i], out);
return SLURM_SUCCESS;
}
/* Search for matching switch name and node name*/
for (i = 0; i < topoinfo->record_count; i++) {
hostset_t *hs;
if (unit && xstrcmp(topoinfo->topo_array[i].name, unit))
continue;
if (nodes_list) {
if ((topoinfo->topo_array[i].nodes == NULL) ||
(topoinfo->topo_array[i].nodes[0] == '\0'))
continue;
hs = hostset_create(topoinfo->topo_array[i].nodes);
if (hs == NULL)
fatal("hostset_create: memory allocation failure");
match = hostset_within(hs, nodes_list);
hostset_destroy(hs);
if (!match)
continue;
}
match_cnt++;
_print_topo_record(&topoinfo->topo_array[i], out);
}
if (match_cnt == 0) {
error("Topology information contains no switch%s%s%s%s",
unit ? " named " : "",
unit ? unit : "",
nodes_list ? " with nodes " : "",
nodes_list ? nodes_list : "");
}
return SLURM_SUCCESS;
}
extern int topology_p_topology_unpack(void **topoinfo_pptr, buf_t *buffer,
uint16_t protocol_version)
{
int i = 0;
topoinfo_tree_t *topoinfo_ptr =
xmalloc(sizeof(topoinfo_tree_t));
*topoinfo_pptr = topoinfo_ptr;
safe_unpack32(&topoinfo_ptr->record_count, buffer);
safe_xcalloc(topoinfo_ptr->topo_array, topoinfo_ptr->record_count,
sizeof(topoinfo_switch_t));
for (i = 0; i < topoinfo_ptr->record_count; i++) {
safe_unpack16(&topoinfo_ptr->topo_array[i].level, buffer);
safe_unpack32(&topoinfo_ptr->topo_array[i].link_speed, buffer);
safe_unpackstr(&topoinfo_ptr->topo_array[i].name, buffer);
safe_unpackstr(&topoinfo_ptr->topo_array[i].nodes, buffer);
safe_unpackstr(&topoinfo_ptr->topo_array[i].switches, buffer);
}
return SLURM_SUCCESS;
unpack_error:
topology_p_topology_free(topoinfo_ptr);
*topoinfo_pptr = NULL;
return SLURM_ERROR;
}
extern uint32_t topology_p_get_fragmentation(bitstr_t *node_mask, void *tcxt)
{
return 0;
}