blob: 74197368b58a0b7d7eb9b5c862689c889d7dc137 [file] [log] [blame]
<!--#include virtual="header.txt"-->
<h1>Support for Multi-core/Multi-thread Architectures</h1>
<b>Note:</b> This document describes features added to SLURM version 1.2.
<h2>Contents</h2>
<UL>
<LI> <a href=#defs>Definitions</a>
<LI> <a href=#flags>Overview of new srun flags</a>
<LI> <a href=#motivation>Motivation behind high-level srun flags</a>
<LI> <a href=#utilities>Extensions to sinfo/squeue/scontrol</a>
<LI> <a href=#config>Configuration settings in slurm.conf</a>
</UL>
<!-------------------------------------------------------------------------->
<a name=defs>
<h2>Definitions</h2></a>
<P> <b>Socket/Core/Thread</b> - Figure 1 illustrates the notion of
Socket, Core and Thread as it is defined in SLURM's multi-core/multi-thread
support documentation.</p>
<center>
<img src="mc_support.gif">
<br>
Figure 1: Definitions of Socket, Core, & Thread
</center>
<dl>
<dt><b>Affinity</b>
<dd>The state of being bound to a specific logical processor.
<dt><b>Affinity Mask</b>
<dd>A bitmask where indices correspond to logical processors.
The least significant bit corresponds to the first
logical processor number on the system, while the most
significant bit corresponds to the last logical processor
number on the system.
A '1' in a given position indicates a process can run
on the associated logical processor.
<dt><b>Fat Masks</b>
<dd>Affinity masks with more than 1 bit set
allowing a process to run on more than one logical processor.
</dl>
<!-------------------------------------------------------------------------->
<a name=flags>
<h2>Overview of new srun flags</h2></a>
<p> Several new flags have been defined to allow users to
better take advantage of the new architecture by
explicitly specifying the number of sockets, cores, and threads required
by their application. Table 1 summarizes the new multi-core flags.
<P>
<table border=1 cellspacing=0 cellpadding=0>
<tr><td colspan=2>
<b><a href="#srun_lowlevelmc">Low-level (explicit binding)</a></b>
</td></tr>
<tr>
<td> --cpu_bind=... </td>
<td>Explicit process affinity binding and control options
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_highlevelmc">High-level (automatic mask generation)</a></b>
</td></tr>
<tr>
<td> --sockets-per-node=<i>S</i></td>
<td>Number of sockets in a node to dedicate to a job (minimum or range)
</td></tr>
<tr>
<td> --cores-per-socket=<i>C</i></td>
<td> Number of cores in a CPU to dedicate to a job (minimum or range)
</td></tr>
<tr>
<td> --threads-per-core=<i>T</i></td>
<td> Number of threads in a core
to dedicate to a job (minimum or range)
</td></tr>
<tr>
<td> -B <i>S[:C[:T]]</i></td>
<td> Combined shorcut option for --sockets-per-node, --cores-per_cpu, --threads-per_core
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_dist">New Distributions</b>
</td></tr>
<tr>
<td> -m / --distribution </td>
<td> Distributions of: block | cyclic | hostfile
| <a href="dist_plane.html"><u>plane=<i>x</i></u></a>
| <u>[block|cyclic]:[block|cyclic]</u>
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_constraints">New Constraints</b>
</td></tr>
<tr>
<td> --minsockets=<i>MinS</i></td>
<td> Nodes must meet this minimum number of sockets
</td></tr>
<tr>
<td> --mincores=<i>MinC</i></td>
<td> Nodes must meet this minimum number of cores per socket
</td></tr>
<tr>
<td> --minthreads=<i>MinT</i></td>
<td> Nodes must meet this minimum number of threads per core
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_consres">Memory as a consumable resource</a></b>
</td></tr>
<tr>
<td> --job-mem=<i>mem</i></td>
<td> maximum amount of real memory per node required by the job.
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_ntasks">Task invocation control</a></b>
</td></tr>
<tr>
<td> --ntasks-per-node=<i>ntasks</i></td>
<td> number of tasks to invoke on each node
</td></tr>
<td> --ntasks-per-socket=<i>ntasks</i></td>
<td> number of tasks to invoke on each socket
</td></tr>
<td> --ntasks-per-core=<i>ntasks</i></td>
<td> number of tasks to invoke on each core
</td></tr>
<tr><td colspan=2>
<b><a href="#srun_hints">Application hints</a></b>
</td></tr>
<tr>
<td> --hint=compute_bound</td>
<td> use all cores in each physical CPU
</td></tr>
<td> --hint=memory_bound</td>
<td> use only one core in each physical CPU
</td></tr>
<td> --hint=[no]multithread</td>
<td> [don't] use extra threads with in-core multi-threading
</td></tr>
</table>
<p>
<center>
Table 1: New srun flags to support the multi-core/multi-threaded environment
</center>
<p>It is important to note that many of these
flags are only meaningful if the processes' affinity is set. In order for
the affinity to be set, the task/affinity plugin must be first enabled in
slurm.conf:
<PRE>
TaskPlugin=task/affinity # enable task affinity
</PRE>
<p>See the "Task Launch" section if generating slurm.conf via
<a href="configurator.html">configurator.html</a>.
<a name="srun_lowlevelmc">
<h3>Low-level --cpu_bind=... - Explicit binding interface</h3></a>
<p>The following srun flag provides a low-level core binding interface:</p>
<PRE>
--cpu_bind= Bind tasks to CPUs
q[uiet] quietly bind before task runs (default)
v[erbose] verbosely report binding before task runs
no[ne] don't bind tasks to CPUs (default)
rank bind by task rank
map_cpu:<i>&lt;list&gt;</i> specify a CPU ID binding for each task
where <i>&lt;list&gt;</i> is <i>&lt;cpuid1&gt;,&lt;cpuid2&gt;,...&lt;cpuidN&gt;</i>
mask_cpu:<i>&lt;list&gt;</i> specify a CPU ID binding mask for each task
where <i>&lt;list&gt;</i> is <i>&lt;mask1&gt;,&lt;mask2&gt;,...&lt;maskN&gt;</i>
sockets auto-generated masks bind to sockets
cores auto-generated masks bind to cores
threads auto-generated masks bind to threads
help show this help message
</PRE>
<p> The affinity can be either set to either a specific logical processor
(socket, core, threads) or at a coarser granularity than the lowest level
of logical processor (core or thread).
In the later case the processes are allowed to roam within a specific
socket or core.
<p>Examples:</p>
<UL>
<UL>
<LI> srun -n 8 -N 4 --cpu_bind=mask_cpu:0x1,0x4 a.out
<LI> srun -n 8 -N 4 --cpu_bind=mask_cpu:0x3,0xD a.out
</UL>
</UL>
<p>See also 'srun --cpu_bind=help' and 'man srun'</p>
<a name="srun_highlevelmc">
<h3>High-level -B <i>S[:C[:T]]</i> - Automatic mask generation interface</h3></a>
<p>We have updated the node
selection infrastructure with a mechanism that allows selection of logical
processors at a finer granularity. Users are able to request a specific number
of nodes, sockets,&nbsp; cores, and threads:</p>
<PRE>
-B --extra-node-info=<i>S[:C[:T]]</i> Expands to:
--sockets-per-node=<i>S</i> number of sockets per node to allocate
--cores-per-socket=<i>C</i> number of cores per socket to allocate
--threads-per-core=<i>T</i> number of threads per core to allocate
each field can be 'min[-max]' or wildcard '*'
<font face="serif">Total cpus requested = (<i>Nodes</i>) x (<i>S</i> x <i>C</i> x <i>T</i>)</font>
</PRE>
<p>Examples:
<UL>
<UL>
<LI> srun -n 8 -N 4 -B 2:1 a.out
<LI> srun -n 8 -N 4 -B 2 a.out
<BR>
note: compare the above with the previous corresponding --cpu_bind=... examples
<LI> srun -n 16 -N 4 a.out
<LI> srun -n 16 -N 4 -B 2:2:1 a.out
<LI> srun -n 16 -N 4 -B 2-2:2-2:1-1 a.out
<BR> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;or
<LI> srun -n 16 -N 4 --sockets-per-node 2-2 --cores-per-socket 2-2 --threads-per-core 1-1 a.out
<LI> srun -n 16 -N 2-4 -B '1-2:*:1' a.out
<LI> srun -n 16 -N 4:2 -B '2:*:1-1' a.out
<LI> srun -n 16 -N 4:4 -B '1-1:1-1' a.out
</UL>
</UL>
<p>Notes:</p>
<ul>
<li> Adding --cpu_bind=no to the command line will cause the processes
to not be bound the logical processors.
<li> Adding --cpu_bind=verbose to the command line (or setting the
CPU_BIND environment variable to "verbose") will cause each task
to report the affinity mask in use
<li> Binding is on by default when -B is used. The default binding on
multi-core/multi-threaded systems is equivalent to the level of
resource enumerated in the -B option.
</ul>
<p>See also 'srun --help' and 'man srun'</p>
<a name="srun_dist">
<h3>New distributions: Extensions to -m / --distribution</h3></a>
<p>The -m / --distribution option for distributing processes across nodes
has been extended to also describe the distribution within the lowest level
of logical processors.
Available distributions include:
<br>
block | cyclic | hostfile | <u>plane=<i>x</i></u> | <u>[block|cyclic]:[block|cyclic]</u>)
</p>
<p>The new <A HREF="dist_plane.html">plane distribution</A> (plane=<i>x</i>)
results in a block cyclic distribution of blocksize equal to <i>x</i>.
In the following we use "lowest level of logical processors"
to describe sockets, cores or threads depending of the architecture.
The new distribution divides
the cluster into planes (including a number of the lowest level of logical
processors on each node) and then schedule first within each plane and then
across planes.</p>
<p>For the two dimensional distributions ([block|cyclic]:[block|cyclic]),
the second distribution (after ":") allows users to specify a distribution
method for processes within a node and applies to the lowest level of logical
processors (sockets, core or thread depending on the architecture).</p>
<p>The binding is enabled automatically when high level flags are used as long as the task/affinity plug-in
is enabled. To disable binding at the job level use --cpu_bind=no.</p>
<p>The distribution flags can be combined with the other switches:
<UL>
<UL>
<LI>srun -n 16 -N 4 -B '2:*:1' -m block:cyclic --cpu_bind=socket a.out
<LI>srun -n 16 -N 4 -B '2:*:1' -m plane=2 --cpu_bind=core a.out
<LI>srun -n 16 -N 4 -B '2:*:1' -m plane=2 a.out
</UL>
</UL>
<p>The default distribution on multi-core/multi-threaded systems is equivalent
to -m block:cyclic with --cpu_bind=thread.</p>
<p>See also 'srun --help'</p>
<a name="srun_constraints">
<h3>New Constraints</h3></a>
<p>To compliment the existing SLURM job minimum constraints
(CPUs, memory, temp disk),
constraint flags have also been added to allow a user to
specify a minimum number of sockets, cores, or threads:</p>
<PRE>
--mincpus=<i>n</i> minimum number of logical cpus per node
<u>--minsockets=<i>n</i></u> minimum number of sockets per node
<u>--mincores=<i>n</i></u> minimum number of cores per cpu
<u>--minthreads=<i>n</i></u> minimum number of threads per core
--mem=<i>MB</i> minimum amount of real memory
--tmp=<i>MB</i> minimum amount of temporary disk
</PRE>
<p>These constraints are separate from the -N or -B allocation minimums.
Using these constraints allows the user to exclude smaller nodes from
the allocation request.</p>
<p>See also 'srun --help' and 'man srun'</p>
<a name="srun_consres">
<h3>Memory as a Consumable Resource</h3></a>
<p>The --job-mem flag specifies the maximum amount of memory in MB
needed by the job per node. This flag is used to support the memory
as a consumable resource allocation strategy.</p>
<PRE>
--job-mem=<i>MB</i> maximum amount of real memory per node
required by the job.
--mem >= --job-mem if --mem is specified.
</PRE>
<p>This flag allows the scheduler to co-allocate jobs on specific nodes
given that their added memory requirement do not exceed the amount
of memory on the nodes.</p>
<p>In order to use memory as a consumable resource, the select/cons_res
plugin must be first enabled in slurm.conf:
<PRE>
SelectType=select/cons_res # enable consumable resources
SelectTypeParameters=CR_Memory # memory as a consumable resource
</PRE>
<p> Using memory as a consumable resource can also be combined with
the CPU, Socket, or Core consumable resources via:
<PRE>
CR_CPU_Memory, CR_Socket_Memory, CR_Core_Memory
</PRE>
<p>See the "Resource Selection" section if generating slurm.conf
via <a href="configurator.html">configurator.html</a>.
<p>See also 'srun --help' and 'man srun'</p>
<a name="srun_ntasks">
<h3>Task invocation as a function of logical processors</h3></a>
<p>The <tt>--ntasks-per-{node,socket,core}=<i>ntasks</i></tt> flags
allow the user to request that no more than <tt><i>ntasks</i></tt>
be invoked on each node, socket, or core.
This is similiar to using <tt>--cpus-per-task=<i>ncpus</i></tt>
but does not require knowledge of the actual number of cpus on
each node. In some cases, it is more convenient to be able to
request that no more than a specific number of ntasks be invoked
on each node, socket, or core. Examples of this include submitting
a hybrid MPI/OpenMP app where only one MPI "task/rank" should be
assigned to each node while allowing the OpenMP portion to utilize
all of the parallelism present in the node, or submitting a single
setup/cleanup/monitoring job to each node of a pre-existing
allocation as one step in a larger job script.
This can now be specified via the following flags:</p>
<PRE>
--ntasks-per-node=<i>n</i> number of tasks to invoke on each node
--ntasks-per-socket=<i>n</i> number of tasks to invoke on each socket
--ntasks-per-core=<i>n</i> number of tasks to invoke on each core
</PRE>
<p>For example, given a cluster with nodes containing two sockets,
each containing two cores, the following commands illustrate the
behavior of these flags:</p>
<pre>
% srun -n 4 hostname
hydra12
hydra12
hydra12
hydra12
% srun -n 4 --ntasks-per-node=1 hostname
hydra12
hydra14
hydra15
hydra13
% srun -n 4 --ntasks-per-node=2 hostname
hydra12
hydra13
hydra13
hydra12
% srun -n 4 --ntasks-per-socket=1 hostname
hydra12
hydra13
hydra13
hydra12
% srun -n 4 --ntasks-per-core=1 hostname
hydra12
hydra12
hydra12
hydra12
</pre>
<p>See also 'srun --help' and 'man srun'</p>
<a name="srun_hints">
<h3>Application hints</h3></a>
<p>Different applications will have various levels of resource
requirements. Some applications tend to be computationally intensive
but require little to no inter-process communication. Some applications
will be memory bound, saturating the memory bandwidth of a processor
before exhausting the computational capabilities. Other applications
will be highly communication intensive causing processes to block
awaiting messages from other processes. Applications with these
different properties tend to run well on a multi-core system given
the right mappings.</p>
<p>For computationally intensive applications, all cores in a multi-core
system would normally be used. For memory bound applications, only
using a single core on each CPU will result in the highest per
core memory bandwidth. For communication intensive applications,
using in-core multi-threading (e.g. hyperthreading, SMT, or TMT)
may also improve performance.
The following command line flags can be used to communicate these
types of application hints to the SLURM multi-core support:</p>
<PRE>
--hint= Bind tasks according to application hints
compute_bound use all cores in each physical CPU
memory_bound use only one core in each physical CPU
[no]multithread [don't] use extra threads with in-core multi-threading
help show this help message
</PRE>
<p>For example, given a cluster with nodes containing two sockets,
each containing two cores, the following commands illustrate the
behavior of these flags. In the verbose --cpu_bind output, tasks
are described as 'hostname, task Global_ID Local_ID [PID]':</p>
<pre>
% srun -n 4 --hint=compute_bound --cpu_bind=verbose sleep 1
cpu_bind=MASK - hydra12, task 0 0 [15425]: mask 0x1 set
cpu_bind=MASK - hydra12, task 1 1 [15426]: mask 0x4 set
cpu_bind=MASK - hydra12, task 2 2 [15427]: mask 0x2 set
cpu_bind=MASK - hydra12, task 3 3 [15428]: mask 0x8 set
% srun -n 4 --hint=memory_bound --cpu_bind=verbose sleep 1
cpu_bind=MASK - hydra12, task 0 0 [15550]: mask 0x1 set
cpu_bind=MASK - hydra12, task 1 1 [15551]: mask 0x4 set
cpu_bind=MASK - <u><b>hydra13</b></u>, task 2 <u><b>0</b></u> [14974]: mask 0x1 set
cpu_bind=MASK - <u><b>hydra13</b></u>, task 3 <u><b>1</b></u> [14975]: mask 0x4 set
</pre>
<p>See also 'srun --hint=help' and 'man srun'</p>
<!-------------------------------------------------------------------------->
<a name=motivation>
<h2>Motivation behind high-level srun flags</h2></a>
<p >The motivation behind allowing users to use higher level <i>srun</i>
flags instead of --cpu_bind is that the later can be difficult to use. The
proposed high-level flags are easier to use than --cpu_bind because:</p>
<ul>
<li>Affinity mask generation happens automatically when using the high-level flags. </li>
<li>The length and complexity of the --cpu_bind flag vs. the length
of the combination of -B and --distribution flags make the high-level
flags much easier to use.</li>
</ul>
<p>Also as illustrated in the example below it is much simpler to specify
a different layout using the high-level flags since users do not have to
recalculate mask or CPU IDs. The new approach is very effortless compared to
rearranging the mask or map.</p>
<p>Given a 32-process MPI job and a four dual-CPU dual-core node
cluster, we want to use a block distribution across the four nodes and then a
cyclic distribution within the node across the physical processors. We have had
several requests from users that they would like this distribution to be the
default distribution on multi-core clusters. Below we show how to obtain the
wanted layout using 1) the new high-level flags and 2) --cpubind</p>
<h3>High-Level flags</h3>
<p>Using SLURM's new high-level flag, users can obtain the above layout with:</p>
<DL>
<DL>
<DT><p>% mpirun -srun -n 32 -N 4 -B 4:2 --distribution=block:cyclic a.out</p>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;or
<DT><p>% mpirun -srun -n 32 -N 4 -B 4:2 a.out</p>
</DL>
</DL>
<p>(since --distribution=block:cyclic is the default distribution)</p>
<p>The cores are shown as c0 and c1 and the processors are shown
as p0 through p3. The resulting task IDs are: </p>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0 </td><td align=center> 4 </td></tr>
<tr><td>p2</td><td align=center> 2 </td><td align=center> 6 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 1 </td><td align=center> 5 </td></tr>
<tr><td>p3</td><td align=center> 3 </td><td align=center> 7 </td></tr>
</table>
</td>
</tr>
</table>
<p>The computation and assignment of the task IDs is transparent
to the user. Users don't have to worry about the core numbering (Section
Pinning processes to cores) or any setting any CPU affinities. By default CPU affinity
will be set when using multi-core supporting flags. </p>
<h3>Low-level flag --cpu_bind</h3>
<p>Using SLURM's --cpu_bind flag, users must compute the CPU IDs or
masks as well as make sure they understand the core numbering on their
system. Another problem arises when core numbering is not the same on all
nodes. The --cpu_bind option only allows users to specify a single
mask for all the nodes. Using SLURM high-level flags remove this limitation
since SLURM will correctly generate the appropriate masks for each requested nodes.</p>
<h3>On a four dual-CPU dual-core node cluster with core block numbering </h3>
<p>The cores are shown as c0 and c1 and the processors are shown
as p0 through p3. The CPU IDs within a node in the block numbering are:
(this information is available from the /proc/cpuinfo file on the system)</p>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0 </td><td align=center> 1 </td></tr>
<tr><td>p2</td><td align=center> 4 </td><td align=center> 5 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 2 </td><td align=center> 3 </td></tr>
<tr><td>p3</td><td align=center> 6 </td><td align=center> 7 </td></tr>
</table>
</td>
</tr>
</table>
<p >&nbsp;resulting in the following mapping for processor/cores
and task IDs which users need to calculate: </p>
<center>
mapping for processors/cores
</center>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0x01 </td><td align=center> 0x02 </td></tr>
<tr><td>p2</td><td align=center> 0x10 </td><td align=center> 0x20 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 0x04 </td><td align=center> 0x08 </td></tr>
<tr><td>p3</td><td align=center> 0x40 </td><td align=center> 0x80 </td></tr>
</table>
</td>
</tr>
</table>
<p>
<center>
task IDs
</center>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0 </td><td align=center> 4 </td></tr>
<tr><td>p2</td><td align=center> 2 </td><td align=center> 6 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 1 </td><td align=center> 5 </td></tr>
<tr><td>p3</td><td align=center> 3 </td><td align=center> 7 </td></tr>
</table>
</td>
</tr>
</table>
<p>The above maps and task IDs can be translated into the
following mpirun command:</p>
<DL>
<DL>
<DT><p>% mpirun -srun -n 32 -N 4 --cpu_bind=mask_cpu:1,4,10,40,2,8,20,80 a.out</p>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;or
<DT><p>% mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,2,4,6,1,3,5,7 a.out</p>
</DL>
</DL>
<h3>Same cluster but with its core numbered cyclic instead of block</h3>
<p>On a system with cyclically numbered cores, the correct mask
argument to the <i>mpirun</i>/<i>srun</i> command looks like: (this will
achieve the same layout as the command above on a system with core block
numbering.)</p>
<DL>
<DL>
<DT><p>% mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,1,2,3,4,5,6,7 a.out</p>
</DL>
</DL>
<h3>Block map_cpu on a system with cyclic core numbering</h3>
<p>If users do not check their systemÂ’s core numbering before specifying
the map_cpu list and thereby do not realize that the new system has cyclic core
numbering instead of block numbering then they will not get the expected
layout.. For example, if they decide to re-use their mpirun command from above:</p>
<DL>
<DL>
<DT><p>% mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,2,4,6,1,3,5,7 a.out</p>
</DL>
</DL>
<p>they get the following unintentional task ID layout:</p>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0 </td><td align=center> 2 </td></tr>
<tr><td>p2</td><td align=center> 1 </td><td align=center> 3 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 4 </td><td align=center> 6 </td></tr>
<tr><td>p3</td><td align=center> 5 </td><td align=center> 7 </td></tr>
</table>
</td>
</tr>
</table>
<p>since the processor IDs within a node in the cyclic numbering are:</p>
<table border=0 align=center>
<tr>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p0</td><td align=center> 0 </td><td align=center> 4 </td></tr>
<tr><td>p2</td><td align=center> 2 </td><td align=center> 6 </td></tr>
</table>
</td>
<td width=5>
</td>
<td>
<table border=1 align=center>
<tr><td> </td>
<td width=40 align=center>c0</td><td width=40 align=center>c1</td></tr>
<tr><td>p1</td><td align=center> 1 </td><td align=center> 5 </td></tr>
<tr><td>p3</td><td align=center> 3 </td><td align=center> 7 </td></tr>
</table>
</td>
</tr>
</table>
<p>The important conclusion is that using the --cpu_bind flag is not
trivial and that it assumes that users are experts.</p>
<!-------------------------------------------------------------------------->
<a name=utilities>
<h2>Extensions to sinfo/squeue/scontrol</h2></a>
<p>Several extensions have also been made to the other SLURM utilities to
make working with multi-core/multi-threaded systems easier.</p>
<!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h3>sinfo</h3>
<p>The long version (-l) of the sinfo node listing (-N) has been
extended to display the sockets, cores, and threads present for each
node. For example:
<PRE>
% sinfo -N
NODELIST NODES PARTITION STATE
hydra[12-15] 4 parts* idle
% sinfo -lN
Thu Sep 14 17:47:13 2006
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT FEATURES REASON
hydra[12-15] 4 parts* idle 8+ 2+:4+:1+ 2007 41447 1 (null) none
% sinfo -lNe
Thu Sep 14 17:47:18 2006
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT FEATURES REASON
hydra[12-14] 3 parts* idle 8 2:4:1 2007 41447 1 (null) none
hydra15 1 parts* idle 64 8:4:2 2007 41447 1 (null) none
</PRE>
<p>For user specified output formats (-o/--format) and sorting (-S/--sort),
the following identifiers are available:</p>
<PRE>
%X Number of sockets per node
%Y Number of cores per socket
%Z Number of threads per core
%z Extended processor information: number of
sockets, core, threads (S:C:T) per node
</PRE>
<p>For example:</p>
<PRE>
% sinfo -o '%9P %4c %8z %8X %8Y %8Z'
PARTITION CPUS S:C:T SOCKETS CORES THREADS
parts* 4 2:2:1 2 2 1
</PRE>
<p>See also 'sinfo --help' and 'man sinfo'</p>
<!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h3>squeue</h3>
<p>For user specified output formats (-o/--format) and sorting (-S/--sort),
the following identifiers are available:</p>
<PRE>
%H Minimum number of sockets per node requested by the job.
This reports the value of the srun --minsockets option.
%I Minimum number of cores per socket requested by the job.
This reports the value of the srun --mincores option.
%J Minimum number of threads per core requested by the job.
This reports the value of the srun --minthreads option.
%m Minimum size of memory (in MB) requested by the job
%X Number of requested sockets per node
%Y Number of requested cores per socket
%Z Number of requested threads per core
%z Extended processor information: number of requested
sockets, cores, threads (S:C:T) per node
</PRE>
<p>Below is an example squeue output after running 7 copies of:</p>
<UL>
<UL>
<DL>% srun -n 4 -B 2:2:1
--minsockets=4 --mincores=2 --minthreads=1 --mem=1024 sleep 100 &
</UL>
</UL>
<PRE>
% squeue -o '%.5i %.2t %.4M %.5D %7X %7Y %7Z %7z %R'
JOBID ST TIME NODES SOCKETS CORES THREADS S:C:T NODELIST(REASON)
17 PD 0:00 1 2 2 1 2:2:1 (Resources)
18 PD 0:00 1 2 2 1 2:2:1 (Resources)
19 PD 0:00 1 2 2 1 2:2:1 (Resources)
13 R 1:27 1 2 2 1 2:2:1 hydra12
14 R 1:26 1 2 2 1 2:2:1 hydra13
15 R 1:26 1 2 2 1 2:2:1 hydra14
16 R 1:26 1 2 2 1 2:2:1 hydra15
% squeue -o '%.5i %.2t %.4M %.5D %9c %11H %9I %11J'
JOBID ST TIME NODES MIN_PROCS MIN_SOCKETS MIN_CORES MIN_THREADS
17 PD 0:00 1 1 4 2 1
18 PD 0:00 1 1 4 2 1
19 PD 0:00 1 1 4 2 1
13 R 1:29 1 0 0 0 0
14 R 1:28 1 0 0 0 0
15 R 1:28 1 0 0 0 0
16 R 1:28 1 0 0 0 0
</PRE>
<p>
The display of the minimum size of memory requested by the job has
been extended to also show the amount of memory requested by
the --job-mem flag. If --job-mem and --mem are set to the
same value, a single number is display for MIN_MEMORY. Otherwise
a range is reported:
<p>submit job 21:
<pre>
% srun sleep 100 &
</pre>
<p>submit job 22:
<pre>
% srun --job-mem=2048MB --mem=1024MB sleep 100 &
srun: mem < job-mem - resizing mem to be equal to job-mem
</pre>
<p>submit job 23:
<pre>
% srun --job-mem=2048MB --mem=10240MB sleep 100 &
</pre>
<pre>
% squeue -o "%.5i %.2t %.4M %.5D %m"
JOBID ST TIME NODES MIN_MEMORY
21 PD 0:00 1 0-1
22 PD 0:00 1 2048
23 PD 0:00 1 2048-10240
17 R 1:12 1 0
18 R 1:11 1 0
19 R 1:11 1 0
20 R 1:10 1 0
</pre>
<p>In the above examples, note that once a job starts running, the
MIN_* constraints are all reported as zero regardless of what
their initial values were (since they are meaningless once
the job starts running).
<p>See also 'squeue --help' and 'man squeue'</p>
<!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h3>scontrol</h3>
<p>The following job settings can be adjusted using scontrol:
<PRE>
Requested Allocation:
ReqSockets=&lt;count&gt; Set the job's count of required sockets
ReqCores=&lt;count&gt; Set the job's count of required cores
ReqThreads=&lt;count&gt; Set the job's count of required threads
Constraints:
MinSockets=&lt;count&gt; Set the job's minimum number of sockets per node
MinCores=&lt;count&gt; Set the job's minimum number of cores per socket
MinThreads=&lt;count&gt; Set the job's minimum number of threads per core
</PRE>
<p>For example:</p>
<PRE>
# scontrol update JobID=18 MinThreads=2
# scontrol update JobID=18 MinCores=4
# scontrol update JobID=18 MinSockets=8
% squeue -o '%.5i %.2t %.4M %.5D %9c %11H %9I %11J'
JOBID ST TIME NODES MIN_PROCS MIN_SOCKETS MIN_CORES MIN_THREADS
17 PD 0:00 1 1 4 2 1
18 PD 0:00 1 1 8 4 2
19 PD 0:00 1 1 4 2 1
13 R 1:35 1 0 0 0 0
14 R 1:34 1 0 0 0 0
15 R 1:34 1 0 0 0 0
16 R 1:34 1 0 0 0 0
</PRE>
<p>The 'scontrol show job' command can be used to display
the number of allocated CPUs per node as well as the socket, cores,
and threads specified in the request and contraints.
<PRE>
% srun -N 2 -B 2:1-1 sleep 100 &
% scontrol show job 20
JobId=20 UserId=(30352) GroupId=users(1051)
Name=sleep
Priority=4294901749 Partition=parts BatchFlag=0
AllocNode:Sid=hydra16:3892 TimeLimit=UNLIMITED
JobState=RUNNING StartTime=09/25-17:17:30 EndTime=NONE
NodeList=hydra[12-14] NodeListIndices=0,2,-1
<u>AllocCPUs=1,2,1</u>
ReqProcs=4 ReqNodes=2 <u>ReqS:C:T=2:1-1</u>
Shared=0 Contiguous=0 CPUs/task=0
MinProcs=0 <u>MinSockets=0 MinCores=0 MinThreads=0</u>
MinMemory=0 MinTmpDisk=0 Features=(null)
Dependency=0 Account=(null) Reason=None Network=(null)
ReqNodeList=(null) ReqNodeListIndices=-1
ExcNodeList=(null) ExcNodeListIndices=-1
SubmitTime=09/25-17:17:30 SuspendTime=None PreSusTime=0
</PRE>
<p>See also 'scontrol --help' and 'man scontrol'</p>
<!-------------------------------------------------------------------------->
<a name=config>
<h2>Configuration settings in slurm.conf</h2></a>
<p>Several slurm.conf settings are available to control the multi-core
features described above.
<p>In addition to the description below, also see the "Task Launch" and
"Resource Selection" sections if generating slurm.conf
via <a href="configurator.html">configurator.html</a>.
<p>As previously mentioned, in order for the affinity to be set, the
task/affinity plugin must be first enabled in slurm.conf:
<PRE>
TaskPlugin=task/affinity # enable task affinity
</PRE>
<p>This setting is part of the task launch specific parameters:</p>
<PRE>
# o Define task launch specific parameters
#
# "TaskProlog" : Define a program to be executed as the user before each
# task begins execution.
# "TaskEpilog" : Define a program to be executed as the user after each
# task terminates.
# "TaskPlugin" : Define a task launch plugin. This may be used to
# provide resource management within a node (e.g. pinning
# tasks to specific processors). Permissible values are:
# "task/none" : no task launch actions, the default.
# "task/affinity" : CPU affinity support
#
# Example:
#
# TaskProlog=/usr/local/slurm/etc/task_prolog # default is none
# TaskEpilog=/usr/local/slurm/etc/task_epilog # default is none
# TaskPlugin=task/affinity # default is task/none
</PRE>
<p>SLURM will automatically detect the architecture of the nodes used
by examining /proc/cpuinfo. If, for some reason, the administrator
wishes to override the automatically selected architecture, the
NodeName parameter can be used in combination with FastSchedule:
<PRE>
FastSchedule=1
NodeName=dualcore[01-16] Procs=4 CoresPerSocket=2 ThreadsPerCore=1
</PRE>
<p>Below is a more complete description of the configuration possible
using NodeName:
<PRE>
#
# o Node configuration
#
# The configuration information of nodes (or machines) to be managed
# by SLURM is described here. The only required value in this section
# of the config file is the "NodeName" field, which specifies the
# hostnames of the node or nodes to manage. It is recommended, however,
# that baseline values for the node configuration be established
# using the following parameters (see slurm.config(5) for more info):
#
# "NodeName" : The only required node configuration parameter, NodeName
# specifies a node or set of nodes to be managed by SLURM.
# The special NodeName of "DEFAULT" may be used to establish
# default node configuration parameters for subsequent node
# records. Typically this would be the string that
# `/bin/hostname -s` would return on the node. However
# NodeName may be an arbitrary string if NodeHostname is
# used (see below).
#
# "Feature" : comma separated list of "features" for the given node(s)
#
# "NodeAddr" : preferred address for contacting the node. This may be
# either a name or IP address.
#
# "NodeHostname"
# : the string that `/bin/hostname -s` would return on the
# node. In other words, NodeName may be the name other than
# the real hostname.
#
# "RealMemory" : Amount of real memory (in Megabytes)
#
# "Procs" : Number of logical processors on the node.
# If Procs is omitted, it will be inferred from:
# Sockets, CoresPerSocket, and ThreadsPerCore.
#
# "Sockets" : Number of physical processor sockets/chips on the node.
# If Sockets is omitted, it will be inferred from:
# Procs, CoresPerSocket, and ThreadsPerCore.
#
# "CoresPerSocket"
# : Number of cores in a single physical processor socket
# The CoresPerSocket value describes physical cores, not
# the logical number of processors per socket.
# The default value is 1.
#
# "ThreadsPerCore"
# : Number of logical threads in a single physical core.
# The default value is 1.
#
# "State" : Initial state (IDLE, DOWN, etc.)
#
# "TmpDisk" : Temporary disk space available on node
#
# "Weight" : Priority of node for scheduling purposes
#
# If any of the above values are set for a node or group of nodes, and
# that node checks in to the slurm controller with less than the
# configured resources, the node's state will be set to DOWN, in order
# to avoid scheduling any jobs on a possibly misconfigured machine.
#
# Example Node configuration:
#
# NodeName=DEFAULT Procs=2 TmpDisk=64000 State=UNKNOWN
# NodeName=host[0-25] NodeAddr=ehost[0-25] Weight=16
# NodeName=host26 NodeAddr=ehost26 Weight=32 Feature=graphics_card
# NodeName=dualcore01 Procs=4 CoresPerSocket=2 ThreadsPerCore=1
# NodeName=dualcore02 Procs=4 Sockets=2 CoresPerSocket=2 ThreadsPerCore=1
# NodeName=multicore03 Procs=64 Sockets=8 CoresPerSocket=4 ThreadsPerCore=2
</PRE>
<!-------------------------------------------------------------------------->
<p style="text-align:center;">Last modified 2 February 2007</p>
<!--#include virtual="footer.txt"-->