blob: c40cb72036acada82bcef9ed6458f1ed4b0ababa [file] [log] [blame] [edit]
/*****************************************************************************\
* node_scheduler.c - select and allocated nodes to jobs
* Note: there is a global node table (node_record_table_ptr)
*
* $Id$
*****************************************************************************
* Copyright (C) 2002-2006 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Morris Jette <jette1@llnl.gov>
* UCRL-CODE-226842.
*
* This file is part of SLURM, a resource management program.
* For details, see <http://www.llnl.gov/linux/slurm/>.
*
* SLURM is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* In addition, as a special exception, the copyright holders give permission
* to link the code of portions of this program with the OpenSSL library under
* certain conditions as described in each individual source file, and
* distribute linked combinations including the two. You must obey the GNU
* General Public License in all respects for all of the code used other than
* OpenSSL. If you modify file(s) with this exception, you may extend this
* exception to your version of the file(s), but you are not obligated to do
* so. If you do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source files in
* the program, then also delete it here.
*
* SLURM is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with SLURM; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
\*****************************************************************************/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_SYS_SYSLOG_H
# include <sys/syslog.h>
#endif
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>
#include <slurm/slurm_errno.h>
#include "src/common/hostlist.h"
#include "src/common/node_select.h"
#include "src/common/xassert.h"
#include "src/common/xmalloc.h"
#include "src/common/xstring.h"
#include "src/common/slurm_jobacct.h"
#include "src/slurmctld/agent.h"
#include "src/slurmctld/node_scheduler.h"
#include "src/slurmctld/sched_plugin.h"
#include "src/slurmctld/slurmctld.h"
#define FEATURE_OP_OR 0
#define FEATURE_OP_AND 1
#define MAX_FEATURES 32 /* max exclusive features "[fs1|fs2]"=2 */
#define MAX_RETRIES 10
struct node_set { /* set of nodes with same configuration */
uint32_t cpus_per_node; /* NOTE: This is the minimum count,
* if FastSchedule==0 then individual
* nodes within the same configuration
* line (in slurm.conf) can actually
* have different CPU counts */
uint32_t real_memory;
uint32_t nodes;
uint32_t weight;
bitstr_t *feature_bits;
bitstr_t *my_bitmap;
};
static int _add_node_set_info(struct node_set *node_set_ptr,
bitstr_t ** node_bitmap,
int *node_cnt, int *cpu_cnt,
const int mem_cnt, int cr_enabled,
struct job_record *job);
static int _build_node_list(struct job_record *job_ptr,
struct node_set **node_set_pptr,
int *node_set_size);
static void _filter_nodes_in_set(struct node_set *node_set_ptr,
struct job_details *detail_ptr);
static int _job_count_bitmap(bitstr_t * bitmap, bitstr_t * jobmap,
int job_cnt);
static int _match_feature(char *seek, char *available);
static int _nodes_in_sets(bitstr_t *req_bitmap,
struct node_set * node_set_ptr,
int node_set_size);
static int _pick_best_load(struct job_record *job_ptr, bitstr_t * bitmap,
uint32_t min_nodes, uint32_t max_nodes,
uint32_t req_nodes, bool test_only);
static int _pick_best_nodes(struct node_set *node_set_ptr,
int node_set_size, bitstr_t ** select_bitmap,
struct job_record *job_ptr,
struct part_record *part_ptr,
uint32_t min_nodes, uint32_t max_nodes,
uint32_t req_nodes);
static bitstr_t *_valid_features(char *requested, char *available);
/*
* allocate_nodes - change state of specified nodes to NODE_STATE_ALLOCATED
* IN job_ptr - job being allocated resources
* globals: node_record_count - number of nodes in the system
* node_record_table_ptr - pointer to global node table
* last_node_update - last update time of node table
*/
extern void allocate_nodes(struct job_record *job_ptr)
{
int i;
last_node_update = time(NULL);
for (i = 0; i < node_record_count; i++) {
if (bit_test(job_ptr->node_bitmap, i))
make_node_alloc(&node_record_table_ptr[i], job_ptr);
}
return;
}
/*
* count_cpus - report how many cpus are associated with the identified nodes
* IN bitmap - map of nodes to tally
* RET cpu count
* globals: node_record_count - number of nodes configured
* node_record_table_ptr - pointer to global node table
*/
extern int count_cpus(bitstr_t *bitmap)
{
int i, sum;
sum = 0;
for (i = 0; i < node_record_count; i++) {
if (bit_test(bitmap, i) != 1)
continue;
if (slurmctld_conf.fast_schedule)
sum += node_record_table_ptr[i].config_ptr->cpus;
else
sum += node_record_table_ptr[i].cpus;
}
return sum;
}
/*
* deallocate_nodes - for a given job, deallocate its nodes and make
* their state NODE_STATE_COMPLETING
* IN job_ptr - pointer to terminating job (already in some COMPLETING state)
* IN timeout - true if job exhausted time limit, send REQUEST_KILL_TIMELIMIT
* RPC instead of REQUEST_TERMINATE_JOB
* IN suspended - true if job was already suspended (node's job_run_cnt
* already decremented);
* globals: node_record_count - number of nodes in the system
* node_record_table_ptr - pointer to global node table
*/
extern void deallocate_nodes(struct job_record *job_ptr, bool timeout,
bool suspended)
{
int i;
kill_job_msg_t *kill_job = NULL;
agent_arg_t *agent_args = NULL;
int down_node_cnt = 0;
uint16_t base_state;
xassert(job_ptr);
xassert(job_ptr->details);
if (select_g_job_fini(job_ptr) != SLURM_SUCCESS)
error("select_g_job_fini(%u): %m", job_ptr->job_id);
agent_args = xmalloc(sizeof(agent_arg_t));
if (timeout)
agent_args->msg_type = REQUEST_KILL_TIMELIMIT;
else
agent_args->msg_type = REQUEST_TERMINATE_JOB;
agent_args->retry = 0; /* re_kill_job() resends as needed */
agent_args->hostlist = hostlist_create("");
kill_job = xmalloc(sizeof(kill_job_msg_t));
last_node_update = time(NULL);
kill_job->job_id = job_ptr->job_id;
kill_job->job_uid = job_ptr->user_id;
kill_job->nodes = xstrdup(job_ptr->nodes);
kill_job->time = time(NULL);
kill_job->select_jobinfo = select_g_copy_jobinfo(
job_ptr->select_jobinfo);
for (i = 0; i < node_record_count; i++) {
struct node_record *node_ptr = &node_record_table_ptr[i];
if (bit_test(job_ptr->node_bitmap, i) == 0)
continue;
base_state = node_ptr->node_state & NODE_STATE_BASE;
if (base_state == NODE_STATE_DOWN) {
/* Issue the KILL RPC, but don't verify response */
down_node_cnt++;
bit_clear(job_ptr->node_bitmap, i);
job_ptr->node_cnt--;
}
make_node_comp(node_ptr, job_ptr, suspended);
#ifdef HAVE_FRONT_END /* Operate only on front-end */
if (agent_args->node_count > 0)
continue;
#endif
hostlist_push(agent_args->hostlist, node_ptr->name);
agent_args->node_count++;
}
if ((agent_args->node_count - down_node_cnt) == 0) {
job_ptr->job_state &= (~JOB_COMPLETING);
delete_step_records(job_ptr, 0);
slurm_sched_schedule();
}
if (agent_args->node_count == 0) {
error("Job %u allocated no nodes to be killed on",
job_ptr->job_id);
xfree(kill_job->nodes);
select_g_free_jobinfo(&kill_job->select_jobinfo);
xfree(kill_job);
xfree(agent_args);
return;
}
/* log this in the accounting plugin since it was allocated
* something */
jobacct_g_job_complete_slurmctld(job_ptr);
agent_args->msg_args = kill_job;
agent_queue_request(agent_args);
return;
}
/*
* _match_feature - determine if the desired feature is one of those available
* IN seek - desired feature
* IN available - comma separated list of available features
* RET 1 if found, 0 otherwise
*/
static int _match_feature(char *seek, char *available)
{
char *tmp_available = NULL, *str_ptr3 = NULL, *str_ptr4 = NULL;
int found;
if (seek == NULL)
return 1; /* nothing to look for */
if (available == NULL)
return SLURM_SUCCESS; /* nothing to find */
tmp_available = xstrdup(available);
found = 0;
str_ptr3 = (char *) strtok_r(tmp_available, ",", &str_ptr4);
while (str_ptr3) {
if (strcmp(seek, str_ptr3) == 0) { /* we have a match */
found = 1;
break;
}
str_ptr3 = (char *) strtok_r(NULL, ",", &str_ptr4);
}
xfree(tmp_available);
return found;
}
/*
* _pick_best_load - Given a specification of scheduling requirements,
* identify the nodes which "best" satisfy the request.
* "best" is defined as the least loaded nodes
* IN job_ptr - pointer to job being scheduled
* IN/OUT bitmap - usable nodes are set on input, nodes not required to
* satisfy the request are cleared, other left set
* IN min_nodes - minimum count of nodes
* IN max_nodes - maximum count of nodes (0==don't care)
* IN req_nodes - requested (or desired) count of nodes
* RET zero on success, EINVAL otherwise
* globals: node_record_count - count of nodes configured
* node_record_table_ptr - pointer to global node table
* NOTE: bitmap must be a superset of req_nodes at the time that
* _pick_best_load is called
*/
static int
_pick_best_load(struct job_record *job_ptr, bitstr_t * bitmap,
uint32_t min_nodes, uint32_t max_nodes,
uint32_t req_nodes, bool test_only)
{
bitstr_t *basemap;
int i, max_bit, error_code = EINVAL;
int node_cnt = 0, prev_cnt = 0, set_cnt;
set_cnt = bit_set_count(bitmap);
if ((set_cnt < min_nodes) ||
((req_nodes > min_nodes) && (set_cnt < req_nodes)))
return error_code; /* not usable */
if (job_ptr->details && job_ptr->details->req_node_bitmap &&
(!bit_super_set(job_ptr->details->req_node_bitmap, bitmap)))
return error_code; /* required nodes not available */
basemap = bit_copy(bitmap);
if (basemap == NULL)
fatal("bit_copy malloc failure");
max_bit = bit_size(bitmap) - 1;
for (i=0; node_cnt<set_cnt; i++) {
/* if req_nodes, then start with those as a baseline */
if (job_ptr->details && job_ptr->details->req_node_bitmap) {
bit_copybits(bitmap, job_ptr->details->req_node_bitmap);
} else {
bit_nclear(bitmap, 0, max_bit);
}
node_cnt = _job_count_bitmap(basemap, bitmap, i);
if ((node_cnt == 0) || (node_cnt == prev_cnt))
continue; /* nothing new to test */
if ((node_cnt < min_nodes) ||
((req_nodes > min_nodes) && (node_cnt < req_nodes)))
continue; /* need more nodes */
error_code = select_g_job_test(job_ptr, bitmap,
min_nodes, max_nodes,
req_nodes, test_only);
if (!error_code)
break;
prev_cnt = node_cnt;
}
FREE_NULL_BITMAP(basemap);
return error_code;
}
/*
* Set the bits in 'jobmap' that correspond to bits in the 'bitmap'
* that are running 'job_cnt' jobs or less.
*/
static int
_job_count_bitmap(bitstr_t * bitmap, bitstr_t * jobmap, int job_cnt)
{
int i, count = 0;
bitoff_t size = bit_size(bitmap);
for (i = 0; i < size; i++) {
if (bit_test(bitmap, i) &&
(node_record_table_ptr[i].run_job_cnt <= job_cnt)) {
bit_set(jobmap, i);
count++;
}
}
return count;
}
/*
* Decide if a job can share nodes with other jobs based on the
* following three input parameters:
*
* IN user_flag - may be 0 (do not share nodes), 1 (node sharing allowed),
* or any other number means "don't care"
* IN part_enum - current partition's node sharing policy
* IN cons_res_flag - 1 if the consumable resources flag is enable, 0 otherwise
*
* RET - 1 if nodes can be shared, 0 if nodes cannot be shared
*/
static int
_resolve_shared_status(uint16_t user_flag, uint16_t part_enum,
int cons_res_flag)
{
int shared;
if (cons_res_flag) {
/*
* Consumable resources will always share nodes by default,
* the partition or user has to explicitly disable sharing to
* get exclusive nodes.
*/
if ((part_enum == SHARED_EXCLUSIVE) || (user_flag == 0))
shared = 0;
else
shared = 1;
} else {
/* The partition sharing option is only used if
* the consumable resources plugin is NOT in use.
*/
if (part_enum == SHARED_FORCE) /* shared=force */
shared = 1;
else if (part_enum == SHARED_NO) /* can't share */
shared = 0;
else
shared = (user_flag == 1) ? 1 : 0;
}
return shared;
}
/*
* _pick_best_nodes - from a weigh order list of all nodes satisfying a
* job's specifications, select the "best" for use
* IN node_set_ptr - pointer to node specification information
* IN node_set_size - number of entries in records pointed to by node_set_ptr
* OUT select_bitmap - returns bitmap of selected nodes, must FREE_NULL_BITMAP
* IN job_ptr - pointer to job being scheduled
* IN part_ptr - pointer to the partition in which the job is being scheduled
* IN min_nodes - minimum count of nodes required by the job
* IN max_nodes - maximum count of nodes required by the job (0==no limit)
* IN req_nodes - requested (or desired) count of nodes
* RET SLURM_SUCCESS on success,
* ESLURM_NODES_BUSY if request can not be satisfied now,
* ESLURM_REQUESTED_NODE_CONFIG_UNAVAILABLE if request can never
* be satisfied , or
* ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE if the job can not be
* initiated until the parition's configuration changes
* NOTE: the caller must FREE_NULL_BITMAP memory pointed to by select_bitmap
* Notes: The algorithm is
* 1) If required node list is specified, determine implicitly required
* processor and node count
* 2) Determine how many disjoint required "features" are represented
* (e.g. "FS1|FS2|FS3")
* 3) For each feature: find matching node table entries, identify nodes
* that are up and available (idle or shared) and add them to a bit
* map
* 4) If nodes _not_ shared then call select_g_job_test() to select the
* "best" of those based upon topology, else call _pick_best_load()
* to pick the "best" nodes in terms of workload
* 5) If request can't be satisfied now, execute select_g_job_test()
* against the list of nodes that exist in any state (perhaps DOWN
* DRAINED or ALLOCATED) to determine if the request can
* ever be satified.
*/
static int
_pick_best_nodes(struct node_set *node_set_ptr, int node_set_size,
bitstr_t ** select_bitmap, struct job_record *job_ptr,
struct part_record *part_ptr,
uint32_t min_nodes, uint32_t max_nodes, uint32_t req_nodes)
{
int error_code = SLURM_SUCCESS, i, j, pick_code;
int total_nodes = 0, total_cpus = 0;
uint32_t total_mem = 0; /* total_: total resources configured in
partition */
int avail_nodes = 0, avail_cpus = 0;
int avail_mem = 0; /* avail_: resources available for use now */
bitstr_t *avail_bitmap = NULL, *total_bitmap = NULL;
bitstr_t *backup_bitmap = NULL;
bitstr_t *partially_idle_node_bitmap = NULL, *possible_bitmap = NULL;
int max_feature, min_feature;
bool runable_ever = false; /* Job can ever run */
bool runable_avail = false; /* Job can run with available nodes */
bool pick_light_load = false;
uint32_t cr_enabled = 0;
int shared = 0;
select_type_plugin_info_t cr_type = SELECT_TYPE_INFO_NONE;
if (node_set_size == 0) {
info("_pick_best_nodes: empty node set for selection");
return ESLURM_REQUESTED_NODE_CONFIG_UNAVAILABLE;
}
/* Is Consumable Resources enabled? */
error_code = select_g_get_info_from_plugin (SELECT_CR_PLUGIN,
&cr_enabled);
if (error_code != SLURM_SUCCESS)
return error_code;
shared = _resolve_shared_status(job_ptr->details->shared,
part_ptr->shared, cr_enabled);
job_ptr->details->shared = shared;
if (cr_enabled) {
shared = 0;
job_ptr->cr_enabled = cr_enabled; /* CR enabled for this job */
cr_type = (select_type_plugin_info_t) slurmctld_conf.select_type_param;
if (cr_type == CR_MEMORY) {
shared = 1; /* Sharing set when only memory as a CR is enabled */
} else if ((cr_type == CR_SOCKET)
|| (cr_type == CR_CORE)
|| (cr_type == CR_CPU)) {
job_ptr->details->job_max_memory = 0;
}
debug3("Job %u in exclusive mode? "
"%d cr_enabled %d CR type %d num_procs %d",
job_ptr->job_id,
job_ptr->details->shared ? 0 : 1,
cr_enabled,
cr_type,
job_ptr->num_procs);
if (job_ptr->details->shared == 0) {
partially_idle_node_bitmap = bit_copy(idle_node_bitmap);
} else {
/* Update partially_idle_node_bitmap to reflect the
* idle and partially idle nodes */
error_code = select_g_get_info_from_plugin (
SELECT_BITMAP,
&partially_idle_node_bitmap);
}
if (error_code != SLURM_SUCCESS) {
FREE_NULL_BITMAP(partially_idle_node_bitmap);
return error_code;
}
}
if (job_ptr->details->req_node_bitmap) { /* specific nodes required */
/* we have already confirmed that all of these nodes have a
* usable configuration and are in the proper partition */
if (min_nodes != 0) {
total_nodes = bit_set_count(
job_ptr->details->req_node_bitmap);
}
if (job_ptr->num_procs != 0) {
if (cr_enabled) {
uint16_t tmp16;
if ((cr_type == CR_MEMORY)
|| (cr_type == CR_SOCKET_MEMORY)
|| (cr_type == CR_CORE_MEMORY)
|| (cr_type == CR_CPU_MEMORY)) {
/* Check if the requested amount of
* memory is available */
error_code = select_g_get_extra_jobinfo (
NULL,
job_ptr,
SELECT_AVAIL_MEMORY,
&total_mem);
if (error_code != SLURM_SUCCESS) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
return ESLURM_NODES_BUSY;
}
}
error_code = select_g_get_extra_jobinfo (
NULL,
job_ptr,
SELECT_CPU_COUNT,
&tmp16);
if (error_code != SLURM_SUCCESS) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
return error_code;
}
total_cpus = (int) tmp16;
} else {
total_cpus = count_cpus(
job_ptr->details->req_node_bitmap);
}
}
if (total_nodes > max_nodes) {
/* exceeds node limit */
if (cr_enabled)
FREE_NULL_BITMAP(partially_idle_node_bitmap);
return ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE;
}
if ((min_nodes <= total_nodes) &&
(max_nodes <= min_nodes) &&
(job_ptr->num_procs <= total_cpus )) {
if (!bit_super_set(job_ptr->details->req_node_bitmap,
avail_node_bitmap)) {
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
return ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE;
}
/* shared needs to be checked before cr_enabled
* to make sure that CR_MEMORY works correctly */
if (shared) {
if (!bit_super_set(job_ptr->details->
req_node_bitmap,
share_node_bitmap)) {
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
return ESLURM_NODES_BUSY;
}
} else if (cr_enabled) {
if (!bit_super_set(job_ptr->details->
req_node_bitmap,
partially_idle_node_bitmap)) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
return ESLURM_NODES_BUSY;
}
} else {
if (!bit_super_set(job_ptr->details->
req_node_bitmap,
idle_node_bitmap)) {
return ESLURM_NODES_BUSY;
}
}
/* still must go through select_g_job_test() to
* determine validity of request and/or perform
* set-up before job launch */
}
total_nodes = total_cpus = 0; /* reinitialize */
}
#ifndef HAVE_BG
if (shared)
pick_light_load = true;
#endif
/* identify the min and max feature values for exclusive OR */
max_feature = -1;
min_feature = MAX_FEATURES;
for (i = 0; i < node_set_size; i++) {
j = bit_ffs(node_set_ptr[i].feature_bits);
if ((j >= 0) && (j < min_feature))
min_feature = j;
j = bit_fls(node_set_ptr[i].feature_bits);
if ((j >= 0) && (j > max_feature))
max_feature = j;
}
for (j = min_feature; j <= max_feature; j++) {
for (i = 0; i < node_set_size; i++) {
if (!bit_test(node_set_ptr[i].feature_bits, j))
continue;
if (!runable_ever) {
int cr_disabled = 0;
total_mem = 0;
error_code = _add_node_set_info(
&node_set_ptr[i],
&total_bitmap,
&total_nodes,
&total_cpus,
total_mem,
cr_disabled,
job_ptr);
if (error_code != SLURM_SUCCESS) {
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
FREE_NULL_BITMAP(avail_bitmap);
FREE_NULL_BITMAP(total_bitmap);
FREE_NULL_BITMAP(possible_bitmap);
return error_code;
}
}
bit_and(node_set_ptr[i].my_bitmap, avail_node_bitmap);
/* shared needs to be checked before cr_enabled
* to make sure that CR_MEMORY works correctly. */
if (shared) {
bit_and(node_set_ptr[i].my_bitmap,
share_node_bitmap);
} else if (cr_enabled) {
bit_and(node_set_ptr[i].my_bitmap,
partially_idle_node_bitmap);
} else {
bit_and(node_set_ptr[i].my_bitmap,
idle_node_bitmap);
}
node_set_ptr[i].nodes =
bit_set_count(node_set_ptr[i].my_bitmap);
avail_mem = job_ptr->details->job_max_memory;
error_code = _add_node_set_info(&node_set_ptr[i],
&avail_bitmap,
&avail_nodes,
&avail_cpus,
avail_mem,
cr_enabled,
job_ptr);
if (error_code != SLURM_SUCCESS) {
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
FREE_NULL_BITMAP(total_bitmap);
FREE_NULL_BITMAP(avail_bitmap);
FREE_NULL_BITMAP(possible_bitmap);
return error_code;
}
if (pick_light_load)
continue; /* Keep accumulating */
if (avail_nodes == 0)
continue; /* Keep accumulating */
if ((job_ptr->details->req_node_bitmap) &&
(!bit_super_set(job_ptr->details->req_node_bitmap,
avail_bitmap)))
continue;
if ((avail_nodes < min_nodes) ||
((req_nodes > min_nodes) &&
(avail_nodes < req_nodes)))
continue; /* Keep accumulating nodes */
if (avail_cpus < job_ptr->num_procs)
continue; /* Keep accumulating CPUs */
/* NOTE: select_g_job_test() is destructive of
* avail_bitmap, so save a backup copy */
backup_bitmap = bit_copy(avail_bitmap);
pick_code = select_g_job_test(job_ptr,
avail_bitmap,
min_nodes,
max_nodes,
req_nodes,
false);
if (pick_code == SLURM_SUCCESS) {
FREE_NULL_BITMAP(backup_bitmap);
if (bit_set_count(avail_bitmap) > max_nodes) {
/* end of tests for this feature */
avail_nodes = 0;
break;
}
FREE_NULL_BITMAP(total_bitmap);
FREE_NULL_BITMAP(possible_bitmap);
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
*select_bitmap = avail_bitmap;
return SLURM_SUCCESS;
} else {
FREE_NULL_BITMAP(avail_bitmap);
avail_bitmap = backup_bitmap;
}
} /* for (i = 0; i < node_set_size; i++) */
/* try picking the lightest load from all
available nodes with this feature set */
if (pick_light_load) {
backup_bitmap = bit_copy(avail_bitmap);
pick_code = _pick_best_load(job_ptr,
avail_bitmap,
min_nodes,
max_nodes,
req_nodes,
false);
if (pick_code == SLURM_SUCCESS) {
FREE_NULL_BITMAP(backup_bitmap);
if (bit_set_count(avail_bitmap) > max_nodes) {
avail_nodes = 0;
} else {
FREE_NULL_BITMAP(total_bitmap);
FREE_NULL_BITMAP(possible_bitmap);
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
*select_bitmap = avail_bitmap;
return SLURM_SUCCESS;
}
} else {
FREE_NULL_BITMAP(avail_bitmap);
avail_bitmap = backup_bitmap;
}
}
/* try to get req_nodes now for this feature */
if (avail_bitmap
&& (req_nodes > min_nodes)
&& (avail_nodes >= min_nodes)
&& (avail_nodes < req_nodes)
&& ((job_ptr->details->req_node_bitmap == NULL) ||
bit_super_set(job_ptr->details->req_node_bitmap,
avail_bitmap))) {
pick_code = select_g_job_test(job_ptr, avail_bitmap,
min_nodes, max_nodes,
req_nodes, false);
if ((pick_code == SLURM_SUCCESS) &&
(bit_set_count(avail_bitmap) <= max_nodes)) {
FREE_NULL_BITMAP(total_bitmap);
FREE_NULL_BITMAP(possible_bitmap);
if (cr_enabled) {
FREE_NULL_BITMAP(
partially_idle_node_bitmap);
}
*select_bitmap = avail_bitmap;
return SLURM_SUCCESS;
}
}
/* determine if job could possibly run (if all configured
* nodes available) */
if (total_bitmap
&& (!runable_ever || !runable_avail)
&& (total_nodes >= min_nodes)
&& ((slurmctld_conf.fast_schedule == 0) ||
(total_cpus >= job_ptr->num_procs))
&& ((job_ptr->details->req_node_bitmap == NULL) ||
(bit_super_set(job_ptr->details->req_node_bitmap,
total_bitmap)))) {
if (!runable_avail) {
FREE_NULL_BITMAP(avail_bitmap);
avail_bitmap = bit_copy(total_bitmap);
if (avail_bitmap == NULL)
fatal("bit_copy malloc failure");
bit_and(avail_bitmap, avail_node_bitmap);
pick_code = select_g_job_test(job_ptr,
avail_bitmap,
min_nodes,
max_nodes,
req_nodes,
true);
if (cr_enabled)
job_ptr->cr_enabled = 1;
if (pick_code == SLURM_SUCCESS) {
runable_ever = true;
if (bit_set_count(avail_bitmap) <=
max_nodes)
runable_avail = true;
FREE_NULL_BITMAP(possible_bitmap);
possible_bitmap = avail_bitmap;
avail_bitmap = NULL;
}
}
if (!runable_ever) {
pick_code = select_g_job_test(job_ptr,
total_bitmap,
min_nodes,
max_nodes,
req_nodes,
true);
if (cr_enabled)
job_ptr->cr_enabled = 1;
if (pick_code == SLURM_SUCCESS) {
FREE_NULL_BITMAP(possible_bitmap);
possible_bitmap = total_bitmap;
total_bitmap = NULL;
runable_ever = true;
}
}
}
FREE_NULL_BITMAP(avail_bitmap);
FREE_NULL_BITMAP(total_bitmap);
if (error_code != SLURM_SUCCESS)
break;
}
if (cr_enabled)
FREE_NULL_BITMAP(partially_idle_node_bitmap);
/* The job is not able to start right now, return a
* value indicating when the job can start */
if (!runable_avail)
error_code = ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE;
if (!runable_ever) {
error_code = ESLURM_REQUESTED_NODE_CONFIG_UNAVAILABLE;
info("_pick_best_nodes %u : job never runnable", job_ptr->job_id);
}
if (error_code == SLURM_SUCCESS) {
error_code = ESLURM_NODES_BUSY;
*select_bitmap = possible_bitmap;
} else {
FREE_NULL_BITMAP(possible_bitmap);
}
return error_code;
}
/*
* _add_node_set_info - add info in node_set_ptr to node_bitmap
* IN node_set_ptr - node set info
* IN/OUT node_bitmap - add nodes in set to this bitmap
* IN/OUT node_cnt - add count of nodes in set to this total
* IN/OUT cpu_cnt - add count of cpus in set to this total
* IN/OUT mem_cnt - add count of memory in set to this total
* IN cr_enabled - specify if consumable resources (of processors) is enabled
* IN job_ptr - the job to be updated
*/
static int
_add_node_set_info(struct node_set *node_set_ptr,
bitstr_t ** node_bitmap,
int *node_cnt, int *cpu_cnt,
const int mem_cnt, int cr_enabled,
struct job_record * job_ptr)
{
int error_code = SLURM_SUCCESS, i;
int this_cpu_cnt, this_mem_cnt;
uint32_t alloc_mem;
uint16_t alloc_cpus;
uint32_t job_id = job_ptr->job_id;
xassert(node_set_ptr->my_bitmap);
if (cr_enabled == 0) {
if (*node_bitmap)
bit_or(*node_bitmap, node_set_ptr->my_bitmap);
else {
*node_bitmap = bit_copy(node_set_ptr->my_bitmap);
if (*node_bitmap == NULL)
fatal("bit_copy malloc failure");
}
*node_cnt += node_set_ptr->nodes;
if (slurmctld_conf.fast_schedule) {
*cpu_cnt += node_set_ptr->nodes *
node_set_ptr->cpus_per_node;
} else {
for (i = 0; i < node_record_count; i++) {
if (bit_test (node_set_ptr->my_bitmap, i) == 0)
continue;
*cpu_cnt += node_record_table_ptr[i].cpus;
}
}
} else {
int ll; /* layout array index */
uint16_t * layout_ptr = NULL;
if (job_ptr->details)
layout_ptr = job_ptr->details->req_node_layout;
for (i = 0, ll = -1; i < node_record_count; i++) {
if (layout_ptr &&
bit_test(job_ptr->details->req_node_bitmap, i)) {
ll ++;
}
if (bit_test (node_set_ptr->my_bitmap, i) == 0)
continue;
alloc_cpus = 0;
error_code = select_g_get_select_nodeinfo(
&node_record_table_ptr[i],
SELECT_ALLOC_CPUS,
&alloc_cpus);
if (error_code != SLURM_SUCCESS) {
error("cons_res: Invalid Node reference %s",
node_record_table_ptr[i].name);
return error_code;
}
alloc_mem = 0;
error_code = select_g_get_select_nodeinfo(
&node_record_table_ptr[i],
SELECT_ALLOC_MEMORY,
&alloc_mem);
if (error_code != SLURM_SUCCESS) {
error("cons_res: Invalid Node reference %s",
node_record_table_ptr[i]. name);
return error_code;
}
/* Determine processors and memory available for use */
if (slurmctld_conf.fast_schedule) {
this_cpu_cnt = node_set_ptr->cpus_per_node -
alloc_cpus;
this_mem_cnt = (node_set_ptr->real_memory -
alloc_mem) - mem_cnt;
} else {
this_cpu_cnt = node_record_table_ptr[i].cpus -
alloc_cpus;
this_mem_cnt = (node_record_table_ptr[i].real_memory -
alloc_mem) - mem_cnt;
}
debug3("_add_node_set_info %u %s this_cpu_cnt %d"
" this_mem_cnt %d",
job_id, node_record_table_ptr[i].name,
this_cpu_cnt, this_mem_cnt);
if (layout_ptr &&
bit_test(job_ptr->details->req_node_bitmap, i)) {
this_cpu_cnt = MIN(this_cpu_cnt, layout_ptr[ll]);
debug3("_add_node_set_info %u %s this_cpu_cnt"
" limited by task layout %d: %u",
job_id, node_record_table_ptr[i].name,
ll, layout_ptr[ll]);
} else if (layout_ptr) {
this_cpu_cnt = 0;
}
if ((this_cpu_cnt > 0) && (this_mem_cnt > 0)) {
*node_cnt += 1;
*cpu_cnt += this_cpu_cnt;
if (*node_bitmap)
bit_or(*node_bitmap, node_set_ptr->my_bitmap);
else {
*node_bitmap = bit_copy(node_set_ptr->my_bitmap);
if (*node_bitmap == NULL)
fatal("bit_copy malloc failure");
}
}
}
}
return error_code;
}
/*
* select_nodes - select and allocate nodes to a specific job
* IN job_ptr - pointer to the job record
* IN test_only - if set do not allocate nodes, just confirm they
* could be allocated now
* IN select_node_bitmap - bitmap of nodes to be used for the
* job's resource allocation (not returned if NULL), caller
* must free
* RET 0 on success, ESLURM code from slurm_errno.h otherwise
* globals: list_part - global list of partition info
* default_part_loc - pointer to default partition
* config_list - global list of node configuration info
* Notes: The algorithm is
* 1) Build a table (node_set_ptr) of nodes with the requisite
* configuration. Each table entry includes their weight,
* node_list, features, etc.
* 2) Call _pick_best_nodes() to select those nodes best satisfying
* the request, (e.g. best-fit or other criterion)
* 3) Call allocate_nodes() to perform the actual allocation
*/
extern int select_nodes(struct job_record *job_ptr, bool test_only,
bitstr_t **select_node_bitmap)
{
int error_code = SLURM_SUCCESS, i, node_set_size = 0;
bitstr_t *select_bitmap = NULL;
struct node_set *node_set_ptr = NULL;
struct part_record *part_ptr = job_ptr->part_ptr;
uint32_t min_nodes, max_nodes, req_nodes;
int super_user = false;
enum job_state_reason fail_reason;
time_t now = time(NULL);
xassert(job_ptr);
xassert(job_ptr->magic == JOB_MAGIC);
if ((job_ptr->user_id == 0) || (job_ptr->user_id == getuid()))
super_user = true;
/* identify partition */
if (part_ptr == NULL) {
part_ptr = find_part_record(job_ptr->partition);
xassert(part_ptr);
job_ptr->part_ptr = part_ptr;
error("partition pointer reset for job %u, part %s",
job_ptr->job_id, job_ptr->partition);
}
/* Confirm that partition is up and has compatible nodes limits */
fail_reason = WAIT_NO_REASON;
if (part_ptr->state_up == 0)
fail_reason = WAIT_PART_STATE;
else if (job_ptr->priority == 0) /* user or administrator hold */
fail_reason = WAIT_HELD;
else if (super_user)
; /* ignore any time or node count limits */
else if ((job_ptr->time_limit != NO_VAL) &&
(job_ptr->time_limit > part_ptr->max_time))
fail_reason = WAIT_PART_TIME_LIMIT;
else if (((job_ptr->details->max_nodes != 0) &&
(job_ptr->details->max_nodes < part_ptr->min_nodes)) ||
(job_ptr->details->min_nodes > part_ptr->max_nodes))
fail_reason = WAIT_PART_NODE_LIMIT;
if (fail_reason != WAIT_NO_REASON) {
job_ptr->state_reason = fail_reason;
last_job_update = now;
if (job_ptr->priority == 0) /* user/admin hold */
return ESLURM_JOB_HELD;
job_ptr->priority = 1; /* sys hold, move to end of queue */
return ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE;
}
/* build sets of usable nodes based upon their configuration */
error_code = _build_node_list(job_ptr, &node_set_ptr, &node_set_size);
if (error_code)
return error_code;
/* insure that selected nodes in these node sets */
if (job_ptr->details->req_node_bitmap) {
error_code = _nodes_in_sets(job_ptr->details->req_node_bitmap,
node_set_ptr, node_set_size);
if (error_code) {
info("No nodes satisfy requirements for JobId=%u",
job_ptr->job_id);
goto cleanup;
}
}
/* enforce both user's and partition's node limits */
/* info("req: %u-%u, %u", job_ptr->details->min_nodes,
job_ptr->details->max_nodes, part_ptr->max_nodes); */
if (super_user) {
min_nodes = job_ptr->details->min_nodes;
} else {
min_nodes = MAX(job_ptr->details->min_nodes,
part_ptr->min_nodes);
}
if (job_ptr->details->max_nodes == 0) {
if (super_user)
max_nodes = INFINITE;
else
max_nodes = part_ptr->max_nodes;
} else if (super_user)
max_nodes = job_ptr->details->max_nodes;
else
max_nodes = MIN(job_ptr->details->max_nodes,
part_ptr->max_nodes);
max_nodes = MIN(max_nodes, 500000); /* prevent overflows */
if (job_ptr->details->max_nodes)
req_nodes = max_nodes;
else
req_nodes = min_nodes;
/* info("nodes:%u:%u:%u", min_nodes, req_nodes, max_nodes); */
if (max_nodes < min_nodes) {
error_code = ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE;
} else {
error_code = _pick_best_nodes(node_set_ptr, node_set_size,
&select_bitmap, job_ptr,
part_ptr, min_nodes, max_nodes,
req_nodes);
}
if (error_code) {
job_ptr->state_reason = WAIT_RESOURCES;
if (error_code == ESLURM_REQUESTED_PART_CONFIG_UNAVAILABLE) {
/* Required nodes are down or
* too many nodes requested */
debug3("JobId=%u not runnable with present config",
job_ptr->job_id);
if (job_ptr->priority != 0) /* Move to end of queue */
job_ptr->priority = 1;
last_job_update = now;
} else if (error_code == ESLURM_NODES_BUSY)
slurm_sched_job_is_pending();
goto cleanup;
}
if (test_only) { /* set if job not highest priority */
slurm_sched_job_is_pending();
error_code = SLURM_SUCCESS;
goto cleanup;
}
/* This job may be getting requeued, clear vestigial
* state information before over-writting and leaking
* memory. */
FREE_NULL_BITMAP(job_ptr->node_bitmap);
xfree(job_ptr->nodes);
job_ptr->node_bitmap = select_bitmap;
if (select_g_job_begin(job_ptr) != SLURM_SUCCESS) {
/* Leave job queued, something is hosed */
error("select_g_job_begin(%u): %m", job_ptr->job_id);
error_code = ESLURM_NODES_BUSY;
goto cleanup;
}
/* assign the nodes and stage_in the job */
job_ptr->state_reason = WAIT_NO_REASON;
job_ptr->nodes = bitmap2node_name(select_bitmap);
select_bitmap = NULL; /* nothing left to free */
allocate_nodes(job_ptr);
build_node_details(job_ptr);
job_ptr->job_state = JOB_RUNNING;
if (select_g_update_nodeinfo(job_ptr) != SLURM_SUCCESS) {
error("select_g_update_nodeinfo(%u): %m", job_ptr->job_id);
/* not critical ... by now */
}
job_ptr->start_time = job_ptr->time_last_active = now;
if (job_ptr->time_limit == NO_VAL)
job_ptr->time_limit = part_ptr->max_time;
if (job_ptr->time_limit == INFINITE)
job_ptr->end_time = job_ptr->start_time +
(365 * 24 * 60 * 60); /* secs in year */
else
job_ptr->end_time = job_ptr->start_time +
(job_ptr->time_limit * 60); /* secs */
if (job_ptr->mail_type & MAIL_JOB_BEGIN)
mail_job_info(job_ptr, MAIL_JOB_BEGIN);
jobacct_g_job_start_slurmctld(job_ptr);
cleanup:
if (select_node_bitmap)
*select_node_bitmap = select_bitmap;
else
FREE_NULL_BITMAP(select_bitmap);
if (node_set_ptr) {
for (i = 0; i < node_set_size; i++) {
FREE_NULL_BITMAP(node_set_ptr[i].my_bitmap);
FREE_NULL_BITMAP(node_set_ptr[i].feature_bits);
}
xfree(node_set_ptr);
}
return error_code;
}
/*
* _build_node_list - identify which nodes could be allocated to a job
* IN job_ptr - pointer to node to be scheduled
* OUT node_set_pptr - list of node sets which could be used for the job
* OUT node_set_size - number of node_set entries
* RET error code
*/
static int _build_node_list(struct job_record *job_ptr,
struct node_set **node_set_pptr,
int *node_set_size)
{
int node_set_inx;
struct node_set *node_set_ptr;
struct config_record *config_ptr;
struct part_record *part_ptr = job_ptr->part_ptr;
ListIterator config_iterator;
int check_node_config, config_filter = 0;
struct job_details *detail_ptr = job_ptr->details;
bitstr_t *exc_node_mask = NULL;
multi_core_data_t *mc_ptr = detail_ptr->mc_ptr;
bitstr_t *tmp_feature;
node_set_inx = 0;
node_set_ptr = (struct node_set *)
xmalloc(sizeof(struct node_set) * 2);
node_set_ptr[node_set_inx+1].my_bitmap = NULL;
if (detail_ptr->exc_node_bitmap) {
exc_node_mask = bit_copy(detail_ptr->exc_node_bitmap);
if (exc_node_mask == NULL)
fatal("bit_copy malloc failure");
bit_not(exc_node_mask);
}
config_iterator = list_iterator_create(config_list);
if (config_iterator == NULL)
fatal("list_iterator_create malloc failure");
while ((config_ptr = (struct config_record *)
list_next(config_iterator))) {
config_filter = 0;
if ((detail_ptr->job_min_procs > config_ptr->cpus )
|| (detail_ptr->job_min_memory > config_ptr->real_memory)
|| (detail_ptr->job_min_tmp_disk > config_ptr->tmp_disk))
config_filter = 1;
if (mc_ptr
&& ((mc_ptr->min_sockets > config_ptr->sockets )
|| (mc_ptr->min_cores > config_ptr->cores )
|| (mc_ptr->min_threads > config_ptr->threads )
|| (mc_ptr->job_min_sockets > config_ptr->sockets )
|| (mc_ptr->job_min_cores > config_ptr->cores )
|| (mc_ptr->job_min_threads > config_ptr->threads )))
config_filter = 1;
/* since nodes can register with more resources than defined */
/* in the configuration, we want to use those higher values */
/* for scheduling, but only as needed (slower) */
if (slurmctld_conf.fast_schedule) {
if (config_filter)
continue;
check_node_config = 0;
} else if (config_filter) {
check_node_config = 1;
} else
check_node_config = 0;
node_set_ptr[node_set_inx].my_bitmap =
bit_copy(config_ptr->node_bitmap);
if (node_set_ptr[node_set_inx].my_bitmap == NULL)
fatal("bit_copy malloc failure");
bit_and(node_set_ptr[node_set_inx].my_bitmap,
part_ptr->node_bitmap);
if (exc_node_mask) {
bit_and(node_set_ptr[node_set_inx].my_bitmap,
exc_node_mask);
}
node_set_ptr[node_set_inx].nodes =
bit_set_count(node_set_ptr[node_set_inx].my_bitmap);
if (check_node_config
&& (node_set_ptr[node_set_inx].nodes != 0)) {
_filter_nodes_in_set(&node_set_ptr[node_set_inx],
detail_ptr);
}
if (node_set_ptr[node_set_inx].nodes == 0) {
FREE_NULL_BITMAP(node_set_ptr[node_set_inx].my_bitmap);
continue;
}
tmp_feature = _valid_features(job_ptr->details->features,
config_ptr->feature);
if (tmp_feature == NULL) {
FREE_NULL_BITMAP(node_set_ptr[node_set_inx].my_bitmap);
continue;
}
/* NOTE: Must bit_free(tmp_feature) to avoid memory leak */
node_set_ptr[node_set_inx].cpus_per_node =
config_ptr->cpus;
node_set_ptr[node_set_inx].real_memory =
config_ptr->real_memory;
node_set_ptr[node_set_inx].weight =
config_ptr->weight;
node_set_ptr[node_set_inx].feature_bits = tmp_feature;
debug2("found %d usable nodes from config containing %s",
node_set_ptr[node_set_inx].nodes, config_ptr->nodes);
node_set_inx++;
xrealloc(node_set_ptr,
sizeof(struct node_set) * (node_set_inx + 2));
node_set_ptr[node_set_inx + 1].my_bitmap = NULL;
}
list_iterator_destroy(config_iterator);
/* eliminate last (incomplete) node_set record */
FREE_NULL_BITMAP(node_set_ptr[node_set_inx].my_bitmap);
FREE_NULL_BITMAP(node_set_ptr[node_set_inx].feature_bits);
FREE_NULL_BITMAP(exc_node_mask);
if (node_set_inx == 0) {
info("No nodes satisfy job %u requirements",
job_ptr->job_id);
xfree(node_set_ptr);
return ESLURM_REQUESTED_NODE_CONFIG_UNAVAILABLE;
}
*node_set_size = node_set_inx;
*node_set_pptr = node_set_ptr;
return SLURM_SUCCESS;
}
/* Remove from the node set any nodes which lack sufficient resources
* to satisfy the job's request */
static void _filter_nodes_in_set(struct node_set *node_set_ptr,
struct job_details *job_con)
{
int i;
multi_core_data_t *mc_ptr = job_con->mc_ptr;
if (slurmctld_conf.fast_schedule) { /* test config records */
struct config_record *node_con = NULL;
for (i = 0; i < node_record_count; i++) {
int job_ok = 0, job_mc_ptr_ok = 0;
if (bit_test(node_set_ptr->my_bitmap, i) == 0)
continue;
node_con = node_record_table_ptr[i].config_ptr;
if ((job_con->job_min_procs <= node_con->cpus)
&& (job_con->job_min_memory <= node_con->real_memory)
&& (job_con->job_min_tmp_disk <= node_con->tmp_disk))
job_ok = 1;
if (mc_ptr
&& ((mc_ptr->min_sockets <= node_con->sockets)
&& (mc_ptr->min_cores <= node_con->cores )
&& (mc_ptr->min_threads <= node_con->threads)
&& (mc_ptr->job_min_sockets <= node_con->sockets)
&& (mc_ptr->job_min_cores <= node_con->cores )
&& (mc_ptr->job_min_threads <= node_con->threads)))
job_mc_ptr_ok = 1;
if (job_ok && (!mc_ptr || job_mc_ptr_ok))
continue;
bit_clear(node_set_ptr->my_bitmap, i);
if ((--(node_set_ptr->nodes)) == 0)
break;
}
} else { /* fast_schedule == 0, test individual node records */
struct node_record *node_ptr = NULL;
for (i = 0; i < node_record_count; i++) {
int job_ok = 0, job_mc_ptr_ok = 0;
if (bit_test(node_set_ptr->my_bitmap, i) == 0)
continue;
node_ptr = &node_record_table_ptr[i];
if ((job_con->job_min_procs <= node_ptr->cpus)
&& (job_con->job_min_memory <= node_ptr->real_memory)
&& (job_con->job_min_tmp_disk <= node_ptr->tmp_disk))
job_ok = 1;
if (mc_ptr
&& ((mc_ptr->min_sockets <= node_ptr->sockets)
&& (mc_ptr->min_cores <= node_ptr->cores )
&& (mc_ptr->min_threads <= node_ptr->threads)
&& (mc_ptr->job_min_sockets <= node_ptr->sockets)
&& (mc_ptr->job_min_cores <= node_ptr->cores )
&& (mc_ptr->job_min_threads <= node_ptr->threads)))
job_mc_ptr_ok = 1;
if (job_ok && (!mc_ptr || job_mc_ptr_ok))
continue;
bit_clear(node_set_ptr->my_bitmap, i);
if ((--(node_set_ptr->nodes)) == 0)
break;
}
}
}
/*
* _nodes_in_sets - Determine if required nodes are included in node_set(s)
* IN req_bitmap - nodes specifically required by the job
* IN node_set_ptr - sets of valid nodes
* IN node_set_size - count of node_set entries
* RET 0 if in set, otherwise an error code
*/
static int _nodes_in_sets(bitstr_t *req_bitmap,
struct node_set * node_set_ptr,
int node_set_size)
{
bitstr_t *scratch_bitmap = NULL;
int error_code = SLURM_SUCCESS, i;
for (i=0; i<node_set_size; i++) {
if (scratch_bitmap)
bit_or(scratch_bitmap,
node_set_ptr[i].my_bitmap);
else {
scratch_bitmap =
bit_copy(node_set_ptr[i].my_bitmap);
if (scratch_bitmap == NULL)
fatal("bit_copy malloc failure");
}
}
if ((scratch_bitmap == NULL)
|| (bit_super_set(req_bitmap, scratch_bitmap) != 1))
error_code = ESLURM_REQUESTED_NODE_CONFIG_UNAVAILABLE;
FREE_NULL_BITMAP(scratch_bitmap);
return error_code;
}
/*
* build_node_details - set cpu counts and addresses for allocated nodes:
* cpu_count_reps, cpus_per_node, node_addr, node_cnt, num_cpu_groups
* IN job_ptr - pointer to a job record
*/
extern void build_node_details(struct job_record *job_ptr)
{
hostlist_t host_list = NULL;
struct node_record *node_ptr;
char *this_node_name;
int error_code = SLURM_SUCCESS;
int node_inx = 0, cpu_inx = -1;
int cr_count = 0;
uint32_t total_procs = 0;
if ((job_ptr->node_bitmap == NULL) || (job_ptr->nodes == NULL)) {
/* No nodes allocated, we're done... */
job_ptr->num_cpu_groups = 0;
job_ptr->node_cnt = 0;
job_ptr->cpus_per_node = NULL;
job_ptr->cpu_count_reps = NULL;
job_ptr->node_addr = NULL;
job_ptr->alloc_lps_cnt = 0;
xfree(job_ptr->alloc_lps);
return;
}
job_ptr->num_cpu_groups = 0;
/* Use hostlist here to insure ordering of info matches that of srun */
if ((host_list = hostlist_create(job_ptr->nodes)) == NULL)
fatal("hostlist_create error for %s: %m", job_ptr->nodes);
job_ptr->node_cnt = hostlist_count(host_list);
xrealloc(job_ptr->cpus_per_node,
(sizeof(uint32_t) * job_ptr->node_cnt));
xrealloc(job_ptr->cpu_count_reps,
(sizeof(uint32_t) * job_ptr->node_cnt));
xrealloc(job_ptr->node_addr,
(sizeof(slurm_addr) * job_ptr->node_cnt));
job_ptr->alloc_lps_cnt = job_ptr->node_cnt;
xrealloc(job_ptr->alloc_lps,
(sizeof(uint32_t) * job_ptr->node_cnt));
while ((this_node_name = hostlist_shift(host_list))) {
node_ptr = find_node_record(this_node_name);
if (node_ptr) {
uint16_t usable_lps = 0;
#ifdef HAVE_BG
if(job_ptr->node_cnt == 1) {
memcpy(&job_ptr->node_addr[node_inx++],
&node_ptr->slurm_addr,
sizeof(slurm_addr));
cpu_inx++;
job_ptr->cpus_per_node[cpu_inx] =
job_ptr->num_procs;
total_procs += job_ptr->num_procs;
job_ptr->cpu_count_reps[cpu_inx] = 1;
goto cleanup;
}
#endif
error_code = select_g_get_extra_jobinfo(
node_ptr, job_ptr, SELECT_AVAIL_CPUS,
&usable_lps);
if (error_code == SLURM_SUCCESS) {
if (job_ptr->alloc_lps) {
job_ptr->alloc_lps[cr_count++] =
usable_lps;
}
} else {
xfree(job_ptr->alloc_lps);
job_ptr->alloc_lps_cnt = 0;
error("Unable to get extra jobinfo "
"from JobId=%u", job_ptr->job_id);
}
memcpy(&job_ptr->node_addr[node_inx++],
&node_ptr->slurm_addr, sizeof(slurm_addr));
if ((cpu_inx == -1) ||
(job_ptr->cpus_per_node[cpu_inx] !=
usable_lps)) {
cpu_inx++;
job_ptr->cpus_per_node[cpu_inx] =
usable_lps;
job_ptr->cpu_count_reps[cpu_inx] = 1;
} else
job_ptr->cpu_count_reps[cpu_inx]++;
total_procs += usable_lps;
} else {
error("Invalid node %s in JobId=%u",
this_node_name, job_ptr->job_id);
}
#ifdef HAVE_BG
cleanup:
#endif
free(this_node_name);
}
hostlist_destroy(host_list);
if (job_ptr->node_cnt != node_inx) {
error("Node count mismatch for JobId=%u (%u,%u)",
job_ptr->job_id, job_ptr->node_cnt, node_inx);
}
job_ptr->num_cpu_groups = cpu_inx + 1;
if (job_ptr->details)
job_ptr->details->total_procs = total_procs;
}
/*
* _valid_features - determine if the requested features are satisfied by
* those available
* IN requested - requested features (by a job)
* IN available - available features (on a node)
* RET 0 if request is not satisfied, otherwise an integer indicating which
* mutually exclusive feature is satisfied. for example
* _valid_features("[fs1|fs2|fs3|fs4]", "fs3") returns 3. see the
* slurm administrator and user guides for details. returns 1 if
* requirements are satisfied without mutually exclusive feature list.
*/
static bitstr_t *_valid_features(char *requested, char *available)
{
char *tmp_requested, *str_ptr1;
int bracket, found, i, position, result;
int last_op; /* last operation 0 for or, 1 for and */
int save_op = 0, save_result = 0; /* for bracket support */
bitstr_t *result_bits = (bitstr_t *) NULL;
if (requested == NULL) { /* no constraints */
result_bits = bit_alloc(MAX_FEATURES);
bit_set(result_bits, 0);
return result_bits;
}
if (available == NULL) /* no features */
return result_bits;
tmp_requested = xstrdup(requested);
bracket = position = 0;
str_ptr1 = tmp_requested; /* start of feature name */
result = 1; /* assume good for now */
last_op = FEATURE_OP_AND;
for (i=0; ; i++) {
if (tmp_requested[i] == '\0') {
if (strlen(str_ptr1) == 0)
break;
found = _match_feature(str_ptr1, available);
if (last_op == FEATURE_OP_AND)
result &= found;
else /* FEATURE_OP_OR */
result |= found;
break;
}
if (tmp_requested[i] == '&') {
if (bracket != 0) {
debug("_valid_features: parsing failure on %s",
requested);
result = 0;
break;
}
tmp_requested[i] = '\0';
found = _match_feature(str_ptr1, available);
if (last_op == FEATURE_OP_AND)
result &= found;
else /* FEATURE_OP_OR */
result |= found;
str_ptr1 = &tmp_requested[i + 1];
last_op = FEATURE_OP_AND;
} else if (tmp_requested[i] == '|') {
tmp_requested[i] = '\0';
found = _match_feature(str_ptr1, available);
if (bracket != 0) {
if (found) {
if (!result_bits)
result_bits = bit_alloc(MAX_FEATURES);
if (position < MAX_FEATURES)
bit_set(result_bits, (position-1));
else
error("_valid_features: overflow");
}
position++;
}
if (last_op == FEATURE_OP_AND)
result &= found;
else /* FEATURE_OP_OR */
result |= found;
str_ptr1 = &tmp_requested[i + 1];
last_op = FEATURE_OP_OR;
} else if (tmp_requested[i] == '[') {
bracket++;
position = 1;
save_op = last_op;
save_result = result;
last_op = FEATURE_OP_AND;
result = 1;
str_ptr1 = &tmp_requested[i + 1];
} else if (tmp_requested[i] == ']') {
tmp_requested[i] = '\0';
found = _match_feature(str_ptr1, available);
if (found) {
if (!result_bits)
result_bits = bit_alloc(MAX_FEATURES);
if (position < MAX_FEATURES)
bit_set(result_bits, (position-1));
else
error("_valid_features: overflow");
}
position++;
result |= found;
if (save_op == FEATURE_OP_AND)
result &= save_result;
else /* FEATURE_OP_OR */
result |= save_result;
if ((tmp_requested[i + 1] == '&')
&& (bracket == 1)) {
last_op = FEATURE_OP_AND;
str_ptr1 = &tmp_requested[i + 2];
} else if ((tmp_requested[i + 1] == '|')
&& (bracket == 1)) {
last_op = FEATURE_OP_OR;
str_ptr1 = &tmp_requested[i + 2];
} else if ((tmp_requested[i + 1] == '\0')
&& (bracket == 1)) {
break;
} else {
debug("_valid_features: parsing failure on %s",
requested);
result = 0;
break;
}
bracket = 0;
}
}
xfree(tmp_requested);
if (result) {
if (!result_bits) {
result_bits = bit_alloc(MAX_FEATURES);
bit_set(result_bits, 0);
}
} else {
FREE_NULL_BITMAP(result_bits);
}
return result_bits;
}
/*
* re_kill_job - for a given job, deallocate its nodes for a second time,
* basically a cleanup for failed deallocate() calls
* IN job_ptr - pointer to terminating job (already in some COMPLETING state)
* globals: node_record_count - number of nodes in the system
* node_record_table_ptr - pointer to global node table
*/
extern void re_kill_job(struct job_record *job_ptr)
{
int i;
kill_job_msg_t *kill_job;
agent_arg_t *agent_args;
hostlist_t kill_hostlist = hostlist_create("");
char host_str[64];
static uint32_t last_job_id = 0;
xassert(job_ptr);
xassert(job_ptr->details);
agent_args = xmalloc(sizeof(agent_arg_t));
agent_args->msg_type = REQUEST_TERMINATE_JOB;
agent_args->hostlist = hostlist_create("");
agent_args->retry = 0;
kill_job = xmalloc(sizeof(kill_job_msg_t));
kill_job->job_id = job_ptr->job_id;
kill_job->job_uid = job_ptr->user_id;
kill_job->time = time(NULL);
kill_job->select_jobinfo = select_g_copy_jobinfo(
job_ptr->select_jobinfo);
for (i = 0; i < node_record_count; i++) {
struct node_record *node_ptr = &node_record_table_ptr[i];
if ((job_ptr->node_bitmap == NULL) ||
(bit_test(job_ptr->node_bitmap, i) == 0))
continue;
if ((node_ptr->node_state & NODE_STATE_BASE)
== NODE_STATE_DOWN) {
/* Consider job already completed */
bit_clear(job_ptr->node_bitmap, i);
if (node_ptr->comp_job_cnt)
(node_ptr->comp_job_cnt)--;
if ((--job_ptr->node_cnt) == 0) {
last_node_update = time(NULL);
job_ptr->job_state &= (~JOB_COMPLETING);
delete_step_records(job_ptr, 0);
slurm_sched_schedule();
}
continue;
}
if (node_ptr->node_state & NODE_STATE_NO_RESPOND)
continue;
(void) hostlist_push_host(kill_hostlist, node_ptr->name);
#ifdef HAVE_FRONT_END /* Operate only on front-end */
if (agent_args->node_count > 0)
continue;
#endif
hostlist_push(agent_args->hostlist, node_ptr->name);
agent_args->node_count++;
}
if (agent_args->node_count == 0) {
xfree(kill_job);
xfree(agent_args);
hostlist_destroy(kill_hostlist);
return;
}
hostlist_uniq(kill_hostlist);
hostlist_ranged_string(kill_hostlist,
sizeof(host_str), host_str);
#ifdef HAVE_BG
if (job_ptr->job_id != last_job_id) {
info("Resending TERMINATE_JOB request JobId=%u BPlist=%s",
job_ptr->job_id, host_str);
} else {
debug("Resending TERMINATE_JOB request JobId=%u BPlist=%s",
job_ptr->job_id, host_str);
}
#else
if (job_ptr->job_id != last_job_id) {
info("Resending TERMINATE_JOB request JobId=%u Nodelist=%s",
job_ptr->job_id, host_str);
} else {
debug("Resending TERMINATE_JOB request JobId=%u Nodelist=%s",
job_ptr->job_id, host_str);
}
#endif
last_job_id = job_ptr->job_id;
hostlist_destroy(kill_hostlist);
agent_args->msg_args = kill_job;
agent_queue_request(agent_args);
return;
}