| /* |
| * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the elliptic curve math library. |
| * |
| * The Initial Developer of the Original Code is |
| * Sun Microsystems, Inc. |
| * Portions created by the Initial Developer are Copyright (C) 2003 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Stephen Fung <fungstep@hotmail.com> and |
| * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| * |
| * Last Modified Date from the Original Code: May 2017 |
| *********************************************************************** */ |
| |
| #ifndef _ECL_PRIV_H |
| #define _ECL_PRIV_H |
| |
| #include "ecl.h" |
| #include "mpi.h" |
| #include "mplogic.h" |
| |
| /* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */ |
| /* the following needs to go away... */ |
| #if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT) |
| #define ECL_SIXTY_FOUR_BIT |
| #else |
| #define ECL_THIRTY_TWO_BIT |
| #endif |
| |
| #define ECL_CURVE_DIGITS(curve_size_in_bits) \ |
| (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8)) |
| #define ECL_BITS (sizeof(mp_digit)*8) |
| #define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit)) |
| |
| /* Gets the i'th bit in the binary representation of a. If i >= length(a), |
| * then return 0. (The above behaviour differs from mpl_get_bit, which |
| * causes an error if i >= length(a).) */ |
| #define MP_GET_BIT(a, i) \ |
| ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i)) |
| |
| #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
| { mp_word w; \ |
| w = ((mp_word)(cin)) + (a1) + (a2); \ |
| s = ACCUM(w); \ |
| cout = CARRYOUT(w); } |
| |
| /* Handle case when carry-in value is zero */ |
| #define MP_ADD_CARRY_ZERO(a1, a2, s, cout) \ |
| MP_ADD_CARRY(a1, a2, s, 0, cout); |
| |
| #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
| { mp_word w; \ |
| w = ((mp_word)(a1)) - (a2) - (bin); \ |
| s = ACCUM(w); \ |
| bout = (w >> MP_DIGIT_BIT) & 1; } |
| |
| #else |
| /* NOTE, |
| * cin and cout could be the same variable. |
| * bin and bout could be the same variable. |
| * a1 or a2 and s could be the same variable. |
| * don't trash those outputs until their respective inputs have |
| * been read. */ |
| #define MP_ADD_CARRY(a1, a2, s, cin, cout) \ |
| { mp_digit tmp,sum; \ |
| tmp = (a1); \ |
| sum = tmp + (a2); \ |
| tmp = (sum < tmp); /* detect overflow */ \ |
| s = sum += (cin); \ |
| cout = tmp + (sum < (cin)); } |
| |
| /* Handle case when carry-in value is zero */ |
| #define MP_ADD_CARRY_ZERO(a1, a2, s, cout) \ |
| { mp_digit tmp,sum; \ |
| tmp = (a1); \ |
| sum = tmp + (a2); \ |
| tmp = (sum < tmp); /* detect overflow */ \ |
| s = sum; \ |
| cout = tmp; } |
| |
| #define MP_SUB_BORROW(a1, a2, s, bin, bout) \ |
| { mp_digit tmp; \ |
| tmp = (a1); \ |
| s = tmp - (a2); \ |
| tmp = (s > tmp); /* detect borrow */ \ |
| if ((bin) && !s--) tmp++; \ |
| bout = tmp; } |
| #endif |
| |
| |
| struct GFMethodStr; |
| typedef struct GFMethodStr GFMethod; |
| struct GFMethodStr { |
| /* Indicates whether the structure was constructed from dynamic memory |
| * or statically created. */ |
| int constructed; |
| /* Irreducible that defines the field. For prime fields, this is the |
| * prime p. For binary polynomial fields, this is the bitstring |
| * representation of the irreducible polynomial. */ |
| mp_int irr; |
| /* For prime fields, the value irr_arr[0] is the number of bits in the |
| * field. For binary polynomial fields, the irreducible polynomial |
| * f(t) is represented as an array of unsigned int[], where f(t) is |
| * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0] |
| * > p[1] > ... > p[4] = 0. */ |
| unsigned int irr_arr[5]; |
| /* Field arithmetic methods. All methods (except field_enc and |
| * field_dec) are assumed to take field-encoded parameters and return |
| * field-encoded values. All methods (except field_enc and field_dec) |
| * are required to be implemented. */ |
| mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth); |
| /* Extra storage for implementation-specific data. Any memory |
| * allocated to these extra fields will be cleared by extra_free. */ |
| void *extra1; |
| void *extra2; |
| void (*extra_free) (GFMethod *meth); |
| }; |
| |
| /* Construct generic GFMethods. */ |
| GFMethod *GFMethod_consGFp(const mp_int *irr); |
| GFMethod *GFMethod_consGFp_mont(const mp_int *irr); |
| GFMethod *GFMethod_consGF2m(const mp_int *irr, |
| const unsigned int irr_arr[5]); |
| /* Free the memory allocated (if any) to a GFMethod object. */ |
| void GFMethod_free(GFMethod *meth); |
| |
| struct ECGroupStr { |
| /* Indicates whether the structure was constructed from dynamic memory |
| * or statically created. */ |
| int constructed; |
| /* Field definition and arithmetic. */ |
| GFMethod *meth; |
| /* Textual representation of curve name, if any. */ |
| char *text; |
| #ifdef _KERNEL |
| int text_len; |
| #endif |
| /* Curve parameters, field-encoded. */ |
| mp_int curvea, curveb; |
| /* x and y coordinates of the base point, field-encoded. */ |
| mp_int genx, geny; |
| /* Order and cofactor of the base point. */ |
| mp_int order; |
| int cofactor; |
| /* Point arithmetic methods. All methods are assumed to take |
| * field-encoded parameters and return field-encoded values. All |
| * methods (except base_point_mul and points_mul) are required to be |
| * implemented. */ |
| mp_err (*point_add) (const mp_int *px, const mp_int *py, |
| const mp_int *qx, const mp_int *qy, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| mp_err (*point_sub) (const mp_int *px, const mp_int *py, |
| const mp_int *qx, const mp_int *qy, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| mp_err (*point_mul) (const mp_int *n, const mp_int *px, |
| const mp_int *py, mp_int *rx, mp_int *ry, |
| const ECGroup *group, int timing); |
| mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry, |
| const ECGroup *group); |
| mp_err (*points_mul) (const mp_int *k1, const mp_int *k2, |
| const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, const ECGroup *group, |
| int timing); |
| mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group); |
| /* Extra storage for implementation-specific data. Any memory |
| * allocated to these extra fields will be cleared by extra_free. */ |
| void *extra1; |
| void *extra2; |
| void (*extra_free) (ECGroup *group); |
| }; |
| |
| /* Wrapper functions for generic prime field arithmetic. */ |
| mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| |
| /* fixed length in-line adds. Count is in words */ |
| mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| |
| mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| /* Wrapper functions for generic binary polynomial field arithmetic. */ |
| mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| |
| /* Montgomery prime field arithmetic. */ |
| mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth); |
| mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
| mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth); |
| void ec_GFp_extra_free_mont(GFMethod *meth); |
| |
| /* point multiplication */ |
| mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, |
| const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, const ECGroup *group, |
| int timing); |
| mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, |
| const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, const ECGroup *group, |
| int timing); |
| |
| /* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should |
| * be an array of signed char's to output to, bitsize should be the number |
| * of bits of out, in is the original scalar, and w is the window size. |
| * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A. |
| * Menezes, "Software implementation of elliptic curve cryptography over |
| * binary fields", Proc. CHES 2000. */ |
| mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, |
| int w); |
| |
| /* Optimized field arithmetic */ |
| mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName); |
| mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName); |
| mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName); |
| mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName); |
| mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName); |
| mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name); |
| mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); |
| mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); |
| |
| /* Optimized floating-point arithmetic */ |
| #ifdef ECL_USE_FP |
| mp_err ec_group_set_secp160r1_fp(ECGroup *group); |
| mp_err ec_group_set_nistp192_fp(ECGroup *group); |
| mp_err ec_group_set_nistp224_fp(ECGroup *group); |
| #endif |
| |
| #endif /* _ECL_PRIV_H */ |