| /* |
| * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the elliptic curve math library for prime field curves. |
| * |
| * The Initial Developer of the Original Code is |
| * Sun Microsystems, Inc. |
| * Portions created by the Initial Developer are Copyright (C) 2003 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| * |
| * Last Modified Date from the Original Code: May 2017 |
| *********************************************************************** */ |
| |
| #ifndef _ECP_H |
| #define _ECP_H |
| |
| #include "ecl-priv.h" |
| |
| /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
| mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); |
| |
| /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
| mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); |
| |
| /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, |
| * qy). Uses affine coordinates. */ |
| mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, |
| const mp_int *qx, const mp_int *qy, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| |
| /* Computes R = P - Q. Uses affine coordinates. */ |
| mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, |
| const mp_int *qx, const mp_int *qy, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| |
| /* Computes R = 2P. Uses affine coordinates. */ |
| mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, const ECGroup *group); |
| |
| /* Validates a point on a GFp curve. */ |
| mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); |
| |
| #ifdef ECL_ENABLE_GFP_PT_MUL_AFF |
| /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
| * a, b and p are the elliptic curve coefficients and the prime that |
| * determines the field GFp. Uses affine coordinates. */ |
| mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, |
| const mp_int *py, mp_int *rx, mp_int *ry, |
| const ECGroup *group); |
| #endif |
| |
| /* Converts a point P(px, py) from affine coordinates to Jacobian |
| * projective coordinates R(rx, ry, rz). */ |
| mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
| mp_int *ry, mp_int *rz, const ECGroup *group); |
| |
| /* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
| * affine coordinates R(rx, ry). */ |
| mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, |
| const mp_int *pz, mp_int *rx, mp_int *ry, |
| const ECGroup *group); |
| |
| /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
| * coordinates. */ |
| mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, |
| const mp_int *pz); |
| |
| /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
| * coordinates. */ |
| mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); |
| |
| /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
| * (qx, qy, qz). Uses Jacobian coordinates. */ |
| mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, |
| const mp_int *pz, const mp_int *qx, |
| const mp_int *qy, mp_int *rx, mp_int *ry, |
| mp_int *rz, const ECGroup *group); |
| |
| /* Computes R = 2P. Uses Jacobian coordinates. */ |
| mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, |
| const mp_int *pz, mp_int *rx, mp_int *ry, |
| mp_int *rz, const ECGroup *group); |
| |
| #ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
| /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
| * a, b and p are the elliptic curve coefficients and the prime that |
| * determines the field GFp. Uses Jacobian coordinates. */ |
| mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, |
| const mp_int *py, mp_int *rx, mp_int *ry, |
| const ECGroup *group); |
| #endif |
| |
| /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator |
| * (base point) of the group of points on the elliptic curve. Allows k1 = |
| * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine |
| * coordinates. Input and output values are assumed to be NOT |
| * field-encoded and are in affine form. */ |
| mp_err |
| ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
| const mp_int *py, mp_int *rx, mp_int *ry, |
| const ECGroup *group, int timing); |
| |
| /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
| * curve points P and R can be identical. Uses mixed Modified-Jacobian |
| * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
| * additions. Assumes input is already field-encoded using field_enc, and |
| * returns output that is still field-encoded. Uses 5-bit window NAF |
| * method (algorithm 11) for scalar-point multiplication from Brown, |
| * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
| * Curves Over Prime Fields. The implementation includes a countermeasure |
| * that attempts to hide the size of n from timing channels. This counter- |
| * measure is enabled using the timing argument. The high-rder bits of timing |
| * must be uniformly random in order for this countermeasure to work. */ |
| mp_err |
| ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
| mp_int *rx, mp_int *ry, const ECGroup *group, |
| int timing); |
| |
| #endif /* _ECP_H */ |