| /* |
| * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the elliptic curve math library for prime field curves. |
| * |
| * The Initial Developer of the Original Code is |
| * Sun Microsystems, Inc. |
| * Portions created by the Initial Developer are Copyright (C) 2003 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| * |
| *********************************************************************** */ |
| |
| #include "ecp.h" |
| #include "mpi.h" |
| #include "mplogic.h" |
| #include "mpi-priv.h" |
| #ifndef _KERNEL |
| #include <stdlib.h> |
| #endif |
| |
| #define ECP192_DIGITS ECL_CURVE_DIGITS(192) |
| |
| /* Fast modular reduction for p192 = 2^192 - 2^64 - 1. a can be r. Uses |
| * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software |
| * Implementation of the NIST Elliptic Curves over Prime Fields. */ |
| mp_err |
| ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| mp_size a_used = MP_USED(a); |
| mp_digit r3; |
| #ifndef MPI_AMD64_ADD |
| mp_digit carry; |
| #endif |
| #ifdef ECL_THIRTY_TWO_BIT |
| mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0; |
| mp_digit r0a, r0b, r1a, r1b, r2a, r2b; |
| #else |
| mp_digit a5 = 0, a4 = 0, a3 = 0; |
| mp_digit r0, r1, r2; |
| #endif |
| |
| /* reduction not needed if a is not larger than field size */ |
| if (a_used < ECP192_DIGITS) { |
| if (a == r) { |
| return MP_OKAY; |
| } |
| return mp_copy(a, r); |
| } |
| |
| /* for polynomials larger than twice the field size, use regular |
| * reduction */ |
| if (a_used > ECP192_DIGITS*2) { |
| MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
| } else { |
| /* copy out upper words of a */ |
| |
| #ifdef ECL_THIRTY_TWO_BIT |
| |
| /* in all the math below, |
| * nXb is most signifiant, nXa is least significant */ |
| switch (a_used) { |
| case 12: |
| a5b = MP_DIGIT(a, 11); |
| case 11: |
| a5a = MP_DIGIT(a, 10); |
| case 10: |
| a4b = MP_DIGIT(a, 9); |
| case 9: |
| a4a = MP_DIGIT(a, 8); |
| case 8: |
| a3b = MP_DIGIT(a, 7); |
| case 7: |
| a3a = MP_DIGIT(a, 6); |
| } |
| |
| |
| r2b= MP_DIGIT(a, 5); |
| r2a= MP_DIGIT(a, 4); |
| r1b = MP_DIGIT(a, 3); |
| r1a = MP_DIGIT(a, 2); |
| r0b = MP_DIGIT(a, 1); |
| r0a = MP_DIGIT(a, 0); |
| |
| /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ |
| MP_ADD_CARRY(r0a, a3a, r0a, 0, carry); |
| MP_ADD_CARRY(r0b, a3b, r0b, carry, carry); |
| MP_ADD_CARRY(r1a, a3a, r1a, carry, carry); |
| MP_ADD_CARRY(r1b, a3b, r1b, carry, carry); |
| MP_ADD_CARRY(r2a, a4a, r2a, carry, carry); |
| MP_ADD_CARRY(r2b, a4b, r2b, carry, carry); |
| r3 = carry; carry = 0; |
| MP_ADD_CARRY(r0a, a5a, r0a, 0, carry); |
| MP_ADD_CARRY(r0b, a5b, r0b, carry, carry); |
| MP_ADD_CARRY(r1a, a5a, r1a, carry, carry); |
| MP_ADD_CARRY(r1b, a5b, r1b, carry, carry); |
| MP_ADD_CARRY(r2a, a5a, r2a, carry, carry); |
| MP_ADD_CARRY(r2b, a5b, r2b, carry, carry); |
| r3 += carry; |
| MP_ADD_CARRY(r1a, a4a, r1a, 0, carry); |
| MP_ADD_CARRY(r1b, a4b, r1b, carry, carry); |
| MP_ADD_CARRY(r2a, 0, r2a, carry, carry); |
| MP_ADD_CARRY(r2b, 0, r2b, carry, carry); |
| r3 += carry; |
| |
| /* reduce out the carry */ |
| while (r3) { |
| MP_ADD_CARRY(r0a, r3, r0a, 0, carry); |
| MP_ADD_CARRY(r0b, 0, r0b, carry, carry); |
| MP_ADD_CARRY(r1a, r3, r1a, carry, carry); |
| MP_ADD_CARRY(r1b, 0, r1b, carry, carry); |
| MP_ADD_CARRY(r2a, 0, r2a, carry, carry); |
| MP_ADD_CARRY(r2b, 0, r2b, carry, carry); |
| r3 = carry; |
| } |
| |
| /* check for final reduction */ |
| /* |
| * our field is 0xffffffffffffffff, 0xfffffffffffffffe, |
| * 0xffffffffffffffff. That means we can only be over and need |
| * one more reduction |
| * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) |
| * and |
| * r1 == 0xffffffffffffffffff or |
| * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff |
| * In all cases, we subtract the field (or add the 2's |
| * complement value (1,1,0)). (r0, r1, r2) |
| */ |
| if (((r2b == 0xffffffff) && (r2a == 0xffffffff) |
| && (r1b == 0xffffffff) ) && |
| ((r1a == 0xffffffff) || |
| (r1a == 0xfffffffe) && (r0a == 0xffffffff) && |
| (r0b == 0xffffffff)) ) { |
| /* do a quick subtract */ |
| MP_ADD_CARRY(r0a, 1, r0a, 0, carry); |
| r0b += carry; |
| r1a = r1b = r2a = r2b = 0; |
| } |
| |
| /* set the lower words of r */ |
| if (a != r) { |
| MP_CHECKOK(s_mp_pad(r, 6)); |
| } |
| MP_DIGIT(r, 5) = r2b; |
| MP_DIGIT(r, 4) = r2a; |
| MP_DIGIT(r, 3) = r1b; |
| MP_DIGIT(r, 2) = r1a; |
| MP_DIGIT(r, 1) = r0b; |
| MP_DIGIT(r, 0) = r0a; |
| MP_USED(r) = 6; |
| #else |
| switch (a_used) { |
| case 6: |
| a5 = MP_DIGIT(a, 5); |
| case 5: |
| a4 = MP_DIGIT(a, 4); |
| case 4: |
| a3 = MP_DIGIT(a, 3); |
| } |
| |
| r2 = MP_DIGIT(a, 2); |
| r1 = MP_DIGIT(a, 1); |
| r0 = MP_DIGIT(a, 0); |
| |
| /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ |
| #ifndef MPI_AMD64_ADD |
| MP_ADD_CARRY_ZERO(r0, a3, r0, carry); |
| MP_ADD_CARRY(r1, a3, r1, carry, carry); |
| MP_ADD_CARRY(r2, a4, r2, carry, carry); |
| r3 = carry; |
| MP_ADD_CARRY_ZERO(r0, a5, r0, carry); |
| MP_ADD_CARRY(r1, a5, r1, carry, carry); |
| MP_ADD_CARRY(r2, a5, r2, carry, carry); |
| r3 += carry; |
| MP_ADD_CARRY_ZERO(r1, a4, r1, carry); |
| MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| r3 += carry; |
| |
| #else |
| r2 = MP_DIGIT(a, 2); |
| r1 = MP_DIGIT(a, 1); |
| r0 = MP_DIGIT(a, 0); |
| |
| /* set the lower words of r */ |
| __asm__ ( |
| "xorq %3,%3 \n\t" |
| "addq %4,%0 \n\t" |
| "adcq %4,%1 \n\t" |
| "adcq %5,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| "addq %6,%0 \n\t" |
| "adcq %6,%1 \n\t" |
| "adcq %6,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| "addq %5,%1 \n\t" |
| "adcq $0,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3), |
| "=r"(a4), "=r"(a5) |
| : "0" (r0), "1" (r1), "2" (r2), "3" (r3), |
| "4" (a3), "5" (a4), "6"(a5) |
| : "%cc" ); |
| #endif |
| |
| /* reduce out the carry */ |
| while (r3) { |
| #ifndef MPI_AMD64_ADD |
| MP_ADD_CARRY_ZERO(r0, r3, r0, carry); |
| MP_ADD_CARRY(r1, r3, r1, carry, carry); |
| MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| r3 = carry; |
| #else |
| a3=r3; |
| __asm__ ( |
| "xorq %3,%3 \n\t" |
| "addq %4,%0 \n\t" |
| "adcq %4,%1 \n\t" |
| "adcq $0,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3) |
| : "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4"(a3) |
| : "%cc" ); |
| #endif |
| } |
| |
| /* check for final reduction */ |
| /* |
| * our field is 0xffffffffffffffff, 0xfffffffffffffffe, |
| * 0xffffffffffffffff. That means we can only be over and need |
| * one more reduction |
| * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) |
| * and |
| * r1 == 0xffffffffffffffffff or |
| * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff |
| * In all cases, we subtract the field (or add the 2's |
| * complement value (1,1,0)). (r0, r1, r2) |
| */ |
| if (r3 || ((r2 == MP_DIGIT_MAX) && |
| ((r1 == MP_DIGIT_MAX) || |
| ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { |
| /* do a quick subtract */ |
| r0++; |
| r1 = r2 = 0; |
| } |
| /* set the lower words of r */ |
| if (a != r) { |
| MP_CHECKOK(s_mp_pad(r, 3)); |
| } |
| MP_DIGIT(r, 2) = r2; |
| MP_DIGIT(r, 1) = r1; |
| MP_DIGIT(r, 0) = r0; |
| MP_USED(r) = 3; |
| #endif |
| } |
| |
| CLEANUP: |
| return res; |
| } |
| |
| #ifndef ECL_THIRTY_TWO_BIT |
| /* Compute the sum of 192 bit curves. Do the work in-line since the |
| * number of words are so small, we don't want to overhead of mp function |
| * calls. Uses optimized modular reduction for p192. |
| */ |
| mp_err |
| ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| mp_digit a0 = 0, a1 = 0, a2 = 0; |
| mp_digit r0 = 0, r1 = 0, r2 = 0; |
| mp_digit carry; |
| |
| switch(MP_USED(a)) { |
| case 3: |
| a2 = MP_DIGIT(a,2); |
| case 2: |
| a1 = MP_DIGIT(a,1); |
| case 1: |
| a0 = MP_DIGIT(a,0); |
| } |
| switch(MP_USED(b)) { |
| case 3: |
| r2 = MP_DIGIT(b,2); |
| case 2: |
| r1 = MP_DIGIT(b,1); |
| case 1: |
| r0 = MP_DIGIT(b,0); |
| } |
| |
| #ifndef MPI_AMD64_ADD |
| MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| #else |
| __asm__ ( |
| "xorq %3,%3 \n\t" |
| "addq %4,%0 \n\t" |
| "adcq %5,%1 \n\t" |
| "adcq %6,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry) |
| : "r" (a0), "r" (a1), "r" (a2), "0" (r0), |
| "1" (r1), "2" (r2) |
| : "%cc" ); |
| #endif |
| |
| /* Do quick 'subract' if we've gone over |
| * (add the 2's complement of the curve field) */ |
| if (carry || ((r2 == MP_DIGIT_MAX) && |
| ((r1 == MP_DIGIT_MAX) || |
| ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { |
| #ifndef MPI_AMD64_ADD |
| MP_ADD_CARRY_ZERO(r0, 1, r0, carry); |
| MP_ADD_CARRY(r1, 1, r1, carry, carry); |
| MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| #else |
| __asm__ ( |
| "addq $1,%0 \n\t" |
| "adcq $1,%1 \n\t" |
| "adcq $0,%2 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2) |
| : "0" (r0), "1" (r1), "2" (r2) |
| : "%cc" ); |
| #endif |
| } |
| |
| |
| MP_CHECKOK(s_mp_pad(r, 3)); |
| MP_DIGIT(r, 2) = r2; |
| MP_DIGIT(r, 1) = r1; |
| MP_DIGIT(r, 0) = r0; |
| MP_SIGN(r) = MP_ZPOS; |
| MP_USED(r) = 3; |
| s_mp_clamp(r); |
| |
| |
| CLEANUP: |
| return res; |
| } |
| |
| /* Compute the diff of 192 bit curves. Do the work in-line since the |
| * number of words are so small, we don't want to overhead of mp function |
| * calls. Uses optimized modular reduction for p192. |
| */ |
| mp_err |
| ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| mp_digit b0 = 0, b1 = 0, b2 = 0; |
| mp_digit r0 = 0, r1 = 0, r2 = 0; |
| mp_digit borrow; |
| |
| switch(MP_USED(a)) { |
| case 3: |
| r2 = MP_DIGIT(a,2); |
| case 2: |
| r1 = MP_DIGIT(a,1); |
| case 1: |
| r0 = MP_DIGIT(a,0); |
| } |
| |
| switch(MP_USED(b)) { |
| case 3: |
| b2 = MP_DIGIT(b,2); |
| case 2: |
| b1 = MP_DIGIT(b,1); |
| case 1: |
| b0 = MP_DIGIT(b,0); |
| } |
| |
| #ifndef MPI_AMD64_ADD |
| MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| #else |
| __asm__ ( |
| "xorq %3,%3 \n\t" |
| "subq %4,%0 \n\t" |
| "sbbq %5,%1 \n\t" |
| "sbbq %6,%2 \n\t" |
| "adcq $0,%3 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow) |
| : "r" (b0), "r" (b1), "r" (b2), "0" (r0), |
| "1" (r1), "2" (r2) |
| : "%cc" ); |
| #endif |
| |
| /* Do quick 'add' if we've gone under 0 |
| * (subtract the 2's complement of the curve field) */ |
| if (borrow) { |
| #ifndef MPI_AMD64_ADD |
| MP_SUB_BORROW(r0, 1, r0, 0, borrow); |
| MP_SUB_BORROW(r1, 1, r1, borrow, borrow); |
| MP_SUB_BORROW(r2, 0, r2, borrow, borrow); |
| #else |
| __asm__ ( |
| "subq $1,%0 \n\t" |
| "sbbq $1,%1 \n\t" |
| "sbbq $0,%2 \n\t" |
| : "=r"(r0), "=r"(r1), "=r"(r2) |
| : "0" (r0), "1" (r1), "2" (r2) |
| : "%cc" ); |
| #endif |
| } |
| |
| MP_CHECKOK(s_mp_pad(r, 3)); |
| MP_DIGIT(r, 2) = r2; |
| MP_DIGIT(r, 1) = r1; |
| MP_DIGIT(r, 0) = r0; |
| MP_SIGN(r) = MP_ZPOS; |
| MP_USED(r) = 3; |
| s_mp_clamp(r); |
| |
| CLEANUP: |
| return res; |
| } |
| |
| #endif |
| |
| /* Compute the square of polynomial a, reduce modulo p192. Store the |
| * result in r. r could be a. Uses optimized modular reduction for p192. |
| */ |
| mp_err |
| ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| |
| MP_CHECKOK(mp_sqr(a, r)); |
| MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| CLEANUP: |
| return res; |
| } |
| |
| /* Compute the product of two polynomials a and b, reduce modulo p192. |
| * Store the result in r. r could be a or b; a could be b. Uses |
| * optimized modular reduction for p192. */ |
| mp_err |
| ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| |
| MP_CHECKOK(mp_mul(a, b, r)); |
| MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| CLEANUP: |
| return res; |
| } |
| |
| /* Divides two field elements. If a is NULL, then returns the inverse of |
| * b. */ |
| mp_err |
| ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r, |
| const GFMethod *meth) |
| { |
| mp_err res = MP_OKAY; |
| mp_int t; |
| |
| /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
| if (a == NULL) { |
| return mp_invmod(b, &meth->irr, r); |
| } else { |
| /* MPI doesn't support divmod, so we implement it using invmod and |
| * mulmod. */ |
| MP_CHECKOK(mp_init(&t, FLAG(b))); |
| MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); |
| MP_CHECKOK(mp_mul(a, &t, r)); |
| MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| CLEANUP: |
| mp_clear(&t); |
| return res; |
| } |
| } |
| |
| /* Wire in fast field arithmetic and precomputation of base point for |
| * named curves. */ |
| mp_err |
| ec_group_set_gfp192(ECGroup *group, ECCurveName name) |
| { |
| if (name == ECCurve_NIST_P192) { |
| group->meth->field_mod = &ec_GFp_nistp192_mod; |
| group->meth->field_mul = &ec_GFp_nistp192_mul; |
| group->meth->field_sqr = &ec_GFp_nistp192_sqr; |
| group->meth->field_div = &ec_GFp_nistp192_div; |
| #ifndef ECL_THIRTY_TWO_BIT |
| group->meth->field_add = &ec_GFp_nistp192_add; |
| group->meth->field_sub = &ec_GFp_nistp192_sub; |
| #endif |
| } |
| return MP_OKAY; |
| } |