| /* |
| * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. |
| * |
| * The Initial Developer of the Original Code is |
| * Sun Microsystems, Inc. |
| * Portions created by the Initial Developer are Copyright (C) 2003 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Sheueling Chang Shantz <sheueling.chang@sun.com> and |
| * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
| * |
| *********************************************************************** */ |
| |
| #ifndef _MP_GF2M_PRIV_H_ |
| #define _MP_GF2M_PRIV_H_ |
| |
| #include "mpi-priv.h" |
| |
| extern const mp_digit mp_gf2m_sqr_tb[16]; |
| |
| #if defined(MP_USE_UINT_DIGIT) |
| #define MP_DIGIT_BITS 32 |
| #else |
| #define MP_DIGIT_BITS 64 |
| #endif |
| |
| /* Platform-specific macros for fast binary polynomial squaring. */ |
| #if MP_DIGIT_BITS == 32 |
| #define gf2m_SQR1(w) \ |
| mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \ |
| mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] |
| #define gf2m_SQR0(w) \ |
| mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \ |
| mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF] |
| #else |
| #define gf2m_SQR1(w) \ |
| mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \ |
| mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \ |
| mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \ |
| mp_gf2m_sqr_tb[(w) >> 36 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF] |
| #define gf2m_SQR0(w) \ |
| mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \ |
| mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \ |
| mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \ |
| mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF] |
| #endif |
| |
| /* Multiply two binary polynomials mp_digits a, b. |
| * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. |
| * Output in two mp_digits rh, rl. |
| */ |
| void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b); |
| |
| /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) |
| * result is a binary polynomial in 4 mp_digits r[4]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, |
| const mp_digit b0); |
| |
| /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) |
| * result is a binary polynomial in 6 mp_digits r[6]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, |
| const mp_digit b2, const mp_digit b1, const mp_digit b0); |
| |
| /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) |
| * result is a binary polynomial in 8 mp_digits r[8]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, |
| const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, |
| const mp_digit b0); |
| |
| #endif /* _MP_GF2M_PRIV_H_ */ |