| /* |
| * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. |
| * |
| * The Initial Developer of the Original Code is |
| * Sun Microsystems, Inc. |
| * Portions created by the Initial Developer are Copyright (C) 2003 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Sheueling Chang Shantz <sheueling.chang@sun.com> and |
| * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
| * |
| *********************************************************************** */ |
| |
| #include "mp_gf2m.h" |
| #include "mp_gf2m-priv.h" |
| #include "mplogic.h" |
| #include "mpi-priv.h" |
| |
| const mp_digit mp_gf2m_sqr_tb[16] = |
| { |
| 0, 1, 4, 5, 16, 17, 20, 21, |
| 64, 65, 68, 69, 80, 81, 84, 85 |
| }; |
| |
| /* Multiply two binary polynomials mp_digits a, b. |
| * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. |
| * Output in two mp_digits rh, rl. |
| */ |
| #if MP_DIGIT_BITS == 32 |
| void |
| s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
| { |
| register mp_digit h, l, s; |
| mp_digit tab[8], top2b = a >> 30; |
| register mp_digit a1, a2, a4; |
| |
| a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; |
| |
| tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; |
| tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; |
| |
| s = tab[b & 0x7]; l = s; |
| s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; |
| s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; |
| s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; |
| s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; |
| s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; |
| s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; |
| s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; |
| s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; |
| s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; |
| s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; |
| |
| /* compensate for the top two bits of a */ |
| |
| if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } |
| if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } |
| |
| *rh = h; *rl = l; |
| } |
| #else |
| void |
| s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
| { |
| register mp_digit h, l, s; |
| mp_digit tab[16], top3b = a >> 61; |
| register mp_digit a1, a2, a4, a8; |
| |
| a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; |
| a4 = a2 << 1; a8 = a4 << 1; |
| tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; |
| tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; |
| tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; |
| tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; |
| |
| s = tab[b & 0xF]; l = s; |
| s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; |
| s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; |
| s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; |
| s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; |
| s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; |
| s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; |
| s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; |
| s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; |
| s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; |
| s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; |
| s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; |
| s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; |
| s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; |
| s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; |
| s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; |
| |
| /* compensate for the top three bits of a */ |
| |
| if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } |
| if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } |
| if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } |
| |
| *rh = h; *rl = l; |
| } |
| #endif |
| |
| /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) |
| * result is a binary polynomial in 4 mp_digits r[4]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void |
| s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, |
| const mp_digit b0) |
| { |
| mp_digit m1, m0; |
| /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
| s_bmul_1x1(r+3, r+2, a1, b1); |
| s_bmul_1x1(r+1, r, a0, b0); |
| s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
| /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
| r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
| r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
| } |
| |
| /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) |
| * result is a binary polynomial in 6 mp_digits r[6]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void |
| s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, |
| const mp_digit b2, const mp_digit b1, const mp_digit b0) |
| { |
| mp_digit zm[4]; |
| |
| s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ |
| s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ |
| s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
| |
| zm[3] ^= r[3]; |
| zm[2] ^= r[2]; |
| zm[1] ^= r[1] ^ r[5]; |
| zm[0] ^= r[0] ^ r[4]; |
| |
| r[5] ^= zm[3]; |
| r[4] ^= zm[2]; |
| r[3] ^= zm[1]; |
| r[2] ^= zm[0]; |
| } |
| |
| /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) |
| * result is a binary polynomial in 8 mp_digits r[8]. |
| * The caller MUST ensure that r has the right amount of space allocated. |
| */ |
| void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, |
| const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, |
| const mp_digit b0) |
| { |
| mp_digit zm[4]; |
| |
| s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ |
| s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ |
| s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
| |
| zm[3] ^= r[3] ^ r[7]; |
| zm[2] ^= r[2] ^ r[6]; |
| zm[1] ^= r[1] ^ r[5]; |
| zm[0] ^= r[0] ^ r[4]; |
| |
| r[5] ^= zm[3]; |
| r[4] ^= zm[2]; |
| r[3] ^= zm[1]; |
| r[2] ^= zm[0]; |
| } |
| |
| /* Compute addition of two binary polynomials a and b, |
| * store result in c; c could be a or b, a and b could be equal; |
| * c is the bitwise XOR of a and b. |
| */ |
| mp_err |
| mp_badd(const mp_int *a, const mp_int *b, mp_int *c) |
| { |
| mp_digit *pa, *pb, *pc; |
| mp_size ix; |
| mp_size used_pa, used_pb; |
| mp_err res = MP_OKAY; |
| |
| /* Add all digits up to the precision of b. If b had more |
| * precision than a initially, swap a, b first |
| */ |
| if (MP_USED(a) >= MP_USED(b)) { |
| pa = MP_DIGITS(a); |
| pb = MP_DIGITS(b); |
| used_pa = MP_USED(a); |
| used_pb = MP_USED(b); |
| } else { |
| pa = MP_DIGITS(b); |
| pb = MP_DIGITS(a); |
| used_pa = MP_USED(b); |
| used_pb = MP_USED(a); |
| } |
| |
| /* Make sure c has enough precision for the output value */ |
| MP_CHECKOK( s_mp_pad(c, used_pa) ); |
| |
| /* Do word-by-word xor */ |
| pc = MP_DIGITS(c); |
| for (ix = 0; ix < used_pb; ix++) { |
| (*pc++) = (*pa++) ^ (*pb++); |
| } |
| |
| /* Finish the rest of digits until we're actually done */ |
| for (; ix < used_pa; ++ix) { |
| *pc++ = *pa++; |
| } |
| |
| MP_USED(c) = used_pa; |
| MP_SIGN(c) = ZPOS; |
| s_mp_clamp(c); |
| |
| CLEANUP: |
| return res; |
| } |
| |
| #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); |
| |
| /* Compute binary polynomial multiply d = a * b */ |
| static void |
| s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
| { |
| mp_digit a_i, a0b0, a1b1, carry = 0; |
| while (a_len--) { |
| a_i = *a++; |
| s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
| *d++ = a0b0 ^ carry; |
| carry = a1b1; |
| } |
| *d = carry; |
| } |
| |
| /* Compute binary polynomial xor multiply accumulate d ^= a * b */ |
| static void |
| s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
| { |
| mp_digit a_i, a0b0, a1b1, carry = 0; |
| while (a_len--) { |
| a_i = *a++; |
| s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
| *d++ ^= a0b0 ^ carry; |
| carry = a1b1; |
| } |
| *d ^= carry; |
| } |
| |
| /* Compute binary polynomial xor multiply c = a * b. |
| * All parameters may be identical. |
| */ |
| mp_err |
| mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) |
| { |
| mp_digit *pb, b_i; |
| mp_int tmp; |
| mp_size ib, a_used, b_used; |
| mp_err res = MP_OKAY; |
| |
| MP_DIGITS(&tmp) = 0; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if (a == c) { |
| MP_CHECKOK( mp_init_copy(&tmp, a) ); |
| if (a == b) |
| b = &tmp; |
| a = &tmp; |
| } else if (b == c) { |
| MP_CHECKOK( mp_init_copy(&tmp, b) ); |
| b = &tmp; |
| } |
| |
| if (MP_USED(a) < MP_USED(b)) { |
| const mp_int *xch = b; /* switch a and b if b longer */ |
| b = a; |
| a = xch; |
| } |
| |
| MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
| MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); |
| |
| pb = MP_DIGITS(b); |
| s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
| |
| /* Outer loop: Digits of b */ |
| a_used = MP_USED(a); |
| b_used = MP_USED(b); |
| MP_USED(c) = a_used + b_used; |
| for (ib = 1; ib < b_used; ib++) { |
| b_i = *pb++; |
| |
| /* Inner product: Digits of a */ |
| if (b_i) |
| s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); |
| else |
| MP_DIGIT(c, ib + a_used) = b_i; |
| } |
| |
| s_mp_clamp(c); |
| |
| SIGN(c) = ZPOS; |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| |
| /* Compute modular reduction of a and store result in r. |
| * r could be a. |
| * For modular arithmetic, the irreducible polynomial f(t) is represented |
| * as an array of int[], where f(t) is of the form: |
| * f(t) = t^p[0] + t^p[1] + ... + t^p[k] |
| * where m = p[0] > p[1] > ... > p[k] = 0. |
| */ |
| mp_err |
| mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) |
| { |
| int j, k; |
| int n, dN, d0, d1; |
| mp_digit zz, *z, tmp; |
| mp_size used; |
| mp_err res = MP_OKAY; |
| |
| /* The algorithm does the reduction in place in r, |
| * if a != r, copy a into r first so reduction can be done in r |
| */ |
| if (a != r) { |
| MP_CHECKOK( mp_copy(a, r) ); |
| } |
| z = MP_DIGITS(r); |
| |
| /* start reduction */ |
| dN = p[0] / MP_DIGIT_BITS; |
| used = MP_USED(r); |
| |
| for (j = used - 1; j > dN;) { |
| |
| zz = z[j]; |
| if (zz == 0) { |
| j--; continue; |
| } |
| z[j] = 0; |
| |
| for (k = 1; p[k] > 0; k++) { |
| /* reducing component t^p[k] */ |
| n = p[0] - p[k]; |
| d0 = n % MP_DIGIT_BITS; |
| d1 = MP_DIGIT_BITS - d0; |
| n /= MP_DIGIT_BITS; |
| z[j-n] ^= (zz>>d0); |
| if (d0) |
| z[j-n-1] ^= (zz<<d1); |
| } |
| |
| /* reducing component t^0 */ |
| n = dN; |
| d0 = p[0] % MP_DIGIT_BITS; |
| d1 = MP_DIGIT_BITS - d0; |
| z[j-n] ^= (zz >> d0); |
| if (d0) |
| z[j-n-1] ^= (zz << d1); |
| |
| } |
| |
| /* final round of reduction */ |
| while (j == dN) { |
| |
| d0 = p[0] % MP_DIGIT_BITS; |
| zz = z[dN] >> d0; |
| if (zz == 0) break; |
| d1 = MP_DIGIT_BITS - d0; |
| |
| /* clear up the top d1 bits */ |
| if (d0) z[dN] = (z[dN] << d1) >> d1; |
| *z ^= zz; /* reduction t^0 component */ |
| |
| for (k = 1; p[k] > 0; k++) { |
| /* reducing component t^p[k]*/ |
| n = p[k] / MP_DIGIT_BITS; |
| d0 = p[k] % MP_DIGIT_BITS; |
| d1 = MP_DIGIT_BITS - d0; |
| z[n] ^= (zz << d0); |
| tmp = zz >> d1; |
| if (d0 && tmp) |
| z[n+1] ^= tmp; |
| } |
| } |
| |
| s_mp_clamp(r); |
| CLEANUP: |
| return res; |
| } |
| |
| /* Compute the product of two polynomials a and b, reduce modulo p, |
| * Store the result in r. r could be a or b; a could be b. |
| */ |
| mp_err |
| mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) |
| { |
| mp_err res; |
| |
| if (a == b) return mp_bsqrmod(a, p, r); |
| if ((res = mp_bmul(a, b, r) ) != MP_OKAY) |
| return res; |
| return mp_bmod(r, p, r); |
| } |
| |
| /* Compute binary polynomial squaring c = a*a mod p . |
| * Parameter r and a can be identical. |
| */ |
| |
| mp_err |
| mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) |
| { |
| mp_digit *pa, *pr, a_i; |
| mp_int tmp; |
| mp_size ia, a_used; |
| mp_err res; |
| |
| ARGCHK(a != NULL && r != NULL, MP_BADARG); |
| MP_DIGITS(&tmp) = 0; |
| |
| if (a == r) { |
| MP_CHECKOK( mp_init_copy(&tmp, a) ); |
| a = &tmp; |
| } |
| |
| MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
| MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); |
| |
| pa = MP_DIGITS(a); |
| pr = MP_DIGITS(r); |
| a_used = MP_USED(a); |
| MP_USED(r) = 2 * a_used; |
| |
| for (ia = 0; ia < a_used; ia++) { |
| a_i = *pa++; |
| *pr++ = gf2m_SQR0(a_i); |
| *pr++ = gf2m_SQR1(a_i); |
| } |
| |
| MP_CHECKOK( mp_bmod(r, p, r) ); |
| s_mp_clamp(r); |
| SIGN(r) = ZPOS; |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. |
| * Store the result in r. r could be x or y, and x could equal y. |
| * Uses algorithm Modular_Division_GF(2^m) from |
| * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
| * the Great Divide". |
| */ |
| int |
| mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, |
| const unsigned int p[], mp_int *r) |
| { |
| mp_int aa, bb, uu; |
| mp_int *a, *b, *u, *v; |
| mp_err res = MP_OKAY; |
| |
| MP_DIGITS(&aa) = 0; |
| MP_DIGITS(&bb) = 0; |
| MP_DIGITS(&uu) = 0; |
| |
| MP_CHECKOK( mp_init_copy(&aa, x) ); |
| MP_CHECKOK( mp_init_copy(&uu, y) ); |
| MP_CHECKOK( mp_init_copy(&bb, pp) ); |
| MP_CHECKOK( s_mp_pad(r, USED(pp)) ); |
| MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
| |
| a = &aa; b= &bb; u=&uu; v=r; |
| /* reduce x and y mod p */ |
| MP_CHECKOK( mp_bmod(a, p, a) ); |
| MP_CHECKOK( mp_bmod(u, p, u) ); |
| |
| while (!mp_isodd(a)) { |
| s_mp_div2(a); |
| if (mp_isodd(u)) { |
| MP_CHECKOK( mp_badd(u, pp, u) ); |
| } |
| s_mp_div2(u); |
| } |
| |
| do { |
| if (mp_cmp_mag(b, a) > 0) { |
| MP_CHECKOK( mp_badd(b, a, b) ); |
| MP_CHECKOK( mp_badd(v, u, v) ); |
| do { |
| s_mp_div2(b); |
| if (mp_isodd(v)) { |
| MP_CHECKOK( mp_badd(v, pp, v) ); |
| } |
| s_mp_div2(v); |
| } while (!mp_isodd(b)); |
| } |
| else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) |
| break; |
| else { |
| MP_CHECKOK( mp_badd(a, b, a) ); |
| MP_CHECKOK( mp_badd(u, v, u) ); |
| do { |
| s_mp_div2(a); |
| if (mp_isodd(u)) { |
| MP_CHECKOK( mp_badd(u, pp, u) ); |
| } |
| s_mp_div2(u); |
| } while (!mp_isodd(a)); |
| } |
| } while (1); |
| |
| MP_CHECKOK( mp_copy(u, r) ); |
| |
| CLEANUP: |
| /* XXX this appears to be a memory leak in the NSS code */ |
| mp_clear(&aa); |
| mp_clear(&bb); |
| mp_clear(&uu); |
| return res; |
| |
| } |
| |
| /* Convert the bit-string representation of a polynomial a into an array |
| * of integers corresponding to the bits with non-zero coefficient. |
| * Up to max elements of the array will be filled. Return value is total |
| * number of coefficients that would be extracted if array was large enough. |
| */ |
| int |
| mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) |
| { |
| int i, j, k; |
| mp_digit top_bit, mask; |
| |
| top_bit = 1; |
| top_bit <<= MP_DIGIT_BIT - 1; |
| |
| for (k = 0; k < max; k++) p[k] = 0; |
| k = 0; |
| |
| for (i = MP_USED(a) - 1; i >= 0; i--) { |
| mask = top_bit; |
| for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { |
| if (MP_DIGITS(a)[i] & mask) { |
| if (k < max) p[k] = MP_DIGIT_BIT * i + j; |
| k++; |
| } |
| mask >>= 1; |
| } |
| } |
| |
| return k; |
| } |
| |
| /* Convert the coefficient array representation of a polynomial to a |
| * bit-string. The array must be terminated by 0. |
| */ |
| mp_err |
| mp_barr2poly(const unsigned int p[], mp_int *a) |
| { |
| |
| mp_err res = MP_OKAY; |
| int i; |
| |
| mp_zero(a); |
| for (i = 0; p[i] > 0; i++) { |
| MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); |
| } |
| MP_CHECKOK( mpl_set_bit(a, 0, 1) ); |
| |
| CLEANUP: |
| return res; |
| } |