| /* |
| * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
| * |
| * The Initial Developer of the Original Code is |
| * Michael J. Fromberger. |
| * Portions created by the Initial Developer are Copyright (C) 1998 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Netscape Communications Corporation |
| * |
| *********************************************************************** */ |
| |
| /* Arbitrary precision integer arithmetic library |
| * |
| * NOTE WELL: the content of this header file is NOT part of the "public" |
| * API for the MPI library, and may change at any time. |
| * Application programs that use libmpi should NOT include this header file. |
| */ |
| |
| #ifndef _MPI_PRIV_H |
| #define _MPI_PRIV_H |
| |
| /* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */ |
| |
| #include "mpi.h" |
| #ifndef _KERNEL |
| #include <stdlib.h> |
| #include <string.h> |
| #include <ctype.h> |
| #endif /* _KERNEL */ |
| |
| #if MP_DEBUG |
| #include <stdio.h> |
| |
| #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} |
| #else |
| #define DIAG(T,V) |
| #endif |
| |
| /* If we aren't using a wired-in logarithm table, we need to include |
| the math library to get the log() function |
| */ |
| |
| /* {{{ s_logv_2[] - log table for 2 in various bases */ |
| |
| #if MP_LOGTAB |
| /* |
| A table of the logs of 2 for various bases (the 0 and 1 entries of |
| this table are meaningless and should not be referenced). |
| |
| This table is used to compute output lengths for the mp_toradix() |
| function. Since a number n in radix r takes up about log_r(n) |
| digits, we estimate the output size by taking the least integer |
| greater than log_r(n), where: |
| |
| log_r(n) = log_2(n) * log_r(2) |
| |
| This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
| which are the output bases supported. |
| */ |
| |
| extern const float s_logv_2[]; |
| #define LOG_V_2(R) s_logv_2[(R)] |
| |
| #else |
| |
| /* |
| If MP_LOGTAB is not defined, use the math library to compute the |
| logarithms on the fly. Otherwise, use the table. |
| Pick which works best for your system. |
| */ |
| |
| #include <math.h> |
| #define LOG_V_2(R) (log(2.0)/log(R)) |
| |
| #endif /* if MP_LOGTAB */ |
| |
| /* }}} */ |
| |
| /* {{{ Digit arithmetic macros */ |
| |
| /* |
| When adding and multiplying digits, the results can be larger than |
| can be contained in an mp_digit. Thus, an mp_word is used. These |
| macros mask off the upper and lower digits of the mp_word (the |
| mp_word may be more than 2 mp_digits wide, but we only concern |
| ourselves with the low-order 2 mp_digits) |
| */ |
| |
| #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) |
| #define ACCUM(W) (mp_digit)(W) |
| |
| #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) |
| #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) |
| #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) |
| #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) |
| |
| /* }}} */ |
| |
| /* {{{ Comparison constants */ |
| |
| #define MP_LT -1 |
| #define MP_EQ 0 |
| #define MP_GT 1 |
| |
| /* }}} */ |
| |
| /* {{{ private function declarations */ |
| |
| /* |
| If MP_MACRO is false, these will be defined as actual functions; |
| otherwise, suitable macro definitions will be used. This works |
| around the fact that ANSI C89 doesn't support an 'inline' keyword |
| (although I hear C9x will ... about bloody time). At present, the |
| macro definitions are identical to the function bodies, but they'll |
| expand in place, instead of generating a function call. |
| |
| I chose these particular functions to be made into macros because |
| some profiling showed they are called a lot on a typical workload, |
| and yet they are primarily housekeeping. |
| */ |
| #if MP_MACRO == 0 |
| void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ |
| void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ |
| void *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator */ |
| void s_mp_free(void *ptr, mp_size); /* general free function */ |
| extern unsigned long mp_allocs; |
| extern unsigned long mp_frees; |
| extern unsigned long mp_copies; |
| #else |
| |
| /* Even if these are defined as macros, we need to respect the settings |
| of the MP_MEMSET and MP_MEMCPY configuration options... |
| */ |
| #if MP_MEMSET == 0 |
| #define s_mp_setz(dp, count) \ |
| {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} |
| #else |
| #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) |
| #endif /* MP_MEMSET */ |
| |
| #if MP_MEMCPY == 0 |
| #define s_mp_copy(sp, dp, count) \ |
| {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} |
| #else |
| #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) |
| #endif /* MP_MEMCPY */ |
| |
| #define s_mp_alloc(nb, ni) calloc(nb, ni) |
| #define s_mp_free(ptr) {if(ptr) free(ptr);} |
| #endif /* MP_MACRO */ |
| |
| mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ |
| mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ |
| |
| #if MP_MACRO == 0 |
| void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ |
| #else |
| #define s_mp_clamp(mp)\ |
| { mp_size used = MP_USED(mp); \ |
| while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ |
| MP_USED(mp) = used; \ |
| } |
| #endif /* MP_MACRO */ |
| |
| void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ |
| |
| mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ |
| void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ |
| mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ |
| void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ |
| void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ |
| void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ |
| mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ |
| mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); |
| /* normalize for division */ |
| mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ |
| mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ |
| mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ |
| mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); |
| /* unsigned digit divide */ |
| mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); |
| /* Barrett reduction */ |
| mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ |
| mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
| mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ |
| mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
| mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); |
| /* a += b * RADIX^offset */ |
| mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ |
| #if MP_SQUARE |
| mp_err s_mp_sqr(mp_int *a); /* magnitude square */ |
| #else |
| #define s_mp_sqr(a) s_mp_mul(a, a) |
| #endif |
| mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ |
| mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); |
| mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ |
| int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ |
| int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ |
| int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ |
| int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ |
| |
| int s_mp_tovalue(char ch, int r); /* convert ch to value */ |
| char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ |
| int s_mp_outlen(int bits, int r); /* output length in bytes */ |
| mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ |
| mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); |
| mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); |
| mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); |
| |
| #ifdef NSS_USE_COMBA |
| |
| #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) |
| |
| void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); |
| void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); |
| void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); |
| void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); |
| |
| void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); |
| void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); |
| void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); |
| void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); |
| |
| #endif /* end NSS_USE_COMBA */ |
| |
| /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ |
| #if defined (__OS2__) && defined (__IBMC__) |
| #define MPI_ASM_DECL __cdecl |
| #else |
| #define MPI_ASM_DECL |
| #endif |
| |
| #ifdef MPI_AMD64 |
| |
| mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit); |
| mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit); |
| |
| /* c = a * b */ |
| #define s_mpv_mul_d(a, a_len, b, c) \ |
| ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) |
| |
| /* c += a * b */ |
| #define s_mpv_mul_d_add(a, a_len, b, c) \ |
| ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) |
| |
| #else |
| |
| void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, |
| mp_digit b, mp_digit *c); |
| void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, |
| mp_digit b, mp_digit *c); |
| |
| #endif |
| |
| void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, |
| mp_size a_len, mp_digit b, |
| mp_digit *c); |
| void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, |
| mp_size a_len, |
| mp_digit *sqrs); |
| |
| mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, |
| mp_digit divisor, mp_digit *quot, mp_digit *rem); |
| |
| /* c += a * b * (MP_RADIX ** offset); */ |
| #define s_mp_mul_d_add_offset(a, b, c, off) \ |
| (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) |
| |
| typedef struct { |
| mp_int N; /* modulus N */ |
| mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ |
| mp_size b; /* R == 2 ** b, also b = # significant bits in N */ |
| } mp_mont_modulus; |
| |
| mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
| mp_mont_modulus *mmm); |
| mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); |
| |
| /* |
| * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line |
| * if a cache exists, or zero if there is no cache. If more than one |
| * cache line exists, it should return the smallest line size (which is |
| * usually the L1 cache). |
| * |
| * mp_modexp uses this information to make sure that private key information |
| * isn't being leaked through the cache. |
| * |
| * see mpcpucache.c for the implementation. |
| */ |
| unsigned long s_mpi_getProcessorLineSize(); |
| |
| /* }}} */ |
| #endif /* _MPI_PRIV_H */ |