| /* |
| * Copyright (c) 2007, 2020, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| /* ********************************************************************* |
| * |
| * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
| * |
| * The Initial Developer of the Original Code is |
| * Michael J. Fromberger. |
| * Portions created by the Initial Developer are Copyright (C) 1998 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * Netscape Communications Corporation |
| * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
| * |
| * Last Modified Date from the Original Code: Nov 2019 |
| *********************************************************************** */ |
| |
| /* Arbitrary precision integer arithmetic library */ |
| |
| #include "mpi-priv.h" |
| #if defined(OSF1) |
| #include <c_asm.h> |
| #endif |
| |
| #if MP_LOGTAB |
| /* |
| A table of the logs of 2 for various bases (the 0 and 1 entries of |
| this table are meaningless and should not be referenced). |
| |
| This table is used to compute output lengths for the mp_toradix() |
| function. Since a number n in radix r takes up about log_r(n) |
| digits, we estimate the output size by taking the least integer |
| greater than log_r(n), where: |
| |
| log_r(n) = log_2(n) * log_r(2) |
| |
| This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
| which are the output bases supported. |
| */ |
| #include "logtab.h" |
| #endif |
| |
| /* {{{ Constant strings */ |
| |
| /* Constant strings returned by mp_strerror() */ |
| static const char *mp_err_string[] = { |
| "unknown result code", /* say what? */ |
| "boolean true", /* MP_OKAY, MP_YES */ |
| "boolean false", /* MP_NO */ |
| "out of memory", /* MP_MEM */ |
| "argument out of range", /* MP_RANGE */ |
| "invalid input parameter", /* MP_BADARG */ |
| "result is undefined" /* MP_UNDEF */ |
| }; |
| |
| /* Value to digit maps for radix conversion */ |
| |
| /* s_dmap_1 - standard digits and letters */ |
| static const char *s_dmap_1 = |
| "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
| |
| /* }}} */ |
| |
| unsigned long mp_allocs; |
| unsigned long mp_frees; |
| unsigned long mp_copies; |
| |
| /* {{{ Default precision manipulation */ |
| |
| /* Default precision for newly created mp_int's */ |
| static mp_size s_mp_defprec = MP_DEFPREC; |
| |
| mp_size mp_get_prec(void) |
| { |
| return s_mp_defprec; |
| |
| } /* end mp_get_prec() */ |
| |
| void mp_set_prec(mp_size prec) |
| { |
| if(prec == 0) |
| s_mp_defprec = MP_DEFPREC; |
| else |
| s_mp_defprec = prec; |
| |
| } /* end mp_set_prec() */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ mp_init(mp, kmflag) */ |
| |
| /* |
| mp_init(mp, kmflag) |
| |
| Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
| MP_MEM if memory could not be allocated for the structure. |
| */ |
| |
| mp_err mp_init(mp_int *mp, int kmflag) |
| { |
| return mp_init_size(mp, s_mp_defprec, kmflag); |
| |
| } /* end mp_init() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_init_size(mp, prec, kmflag) */ |
| |
| /* |
| mp_init_size(mp, prec, kmflag) |
| |
| Initialize a new zero-valued mp_int with at least the given |
| precision; returns MP_OKAY if successful, or MP_MEM if memory could |
| not be allocated for the structure. |
| */ |
| |
| mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag) |
| { |
| ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
| |
| prec = MP_ROUNDUP(prec, s_mp_defprec); |
| if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit), kmflag)) == NULL) |
| return MP_MEM; |
| |
| SIGN(mp) = ZPOS; |
| USED(mp) = 1; |
| ALLOC(mp) = prec; |
| |
| return MP_OKAY; |
| |
| } /* end mp_init_size() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_init_copy(mp, from) */ |
| |
| /* |
| mp_init_copy(mp, from) |
| |
| Initialize mp as an exact copy of from. Returns MP_OKAY if |
| successful, MP_MEM if memory could not be allocated for the new |
| structure. |
| */ |
| |
| mp_err mp_init_copy(mp_int *mp, const mp_int *from) |
| { |
| ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
| |
| if(mp == from) |
| return MP_OKAY; |
| |
| if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
| return MP_MEM; |
| |
| s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
| USED(mp) = USED(from); |
| ALLOC(mp) = ALLOC(from); |
| SIGN(mp) = SIGN(from); |
| |
| #ifndef _WIN32 |
| FLAG(mp) = FLAG(from); |
| #endif /* _WIN32 */ |
| |
| return MP_OKAY; |
| |
| } /* end mp_init_copy() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_copy(from, to) */ |
| |
| /* |
| mp_copy(from, to) |
| |
| Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
| 'to' has already been initialized (if not, use mp_init_copy() |
| instead). If 'from' and 'to' are identical, nothing happens. |
| */ |
| |
| mp_err mp_copy(const mp_int *from, mp_int *to) |
| { |
| ARGCHK(from != NULL && to != NULL, MP_BADARG); |
| |
| if(from == to) |
| return MP_OKAY; |
| |
| ++mp_copies; |
| { /* copy */ |
| mp_digit *tmp; |
| |
| /* |
| If the allocated buffer in 'to' already has enough space to hold |
| all the used digits of 'from', we'll re-use it to avoid hitting |
| the memory allocater more than necessary; otherwise, we'd have |
| to grow anyway, so we just allocate a hunk and make the copy as |
| usual |
| */ |
| if(ALLOC(to) >= USED(from)) { |
| s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
| s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
| |
| } else { |
| if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
| return MP_MEM; |
| |
| s_mp_copy(DIGITS(from), tmp, USED(from)); |
| |
| if(DIGITS(to) != NULL) { |
| #if MP_CRYPTO |
| s_mp_setz(DIGITS(to), ALLOC(to)); |
| #endif |
| s_mp_free(DIGITS(to), ALLOC(to)); |
| } |
| |
| DIGITS(to) = tmp; |
| ALLOC(to) = ALLOC(from); |
| } |
| |
| /* Copy the precision and sign from the original */ |
| USED(to) = USED(from); |
| SIGN(to) = SIGN(from); |
| } /* end copy */ |
| |
| return MP_OKAY; |
| |
| } /* end mp_copy() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_exch(mp1, mp2) */ |
| |
| /* |
| mp_exch(mp1, mp2) |
| |
| Exchange mp1 and mp2 without allocating any intermediate memory |
| (well, unless you count the stack space needed for this call and the |
| locals it creates...). This cannot fail. |
| */ |
| |
| void mp_exch(mp_int *mp1, mp_int *mp2) |
| { |
| #if MP_ARGCHK == 2 |
| assert(mp1 != NULL && mp2 != NULL); |
| #else |
| if(mp1 == NULL || mp2 == NULL) |
| return; |
| #endif |
| |
| s_mp_exch(mp1, mp2); |
| |
| } /* end mp_exch() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_clear(mp) */ |
| |
| /* |
| mp_clear(mp) |
| |
| Release the storage used by an mp_int, and void its fields so that |
| if someone calls mp_clear() again for the same int later, we won't |
| get tollchocked. |
| */ |
| |
| void mp_clear(mp_int *mp) |
| { |
| if(mp == NULL) |
| return; |
| |
| if(DIGITS(mp) != NULL) { |
| #if MP_CRYPTO |
| s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| #endif |
| s_mp_free(DIGITS(mp), ALLOC(mp)); |
| DIGITS(mp) = NULL; |
| } |
| |
| USED(mp) = 0; |
| ALLOC(mp) = 0; |
| |
| } /* end mp_clear() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_zero(mp) */ |
| |
| /* |
| mp_zero(mp) |
| |
| Set mp to zero. Does not change the allocated size of the structure, |
| and therefore cannot fail (except on a bad argument, which we ignore) |
| */ |
| void mp_zero(mp_int *mp) |
| { |
| if(mp == NULL) |
| return; |
| |
| s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| USED(mp) = 1; |
| SIGN(mp) = ZPOS; |
| |
| } /* end mp_zero() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_set(mp, d) */ |
| |
| void mp_set(mp_int *mp, mp_digit d) |
| { |
| if(mp == NULL) |
| return; |
| |
| mp_zero(mp); |
| DIGIT(mp, 0) = d; |
| |
| } /* end mp_set() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_set_int(mp, z) */ |
| |
| mp_err mp_set_int(mp_int *mp, long z) |
| { |
| int ix; |
| unsigned long v = labs(z); |
| mp_err res; |
| |
| ARGCHK(mp != NULL, MP_BADARG); |
| |
| mp_zero(mp); |
| if(z == 0) |
| return MP_OKAY; /* shortcut for zero */ |
| |
| if (sizeof v <= sizeof(mp_digit)) { |
| DIGIT(mp,0) = v; |
| } else { |
| for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
| if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
| return res; |
| |
| res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
| if (res != MP_OKAY) |
| return res; |
| } |
| } |
| if(z < 0) |
| SIGN(mp) = NEG; |
| |
| return MP_OKAY; |
| |
| } /* end mp_set_int() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_set_ulong(mp, z) */ |
| |
| mp_err mp_set_ulong(mp_int *mp, unsigned long z) |
| { |
| int ix; |
| mp_err res; |
| |
| ARGCHK(mp != NULL, MP_BADARG); |
| |
| mp_zero(mp); |
| if(z == 0) |
| return MP_OKAY; /* shortcut for zero */ |
| |
| if (sizeof z <= sizeof(mp_digit)) { |
| DIGIT(mp,0) = z; |
| } else { |
| for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
| if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
| return res; |
| |
| res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
| if (res != MP_OKAY) |
| return res; |
| } |
| } |
| return MP_OKAY; |
| } /* end mp_set_ulong() */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ Digit arithmetic */ |
| |
| /* {{{ mp_add_d(a, d, b) */ |
| |
| /* |
| mp_add_d(a, d, b) |
| |
| Compute the sum b = a + d, for a single digit d. Respects the sign of |
| its primary addend (single digits are unsigned anyway). |
| */ |
| |
| mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) |
| { |
| mp_int tmp; |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| return res; |
| |
| if(SIGN(&tmp) == ZPOS) { |
| if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
| goto CLEANUP; |
| } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
| if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
| goto CLEANUP; |
| } else { |
| mp_neg(&tmp, &tmp); |
| |
| DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
| } |
| |
| if(s_mp_cmp_d(&tmp, 0) == 0) |
| SIGN(&tmp) = ZPOS; |
| |
| s_mp_exch(&tmp, b); |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| |
| } /* end mp_add_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_sub_d(a, d, b) */ |
| |
| /* |
| mp_sub_d(a, d, b) |
| |
| Compute the difference b = a - d, for a single digit d. Respects the |
| sign of its subtrahend (single digits are unsigned anyway). |
| */ |
| |
| mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) |
| { |
| mp_int tmp; |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| return res; |
| |
| if(SIGN(&tmp) == NEG) { |
| if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
| goto CLEANUP; |
| } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
| if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
| goto CLEANUP; |
| } else { |
| mp_neg(&tmp, &tmp); |
| |
| DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
| SIGN(&tmp) = NEG; |
| } |
| |
| if(s_mp_cmp_d(&tmp, 0) == 0) |
| SIGN(&tmp) = ZPOS; |
| |
| s_mp_exch(&tmp, b); |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| |
| } /* end mp_sub_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_mul_d(a, d, b) */ |
| |
| /* |
| mp_mul_d(a, d, b) |
| |
| Compute the product b = a * d, for a single digit d. Respects the sign |
| of its multiplicand (single digits are unsigned anyway) |
| */ |
| |
| mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| if(d == 0) { |
| mp_zero(b); |
| return MP_OKAY; |
| } |
| |
| if((res = mp_copy(a, b)) != MP_OKAY) |
| return res; |
| |
| res = s_mp_mul_d(b, d); |
| |
| return res; |
| |
| } /* end mp_mul_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_mul_2(a, c) */ |
| |
| mp_err mp_mul_2(const mp_int *a, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_copy(a, c)) != MP_OKAY) |
| return res; |
| |
| return s_mp_mul_2(c); |
| |
| } /* end mp_mul_2() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_div_d(a, d, q, r) */ |
| |
| /* |
| mp_div_d(a, d, q, r) |
| |
| Compute the quotient q = a / d and remainder r = a mod d, for a |
| single digit d. Respects the sign of its divisor (single digits are |
| unsigned anyway). |
| */ |
| |
| mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
| { |
| mp_err res; |
| mp_int qp; |
| mp_digit rem; |
| int pow; |
| |
| ARGCHK(a != NULL, MP_BADARG); |
| |
| if(d == 0) |
| return MP_RANGE; |
| |
| /* Shortcut for powers of two ... */ |
| if((pow = s_mp_ispow2d(d)) >= 0) { |
| mp_digit mask; |
| |
| mask = ((mp_digit)1 << pow) - 1; |
| rem = DIGIT(a, 0) & mask; |
| |
| if(q) { |
| mp_copy(a, q); |
| s_mp_div_2d(q, pow); |
| } |
| |
| if(r) |
| *r = rem; |
| |
| return MP_OKAY; |
| } |
| |
| if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
| return res; |
| |
| res = s_mp_div_d(&qp, d, &rem); |
| |
| if(s_mp_cmp_d(&qp, 0) == 0) |
| SIGN(q) = ZPOS; |
| |
| if(r) |
| *r = rem; |
| |
| if(q) |
| s_mp_exch(&qp, q); |
| |
| mp_clear(&qp); |
| return res; |
| |
| } /* end mp_div_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_div_2(a, c) */ |
| |
| /* |
| mp_div_2(a, c) |
| |
| Compute c = a / 2, disregarding the remainder. |
| */ |
| |
| mp_err mp_div_2(const mp_int *a, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_copy(a, c)) != MP_OKAY) |
| return res; |
| |
| s_mp_div_2(c); |
| |
| return MP_OKAY; |
| |
| } /* end mp_div_2() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_expt_d(a, d, b) */ |
| |
| mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) |
| { |
| mp_int s, x; |
| mp_err res; |
| |
| ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| return res; |
| if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| goto X; |
| |
| DIGIT(&s, 0) = 1; |
| |
| while(d != 0) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d /= 2; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| s.flag = (mp_sign)0; |
| s_mp_exch(&s, c); |
| |
| CLEANUP: |
| mp_clear(&x); |
| X: |
| mp_clear(&s); |
| |
| return res; |
| |
| } /* end mp_expt_d() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ Full arithmetic */ |
| |
| /* {{{ mp_abs(a, b) */ |
| |
| /* |
| mp_abs(a, b) |
| |
| Compute b = |a|. 'a' and 'b' may be identical. |
| */ |
| |
| mp_err mp_abs(const mp_int *a, mp_int *b) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| if((res = mp_copy(a, b)) != MP_OKAY) |
| return res; |
| |
| SIGN(b) = ZPOS; |
| |
| return MP_OKAY; |
| |
| } /* end mp_abs() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_neg(a, b) */ |
| |
| /* |
| mp_neg(a, b) |
| |
| Compute b = -a. 'a' and 'b' may be identical. |
| */ |
| |
| mp_err mp_neg(const mp_int *a, mp_int *b) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| if((res = mp_copy(a, b)) != MP_OKAY) |
| return res; |
| |
| if(s_mp_cmp_d(b, 0) == MP_EQ) |
| SIGN(b) = ZPOS; |
| else |
| SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; |
| |
| return MP_OKAY; |
| |
| } /* end mp_neg() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_add(a, b, c) */ |
| |
| /* |
| mp_add(a, b, c) |
| |
| Compute c = a + b. All parameters may be identical. |
| */ |
| |
| mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
| MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
| } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ |
| MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
| } else { /* different sign: |a| < |b| */ |
| MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
| } |
| |
| if (s_mp_cmp_d(c, 0) == MP_EQ) |
| SIGN(c) = ZPOS; |
| |
| CLEANUP: |
| return res; |
| |
| } /* end mp_add() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_sub(a, b, c) */ |
| |
| /* |
| mp_sub(a, b, c) |
| |
| Compute c = a - b. All parameters may be identical. |
| */ |
| |
| mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) |
| { |
| mp_err res; |
| int magDiff; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if (a == b) { |
| mp_zero(c); |
| return MP_OKAY; |
| } |
| |
| if (MP_SIGN(a) != MP_SIGN(b)) { |
| MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
| } else if (!(magDiff = s_mp_cmp(a, b))) { |
| mp_zero(c); |
| res = MP_OKAY; |
| } else if (magDiff > 0) { |
| MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
| } else { |
| MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
| MP_SIGN(c) = !MP_SIGN(a); |
| } |
| |
| if (s_mp_cmp_d(c, 0) == MP_EQ) |
| MP_SIGN(c) = MP_ZPOS; |
| |
| CLEANUP: |
| return res; |
| |
| } /* end mp_sub() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_mul(a, b, c) */ |
| |
| /* |
| mp_mul(a, b, c) |
| |
| Compute c = a * b. All parameters may be identical. |
| */ |
| mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) |
| { |
| mp_digit *pb; |
| mp_int tmp; |
| mp_err res; |
| mp_size ib; |
| mp_size useda, usedb; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if (a == c) { |
| if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| return res; |
| if (a == b) |
| b = &tmp; |
| a = &tmp; |
| } else if (b == c) { |
| if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
| return res; |
| b = &tmp; |
| } else { |
| MP_DIGITS(&tmp) = 0; |
| } |
| |
| if (MP_USED(a) < MP_USED(b)) { |
| const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
| b = a; |
| a = xch; |
| } |
| |
| MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
| if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) |
| goto CLEANUP; |
| |
| #ifdef NSS_USE_COMBA |
| if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { |
| if (MP_USED(a) == 4) { |
| s_mp_mul_comba_4(a, b, c); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 8) { |
| s_mp_mul_comba_8(a, b, c); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 16) { |
| s_mp_mul_comba_16(a, b, c); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 32) { |
| s_mp_mul_comba_32(a, b, c); |
| goto CLEANUP; |
| } |
| } |
| #endif |
| |
| pb = MP_DIGITS(b); |
| s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
| |
| /* Outer loop: Digits of b */ |
| useda = MP_USED(a); |
| usedb = MP_USED(b); |
| for (ib = 1; ib < usedb; ib++) { |
| mp_digit b_i = *pb++; |
| |
| /* Inner product: Digits of a */ |
| if (b_i) |
| s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
| else |
| MP_DIGIT(c, ib + useda) = b_i; |
| } |
| |
| s_mp_clamp(c); |
| |
| if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) |
| SIGN(c) = ZPOS; |
| else |
| SIGN(c) = NEG; |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| } /* end mp_mul() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_sqr(a, sqr) */ |
| |
| #if MP_SQUARE |
| /* |
| Computes the square of a. This can be done more |
| efficiently than a general multiplication, because many of the |
| computation steps are redundant when squaring. The inner product |
| step is a bit more complicated, but we save a fair number of |
| iterations of the multiplication loop. |
| */ |
| |
| /* sqr = a^2; Caller provides both a and tmp; */ |
| mp_err mp_sqr(const mp_int *a, mp_int *sqr) |
| { |
| mp_digit *pa; |
| mp_digit d; |
| mp_err res; |
| mp_size ix; |
| mp_int tmp; |
| int count; |
| |
| ARGCHK(a != NULL && sqr != NULL, MP_BADARG); |
| |
| if (a == sqr) { |
| if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| return res; |
| a = &tmp; |
| } else { |
| DIGITS(&tmp) = 0; |
| res = MP_OKAY; |
| } |
| |
| ix = 2 * MP_USED(a); |
| if (ix > MP_ALLOC(sqr)) { |
| MP_USED(sqr) = 1; |
| MP_CHECKOK( s_mp_grow(sqr, ix) ); |
| } |
| MP_USED(sqr) = ix; |
| MP_DIGIT(sqr, 0) = 0; |
| |
| #ifdef NSS_USE_COMBA |
| if (IS_POWER_OF_2(MP_USED(a))) { |
| if (MP_USED(a) == 4) { |
| s_mp_sqr_comba_4(a, sqr); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 8) { |
| s_mp_sqr_comba_8(a, sqr); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 16) { |
| s_mp_sqr_comba_16(a, sqr); |
| goto CLEANUP; |
| } |
| if (MP_USED(a) == 32) { |
| s_mp_sqr_comba_32(a, sqr); |
| goto CLEANUP; |
| } |
| } |
| #endif |
| |
| pa = MP_DIGITS(a); |
| count = MP_USED(a) - 1; |
| if (count > 0) { |
| d = *pa++; |
| s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); |
| for (ix = 3; --count > 0; ix += 2) { |
| d = *pa++; |
| s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); |
| } /* for(ix ...) */ |
| MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ |
| |
| /* now sqr *= 2 */ |
| s_mp_mul_2(sqr); |
| } else { |
| MP_DIGIT(sqr, 1) = 0; |
| } |
| |
| /* now add the squares of the digits of a to sqr. */ |
| s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); |
| |
| SIGN(sqr) = ZPOS; |
| s_mp_clamp(sqr); |
| |
| CLEANUP: |
| mp_clear(&tmp); |
| return res; |
| |
| } /* end mp_sqr() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ mp_div(a, b, q, r) */ |
| |
| /* |
| mp_div(a, b, q, r) |
| |
| Compute q = a / b and r = a mod b. Input parameters may be re-used |
| as output parameters. If q or r is NULL, that portion of the |
| computation will be discarded (although it will still be computed) |
| */ |
| mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) |
| { |
| mp_err res; |
| mp_int *pQ, *pR; |
| mp_int qtmp, rtmp, btmp; |
| int cmp; |
| mp_sign signA; |
| mp_sign signB; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| signA = MP_SIGN(a); |
| signB = MP_SIGN(b); |
| |
| if(mp_cmp_z(b) == MP_EQ) |
| return MP_RANGE; |
| |
| DIGITS(&qtmp) = 0; |
| DIGITS(&rtmp) = 0; |
| DIGITS(&btmp) = 0; |
| |
| /* Set up some temporaries... */ |
| if (!r || r == a || r == b) { |
| MP_CHECKOK( mp_init_copy(&rtmp, a) ); |
| pR = &rtmp; |
| } else { |
| MP_CHECKOK( mp_copy(a, r) ); |
| pR = r; |
| } |
| |
| if (!q || q == a || q == b) { |
| MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a), FLAG(a)) ); |
| pQ = &qtmp; |
| } else { |
| MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); |
| pQ = q; |
| mp_zero(pQ); |
| } |
| |
| /* |
| If |a| <= |b|, we can compute the solution without division; |
| otherwise, we actually do the work required. |
| */ |
| if ((cmp = s_mp_cmp(a, b)) <= 0) { |
| if (cmp) { |
| /* r was set to a above. */ |
| mp_zero(pQ); |
| } else { |
| mp_set(pQ, 1); |
| mp_zero(pR); |
| } |
| } else { |
| MP_CHECKOK( mp_init_copy(&btmp, b) ); |
| MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); |
| } |
| |
| /* Compute the signs for the output */ |
| MP_SIGN(pR) = signA; /* Sr = Sa */ |
| /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ |
| MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; |
| |
| if(s_mp_cmp_d(pQ, 0) == MP_EQ) |
| SIGN(pQ) = ZPOS; |
| if(s_mp_cmp_d(pR, 0) == MP_EQ) |
| SIGN(pR) = ZPOS; |
| |
| /* Copy output, if it is needed */ |
| if(q && q != pQ) |
| s_mp_exch(pQ, q); |
| |
| if(r && r != pR) |
| s_mp_exch(pR, r); |
| |
| CLEANUP: |
| mp_clear(&btmp); |
| mp_clear(&rtmp); |
| mp_clear(&qtmp); |
| |
| return res; |
| |
| } /* end mp_div() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_div_2d(a, d, q, r) */ |
| |
| mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL, MP_BADARG); |
| |
| if(q) { |
| if((res = mp_copy(a, q)) != MP_OKAY) |
| return res; |
| } |
| if(r) { |
| if((res = mp_copy(a, r)) != MP_OKAY) |
| return res; |
| } |
| if(q) { |
| s_mp_div_2d(q, d); |
| } |
| if(r) { |
| s_mp_mod_2d(r, d); |
| } |
| |
| return MP_OKAY; |
| |
| } /* end mp_div_2d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_expt(a, b, c) */ |
| |
| /* |
| mp_expt(a, b, c) |
| |
| Compute c = a ** b, that is, raise a to the b power. Uses a |
| standard iterative square-and-multiply technique. |
| */ |
| |
| mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
| { |
| mp_int s, x; |
| mp_err res; |
| mp_digit d; |
| unsigned int dig, bit; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if(mp_cmp_z(b) < 0) |
| return MP_RANGE; |
| |
| if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| return res; |
| |
| mp_set(&s, 1); |
| |
| if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| goto X; |
| |
| /* Loop over low-order digits in ascending order */ |
| for(dig = 0; dig < (USED(b) - 1); dig++) { |
| d = DIGIT(b, dig); |
| |
| /* Loop over bits of each non-maximal digit */ |
| for(bit = 0; bit < DIGIT_BIT; bit++) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d >>= 1; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| } |
| |
| /* Consider now the last digit... */ |
| d = DIGIT(b, dig); |
| |
| while(d) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d >>= 1; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| if(mp_iseven(b)) |
| SIGN(&s) = SIGN(a); |
| |
| res = mp_copy(&s, c); |
| |
| CLEANUP: |
| mp_clear(&x); |
| X: |
| mp_clear(&s); |
| |
| return res; |
| |
| } /* end mp_expt() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_2expt(a, k) */ |
| |
| /* Compute a = 2^k */ |
| |
| mp_err mp_2expt(mp_int *a, mp_digit k) |
| { |
| ARGCHK(a != NULL, MP_BADARG); |
| |
| return s_mp_2expt(a, k); |
| |
| } /* end mp_2expt() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_mod(a, m, c) */ |
| |
| /* |
| mp_mod(a, m, c) |
| |
| Compute c = a (mod m). Result will always be 0 <= c < m. |
| */ |
| |
| mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| int mag; |
| |
| ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
| |
| if(SIGN(m) == NEG) |
| return MP_RANGE; |
| |
| /* |
| If |a| > m, we need to divide to get the remainder and take the |
| absolute value. |
| |
| If |a| < m, we don't need to do any division, just copy and adjust |
| the sign (if a is negative). |
| |
| If |a| == m, we can simply set the result to zero. |
| |
| This order is intended to minimize the average path length of the |
| comparison chain on common workloads -- the most frequent cases are |
| that |a| != m, so we do those first. |
| */ |
| if((mag = s_mp_cmp(a, m)) > 0) { |
| if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
| return res; |
| |
| if(SIGN(c) == NEG) { |
| if((res = mp_add(c, m, c)) != MP_OKAY) |
| return res; |
| } |
| |
| } else if(mag < 0) { |
| if((res = mp_copy(a, c)) != MP_OKAY) |
| return res; |
| |
| if(mp_cmp_z(a) < 0) { |
| if((res = mp_add(c, m, c)) != MP_OKAY) |
| return res; |
| |
| } |
| |
| } else { |
| mp_zero(c); |
| |
| } |
| |
| return MP_OKAY; |
| |
| } /* end mp_mod() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_mod_d(a, d, c) */ |
| |
| /* |
| mp_mod_d(a, d, c) |
| |
| Compute c = a (mod d). Result will always be 0 <= c < d |
| */ |
| mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) |
| { |
| mp_err res; |
| mp_digit rem; |
| |
| ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| |
| if(s_mp_cmp_d(a, d) > 0) { |
| if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
| return res; |
| |
| } else { |
| if(SIGN(a) == NEG) |
| rem = d - DIGIT(a, 0); |
| else |
| rem = DIGIT(a, 0); |
| } |
| |
| if(c) |
| *c = rem; |
| |
| return MP_OKAY; |
| |
| } /* end mp_mod_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_sqrt(a, b) */ |
| |
| /* |
| mp_sqrt(a, b) |
| |
| Compute the integer square root of a, and store the result in b. |
| Uses an integer-arithmetic version of Newton's iterative linear |
| approximation technique to determine this value; the result has the |
| following two properties: |
| |
| b^2 <= a |
| (b+1)^2 >= a |
| |
| It is a range error to pass a negative value. |
| */ |
| mp_err mp_sqrt(const mp_int *a, mp_int *b) |
| { |
| mp_int x, t; |
| mp_err res; |
| mp_size used; |
| |
| ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| |
| /* Cannot take square root of a negative value */ |
| if(SIGN(a) == NEG) |
| return MP_RANGE; |
| |
| /* Special cases for zero and one, trivial */ |
| if(mp_cmp_d(a, 1) <= 0) |
| return mp_copy(a, b); |
| |
| /* Initialize the temporaries we'll use below */ |
| if((res = mp_init_size(&t, USED(a), FLAG(a))) != MP_OKAY) |
| return res; |
| |
| /* Compute an initial guess for the iteration as a itself */ |
| if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| goto X; |
| |
| used = MP_USED(&x); |
| if (used > 1) { |
| s_mp_rshd(&x, used / 2); |
| } |
| |
| for(;;) { |
| /* t = (x * x) - a */ |
| mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
| if((res = mp_sqr(&t, &t)) != MP_OKAY || |
| (res = mp_sub(&t, a, &t)) != MP_OKAY) |
| goto CLEANUP; |
| |
| /* t = t / 2x */ |
| s_mp_mul_2(&x); |
| if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
| goto CLEANUP; |
| s_mp_div_2(&x); |
| |
| /* Terminate the loop, if the quotient is zero */ |
| if(mp_cmp_z(&t) == MP_EQ) |
| break; |
| |
| /* x = x - t */ |
| if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
| goto CLEANUP; |
| |
| } |
| |
| /* Copy result to output parameter */ |
| mp_sub_d(&x, 1, &x); |
| s_mp_exch(&x, b); |
| |
| CLEANUP: |
| mp_clear(&x); |
| X: |
| mp_clear(&t); |
| |
| return res; |
| |
| } /* end mp_sqrt() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ Modular arithmetic */ |
| |
| #if MP_MODARITH |
| /* {{{ mp_addmod(a, b, m, c) */ |
| |
| /* |
| mp_addmod(a, b, m, c) |
| |
| Compute c = (a + b) mod m |
| */ |
| |
| mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_add(a, b, c)) != MP_OKAY) |
| return res; |
| if((res = mp_mod(c, m, c)) != MP_OKAY) |
| return res; |
| |
| return MP_OKAY; |
| |
| } |
| |
| /* }}} */ |
| |
| /* {{{ mp_submod(a, b, m, c) */ |
| |
| /* |
| mp_submod(a, b, m, c) |
| |
| Compute c = (a - b) mod m |
| */ |
| |
| mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_sub(a, b, c)) != MP_OKAY) |
| return res; |
| if((res = mp_mod(c, m, c)) != MP_OKAY) |
| return res; |
| |
| return MP_OKAY; |
| |
| } |
| |
| /* }}} */ |
| |
| /* {{{ mp_mulmod(a, b, m, c) */ |
| |
| /* |
| mp_mulmod(a, b, m, c) |
| |
| Compute c = (a * b) mod m |
| */ |
| |
| mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_mul(a, b, c)) != MP_OKAY) |
| return res; |
| if((res = mp_mod(c, m, c)) != MP_OKAY) |
| return res; |
| |
| return MP_OKAY; |
| |
| } |
| |
| /* }}} */ |
| |
| /* {{{ mp_sqrmod(a, m, c) */ |
| |
| #if MP_SQUARE |
| mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| |
| ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_sqr(a, c)) != MP_OKAY) |
| return res; |
| if((res = mp_mod(c, m, c)) != MP_OKAY) |
| return res; |
| |
| return MP_OKAY; |
| |
| } /* end mp_sqrmod() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_exptmod(a, b, m, c) */ |
| |
| /* |
| s_mp_exptmod(a, b, m, c) |
| |
| Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
| method with modular reductions at each step. (This is basically the |
| same code as mp_expt(), except for the addition of the reductions) |
| |
| The modular reductions are done using Barrett's algorithm (see |
| s_mp_reduce() below for details) |
| */ |
| |
| mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| { |
| mp_int s, x, mu; |
| mp_err res; |
| mp_digit d; |
| unsigned int dig, bit; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
| return MP_RANGE; |
| |
| if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| return res; |
| if((res = mp_init_copy(&x, a)) != MP_OKAY || |
| (res = mp_mod(&x, m, &x)) != MP_OKAY) |
| goto X; |
| if((res = mp_init(&mu, FLAG(a))) != MP_OKAY) |
| goto MU; |
| |
| mp_set(&s, 1); |
| |
| /* mu = b^2k / m */ |
| s_mp_add_d(&mu, 1); |
| s_mp_lshd(&mu, 2 * USED(m)); |
| if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
| goto CLEANUP; |
| |
| /* Loop over digits of b in ascending order, except highest order */ |
| for(dig = 0; dig < (USED(b) - 1); dig++) { |
| d = DIGIT(b, dig); |
| |
| /* Loop over the bits of the lower-order digits */ |
| for(bit = 0; bit < DIGIT_BIT; bit++) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| goto CLEANUP; |
| if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d >>= 1; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY) |
| goto CLEANUP; |
| if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| } |
| |
| /* Now do the last digit... */ |
| d = DIGIT(b, dig); |
| |
| while(d) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| goto CLEANUP; |
| if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d >>= 1; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY) |
| goto CLEANUP; |
| if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| s_mp_exch(&s, c); |
| |
| CLEANUP: |
| mp_clear(&mu); |
| MU: |
| mp_clear(&x); |
| X: |
| mp_clear(&s); |
| |
| return res; |
| |
| } /* end s_mp_exptmod() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_exptmod_d(a, d, m, c) */ |
| |
| mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) |
| { |
| mp_int s, x; |
| mp_err res; |
| |
| ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| |
| if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| return res; |
| if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| goto X; |
| |
| mp_set(&s, 1); |
| |
| while(d != 0) { |
| if(d & 1) { |
| if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
| (res = mp_mod(&s, m, &s)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| d /= 2; |
| |
| if((res = s_mp_sqr(&x)) != MP_OKAY || |
| (res = mp_mod(&x, m, &x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| s.flag = (mp_sign)0; |
| s_mp_exch(&s, c); |
| |
| CLEANUP: |
| mp_clear(&x); |
| X: |
| mp_clear(&s); |
| |
| return res; |
| |
| } /* end mp_exptmod_d() */ |
| |
| /* }}} */ |
| #endif /* if MP_MODARITH */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ Comparison functions */ |
| |
| /* {{{ mp_cmp_z(a) */ |
| |
| /* |
| mp_cmp_z(a) |
| |
| Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
| */ |
| |
| int mp_cmp_z(const mp_int *a) |
| { |
| if(SIGN(a) == NEG) |
| return MP_LT; |
| else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
| return MP_EQ; |
| else |
| return MP_GT; |
| |
| } /* end mp_cmp_z() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_cmp_d(a, d) */ |
| |
| /* |
| mp_cmp_d(a, d) |
| |
| Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
| */ |
| |
| int mp_cmp_d(const mp_int *a, mp_digit d) |
| { |
| ARGCHK(a != NULL, MP_EQ); |
| |
| if(SIGN(a) == NEG) |
| return MP_LT; |
| |
| return s_mp_cmp_d(a, d); |
| |
| } /* end mp_cmp_d() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_cmp(a, b) */ |
| |
| int mp_cmp(const mp_int *a, const mp_int *b) |
| { |
| ARGCHK(a != NULL && b != NULL, MP_EQ); |
| |
| if(SIGN(a) == SIGN(b)) { |
| int mag; |
| |
| if((mag = s_mp_cmp(a, b)) == MP_EQ) |
| return MP_EQ; |
| |
| if(SIGN(a) == ZPOS) |
| return mag; |
| else |
| return -mag; |
| |
| } else if(SIGN(a) == ZPOS) { |
| return MP_GT; |
| } else { |
| return MP_LT; |
| } |
| |
| } /* end mp_cmp() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_cmp_mag(a, b) */ |
| |
| /* |
| mp_cmp_mag(a, b) |
| |
| Compares |a| <=> |b|, and returns an appropriate comparison result |
| */ |
| |
| int mp_cmp_mag(mp_int *a, mp_int *b) |
| { |
| ARGCHK(a != NULL && b != NULL, MP_EQ); |
| |
| return s_mp_cmp(a, b); |
| |
| } /* end mp_cmp_mag() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_cmp_int(a, z, kmflag) */ |
| |
| /* |
| This just converts z to an mp_int, and uses the existing comparison |
| routines. This is sort of inefficient, but it's not clear to me how |
| frequently this wil get used anyway. For small positive constants, |
| you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
| */ |
| int mp_cmp_int(const mp_int *a, long z, int kmflag) |
| { |
| mp_int tmp; |
| int out; |
| |
| ARGCHK(a != NULL, MP_EQ); |
| |
| mp_init(&tmp, kmflag); mp_set_int(&tmp, z); |
| out = mp_cmp(a, &tmp); |
| mp_clear(&tmp); |
| |
| return out; |
| |
| } /* end mp_cmp_int() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_isodd(a) */ |
| |
| /* |
| mp_isodd(a) |
| |
| Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
| */ |
| int mp_isodd(const mp_int *a) |
| { |
| ARGCHK(a != NULL, 0); |
| |
| return (int)(DIGIT(a, 0) & 1); |
| |
| } /* end mp_isodd() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_iseven(a) */ |
| |
| int mp_iseven(const mp_int *a) |
| { |
| return !mp_isodd(a); |
| |
| } /* end mp_iseven() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ Number theoretic functions */ |
| |
| #if MP_NUMTH |
| /* {{{ mp_gcd(a, b, c) */ |
| |
| /* |
| Like the old mp_gcd() function, except computes the GCD using the |
| binary algorithm due to Josef Stein in 1961 (via Knuth). |
| */ |
| mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
| { |
| mp_err res; |
| mp_int u, v, t; |
| mp_size k = 0; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
| return MP_RANGE; |
| if(mp_cmp_z(a) == MP_EQ) { |
| return mp_copy(b, c); |
| } else if(mp_cmp_z(b) == MP_EQ) { |
| return mp_copy(a, c); |
| } |
| |
| if((res = mp_init(&t, FLAG(a))) != MP_OKAY) |
| return res; |
| if((res = mp_init_copy(&u, a)) != MP_OKAY) |
| goto U; |
| if((res = mp_init_copy(&v, b)) != MP_OKAY) |
| goto V; |
| |
| SIGN(&u) = ZPOS; |
| SIGN(&v) = ZPOS; |
| |
| /* Divide out common factors of 2 until at least 1 of a, b is even */ |
| while(mp_iseven(&u) && mp_iseven(&v)) { |
| s_mp_div_2(&u); |
| s_mp_div_2(&v); |
| ++k; |
| } |
| |
| /* Initialize t */ |
| if(mp_isodd(&u)) { |
| if((res = mp_copy(&v, &t)) != MP_OKAY) |
| goto CLEANUP; |
| |
| /* t = -v */ |
| if(SIGN(&v) == ZPOS) |
| SIGN(&t) = NEG; |
| else |
| SIGN(&t) = ZPOS; |
| |
| } else { |
| if((res = mp_copy(&u, &t)) != MP_OKAY) |
| goto CLEANUP; |
| |
| } |
| |
| for(;;) { |
| while(mp_iseven(&t)) { |
| s_mp_div_2(&t); |
| } |
| |
| if(mp_cmp_z(&t) == MP_GT) { |
| if((res = mp_copy(&t, &u)) != MP_OKAY) |
| goto CLEANUP; |
| |
| } else { |
| if((res = mp_copy(&t, &v)) != MP_OKAY) |
| goto CLEANUP; |
| |
| /* v = -t */ |
| if(SIGN(&t) == ZPOS) |
| SIGN(&v) = NEG; |
| else |
| SIGN(&v) = ZPOS; |
| } |
| |
| if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
| goto CLEANUP; |
| |
| if(s_mp_cmp_d(&t, 0) == MP_EQ) |
| break; |
| } |
| |
| s_mp_2expt(&v, k); /* v = 2^k */ |
| res = mp_mul(&u, &v, c); /* c = u * v */ |
| |
| CLEANUP: |
| mp_clear(&v); |
| V: |
| mp_clear(&u); |
| U: |
| mp_clear(&t); |
| |
| return res; |
| |
| } /* end mp_gcd() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_lcm(a, b, c) */ |
| |
| /* We compute the least common multiple using the rule: |
| |
| ab = [a, b](a, b) |
| |
| ... by computing the product, and dividing out the gcd. |
| */ |
| |
| mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
| { |
| mp_int gcd, prod; |
| mp_err res; |
| |
| ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| |
| /* Set up temporaries */ |
| if((res = mp_init(&gcd, FLAG(a))) != MP_OKAY) |
| return res; |
| if((res = mp_init(&prod, FLAG(a))) != MP_OKAY) |
| goto GCD; |
| |
| if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
| goto CLEANUP; |
| if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
| goto CLEANUP; |
| |
| res = mp_div(&prod, &gcd, c, NULL); |
| |
| CLEANUP: |
| mp_clear(&prod); |
| GCD: |
| mp_clear(&gcd); |
| |
| return res; |
| |
| } /* end mp_lcm() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_xgcd(a, b, g, x, y) */ |
| |
| /* |
| mp_xgcd(a, b, g, x, y) |
| |
| Compute g = (a, b) and values x and y satisfying Bezout's identity |
| (that is, ax + by = g). This uses the binary extended GCD algorithm |
| based on the Stein algorithm used for mp_gcd() |
| See algorithm 14.61 in Handbook of Applied Cryptogrpahy. |
| */ |
| |
| mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
| { |
| mp_int gx, xc, yc, u, v, A, B, C, D; |
| mp_int *clean[9]; |
| mp_err res; |
| int last = -1; |
| |
| if(mp_cmp_z(b) == 0) |
| return MP_RANGE; |
| |
| /* Initialize all these variables we need */ |
| MP_CHECKOK( mp_init(&u, FLAG(a)) ); |
| clean[++last] = &u; |
| MP_CHECKOK( mp_init(&v, FLAG(a)) ); |
| clean[++last] = &v; |
| MP_CHECKOK( mp_init(&gx, FLAG(a)) ); |
| clean[++last] = &gx; |
| MP_CHECKOK( mp_init(&A, FLAG(a)) ); |
| clean[++last] = &A; |
| MP_CHECKOK( mp_init(&B, FLAG(a)) ); |
| clean[++last] = &B; |
| MP_CHECKOK( mp_init(&C, FLAG(a)) ); |
| clean[++last] = &C; |
| MP_CHECKOK( mp_init(&D, FLAG(a)) ); |
| clean[++last] = &D; |
| MP_CHECKOK( mp_init_copy(&xc, a) ); |
| clean[++last] = &xc; |
| mp_abs(&xc, &xc); |
| MP_CHECKOK( mp_init_copy(&yc, b) ); |
| clean[++last] = &yc; |
| mp_abs(&yc, &yc); |
| |
| mp_set(&gx, 1); |
| |
| /* Divide by two until at least one of them is odd */ |
| while(mp_iseven(&xc) && mp_iseven(&yc)) { |
| mp_size nx = mp_trailing_zeros(&xc); |
| mp_size ny = mp_trailing_zeros(&yc); |
| mp_size n = MP_MIN(nx, ny); |
| s_mp_div_2d(&xc,n); |
| s_mp_div_2d(&yc,n); |
| MP_CHECKOK( s_mp_mul_2d(&gx,n) ); |
| } |
| |
| mp_copy(&xc, &u); |
| mp_copy(&yc, &v); |
| mp_set(&A, 1); mp_set(&D, 1); |
| |
| /* Loop through binary GCD algorithm */ |
| do { |
| while(mp_iseven(&u)) { |
| s_mp_div_2(&u); |
| |
| if(mp_iseven(&A) && mp_iseven(&B)) { |
| s_mp_div_2(&A); s_mp_div_2(&B); |
| } else { |
| MP_CHECKOK( mp_add(&A, &yc, &A) ); |
| s_mp_div_2(&A); |
| MP_CHECKOK( mp_sub(&B, &xc, &B) ); |
| s_mp_div_2(&B); |
| } |
| } |
| |
| while(mp_iseven(&v)) { |
| s_mp_div_2(&v); |
| |
| if(mp_iseven(&C) && mp_iseven(&D)) { |
| s_mp_div_2(&C); s_mp_div_2(&D); |
| } else { |
| MP_CHECKOK( mp_add(&C, &yc, &C) ); |
| s_mp_div_2(&C); |
| MP_CHECKOK( mp_sub(&D, &xc, &D) ); |
| s_mp_div_2(&D); |
| } |
| } |
| |
| if(mp_cmp(&u, &v) >= 0) { |
| MP_CHECKOK( mp_sub(&u, &v, &u) ); |
| MP_CHECKOK( mp_sub(&A, &C, &A) ); |
| MP_CHECKOK( mp_sub(&B, &D, &B) ); |
| } else { |
| MP_CHECKOK( mp_sub(&v, &u, &v) ); |
| MP_CHECKOK( mp_sub(&C, &A, &C) ); |
| MP_CHECKOK( mp_sub(&D, &B, &D) ); |
| } |
| } while (mp_cmp_z(&u) != 0); |
| |
| /* copy results to output */ |
| if(x) |
| MP_CHECKOK( mp_copy(&C, x) ); |
| |
| if(y) |
| MP_CHECKOK( mp_copy(&D, y) ); |
| |
| if(g) |
| MP_CHECKOK( mp_mul(&gx, &v, g) ); |
| |
| CLEANUP: |
| while(last >= 0) |
| mp_clear(clean[last--]); |
| |
| return res; |
| |
| } /* end mp_xgcd() */ |
| |
| /* }}} */ |
| |
| mp_size mp_trailing_zeros(const mp_int *mp) |
| { |
| mp_digit d; |
| mp_size n = 0; |
| unsigned int ix; |
| |
| if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) |
| return n; |
| |
| for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) |
| n += MP_DIGIT_BIT; |
| if (!d) |
| return 0; /* shouldn't happen, but ... */ |
| #if !defined(MP_USE_UINT_DIGIT) |
| if (!(d & 0xffffffffU)) { |
| d >>= 32; |
| n += 32; |
| } |
| #endif |
| if (!(d & 0xffffU)) { |
| d >>= 16; |
| n += 16; |
| } |
| if (!(d & 0xffU)) { |
| d >>= 8; |
| n += 8; |
| } |
| if (!(d & 0xfU)) { |
| d >>= 4; |
| n += 4; |
| } |
| if (!(d & 0x3U)) { |
| d >>= 2; |
| n += 2; |
| } |
| if (!(d & 0x1U)) { |
| d >>= 1; |
| n += 1; |
| } |
| #if MP_ARGCHK == 2 |
| assert(0 != (d & 1)); |
| #endif |
| return n; |
| } |
| |
| /* Given a and prime p, computes c and k such that a*c == 2**k (mod p). |
| ** Returns k (positive) or error (negative). |
| ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| */ |
| mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) |
| { |
| mp_err res; |
| mp_err k = 0; |
| mp_int d, f, g; |
| |
| ARGCHK(a && p && c, MP_BADARG); |
| |
| MP_DIGITS(&d) = 0; |
| MP_DIGITS(&f) = 0; |
| MP_DIGITS(&g) = 0; |
| MP_CHECKOK( mp_init(&d, FLAG(a)) ); |
| MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ |
| MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ |
| |
| mp_set(c, 1); |
| mp_zero(&d); |
| |
| if (mp_cmp_z(&f) == 0) { |
| res = MP_UNDEF; |
| } else |
| for (;;) { |
| int diff_sign; |
| while (mp_iseven(&f)) { |
| mp_size n = mp_trailing_zeros(&f); |
| if (!n) { |
| res = MP_UNDEF; |
| goto CLEANUP; |
| } |
| s_mp_div_2d(&f, n); |
| MP_CHECKOK( s_mp_mul_2d(&d, n) ); |
| k += n; |
| } |
| if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ |
| res = k; |
| break; |
| } |
| diff_sign = mp_cmp(&f, &g); |
| if (diff_sign < 0) { /* f < g */ |
| s_mp_exch(&f, &g); |
| s_mp_exch(c, &d); |
| } else if (diff_sign == 0) { /* f == g */ |
| res = MP_UNDEF; /* a and p are not relatively prime */ |
| break; |
| } |
| if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { |
| MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ |
| MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ |
| } else { |
| MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ |
| MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ |
| } |
| } |
| if (res >= 0) { |
| if (s_mp_cmp(c, p) >= 0) { |
| MP_CHECKOK( mp_div(c, p, NULL, c)); |
| } |
| if (MP_SIGN(c) != MP_ZPOS) { |
| MP_CHECKOK( mp_add(c, p, c) ); |
| } |
| res = k; |
| } |
| |
| CLEANUP: |
| mp_clear(&d); |
| mp_clear(&f); |
| mp_clear(&g); |
| return res; |
| } |
| |
| /* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. |
| ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| */ |
| mp_digit s_mp_invmod_radix(mp_digit P) |
| { |
| mp_digit T = P; |
| T *= 2 - (P * T); |
| T *= 2 - (P * T); |
| T *= 2 - (P * T); |
| T *= 2 - (P * T); |
| #if !defined(MP_USE_UINT_DIGIT) |
| T *= 2 - (P * T); |
| T *= 2 - (P * T); |
| #endif |
| return T; |
| } |
| |
| /* Given c, k, and prime p, where a*c == 2**k (mod p), |
| ** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. |
| ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| */ |
| mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) |
| { |
| int k_orig = k; |
| mp_digit r; |
| mp_size ix; |
| mp_err res; |
| |
| if (mp_cmp_z(c) < 0) { /* c < 0 */ |
| MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ |
| } else { |
| MP_CHECKOK( mp_copy(c, x) ); /* x = c */ |
| } |
| |
| /* make sure x is large enough */ |
| ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; |
| ix = MP_MAX(ix, MP_USED(x)); |
| MP_CHECKOK( s_mp_pad(x, ix) ); |
| |
| r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); |
| |
| for (ix = 0; k > 0; ix++) { |
| int j = MP_MIN(k, MP_DIGIT_BIT); |
| mp_digit v = r * MP_DIGIT(x, ix); |
| if (j < MP_DIGIT_BIT) { |
| v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ |
| } |
| s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ |
| k -= j; |
| } |
| s_mp_clamp(x); |
| s_mp_div_2d(x, k_orig); |
| res = MP_OKAY; |
| |
| CLEANUP: |
| return res; |
| } |
| |
| /* compute mod inverse using Schroeppel's method, only if m is odd */ |
| mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| int k; |
| mp_err res; |
| mp_int x; |
| |
| ARGCHK(a && m && c, MP_BADARG); |
| |
| if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| return MP_RANGE; |
| if (mp_iseven(m)) |
| return MP_UNDEF; |
| |
| MP_DIGITS(&x) = 0; |
| |
| if (a == c) { |
| if ((res = mp_init_copy(&x, a)) != MP_OKAY) |
| return res; |
| if (a == m) |
| m = &x; |
| a = &x; |
| } else if (m == c) { |
| if ((res = mp_init_copy(&x, m)) != MP_OKAY) |
| return res; |
| m = &x; |
| } else { |
| MP_DIGITS(&x) = 0; |
| } |
| |
| MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); |
| k = res; |
| MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); |
| CLEANUP: |
| mp_clear(&x); |
| return res; |
| } |
| |
| /* Known good algorithm for computing modular inverse. But slow. */ |
| mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| mp_int g, x; |
| mp_err res; |
| |
| ARGCHK(a && m && c, MP_BADARG); |
| |
| if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| return MP_RANGE; |
| |
| MP_DIGITS(&g) = 0; |
| MP_DIGITS(&x) = 0; |
| MP_CHECKOK( mp_init(&x, FLAG(a)) ); |
| MP_CHECKOK( mp_init(&g, FLAG(a)) ); |
| |
| MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); |
| |
| if (mp_cmp_d(&g, 1) != MP_EQ) { |
| res = MP_UNDEF; |
| goto CLEANUP; |
| } |
| |
| res = mp_mod(&x, m, c); |
| SIGN(c) = SIGN(a); |
| |
| CLEANUP: |
| mp_clear(&x); |
| mp_clear(&g); |
| |
| return res; |
| } |
| |
| /* modular inverse where modulus is 2**k. */ |
| /* c = a**-1 mod 2**k */ |
| mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) |
| { |
| mp_err res; |
| mp_size ix = k + 4; |
| mp_int t0, t1, val, tmp, two2k; |
| |
| static const mp_digit d2 = 2; |
| static const mp_int two = { 0, MP_ZPOS, 1, 1, (mp_digit *)&d2 }; |
| |
| if (mp_iseven(a)) |
| return MP_UNDEF; |
| if (k <= MP_DIGIT_BIT) { |
| mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); |
| if (k < MP_DIGIT_BIT) |
| i &= ((mp_digit)1 << k) - (mp_digit)1; |
| mp_set(c, i); |
| return MP_OKAY; |
| } |
| MP_DIGITS(&t0) = 0; |
| MP_DIGITS(&t1) = 0; |
| MP_DIGITS(&val) = 0; |
| MP_DIGITS(&tmp) = 0; |
| MP_DIGITS(&two2k) = 0; |
| MP_CHECKOK( mp_init_copy(&val, a) ); |
| s_mp_mod_2d(&val, k); |
| MP_CHECKOK( mp_init_copy(&t0, &val) ); |
| MP_CHECKOK( mp_init_copy(&t1, &t0) ); |
| MP_CHECKOK( mp_init(&tmp, FLAG(a)) ); |
| MP_CHECKOK( mp_init(&two2k, FLAG(a)) ); |
| MP_CHECKOK( s_mp_2expt(&two2k, k) ); |
| do { |
| MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); |
| MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); |
| MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); |
| s_mp_mod_2d(&t1, k); |
| while (MP_SIGN(&t1) != MP_ZPOS) { |
| MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); |
| } |
| if (mp_cmp(&t1, &t0) == MP_EQ) |
| break; |
| MP_CHECKOK( mp_copy(&t1, &t0) ); |
| } while (--ix > 0); |
| if (!ix) { |
| res = MP_UNDEF; |
| } else { |
| mp_exch(c, &t1); |
| } |
| |
| CLEANUP: |
| mp_clear(&t0); |
| mp_clear(&t1); |
| mp_clear(&val); |
| mp_clear(&tmp); |
| mp_clear(&two2k); |
| return res; |
| } |
| |
| mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| mp_err res; |
| mp_size k; |
| mp_int oddFactor, evenFactor; /* factors of the modulus */ |
| mp_int oddPart, evenPart; /* parts to combine via CRT. */ |
| mp_int C2, tmp1, tmp2; |
| |
| /*static const mp_digit d1 = 1; */ |
| /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ |
| |
| if ((res = s_mp_ispow2(m)) >= 0) { |
| k = res; |
| return s_mp_invmod_2d(a, k, c); |
| } |
| MP_DIGITS(&oddFactor) = 0; |
| MP_DIGITS(&evenFactor) = 0; |
| MP_DIGITS(&oddPart) = 0; |
| MP_DIGITS(&evenPart) = 0; |
| MP_DIGITS(&C2) = 0; |
| MP_DIGITS(&tmp1) = 0; |
| MP_DIGITS(&tmp2) = 0; |
| |
| MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ |
| MP_CHECKOK( mp_init(&evenFactor, FLAG(m)) ); |
| MP_CHECKOK( mp_init(&oddPart, FLAG(m)) ); |
| MP_CHECKOK( mp_init(&evenPart, FLAG(m)) ); |
| MP_CHECKOK( mp_init(&C2, FLAG(m)) ); |
| MP_CHECKOK( mp_init(&tmp1, FLAG(m)) ); |
| MP_CHECKOK( mp_init(&tmp2, FLAG(m)) ); |
| |
| k = mp_trailing_zeros(m); |
| s_mp_div_2d(&oddFactor, k); |
| MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); |
| |
| /* compute a**-1 mod oddFactor. */ |
| MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); |
| /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ |
| MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); |
| |
| /* Use Chinese Remainer theorem to compute a**-1 mod m. */ |
| /* let m1 = oddFactor, v1 = oddPart, |
| * let m2 = evenFactor, v2 = evenPart. |
| */ |
| |
| /* Compute C2 = m1**-1 mod m2. */ |
| MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); |
| |
| /* compute u = (v2 - v1)*C2 mod m2 */ |
| MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); |
| MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); |
| s_mp_mod_2d(&tmp2, k); |
| while (MP_SIGN(&tmp2) != MP_ZPOS) { |
| MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); |
| } |
| |
| /* compute answer = v1 + u*m1 */ |
| MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); |
| MP_CHECKOK( mp_add(&oddPart, c, c) ); |
| /* not sure this is necessary, but it's low cost if not. */ |
| MP_CHECKOK( mp_mod(c, m, c) ); |
| |
| CLEANUP: |
| mp_clear(&oddFactor); |
| mp_clear(&evenFactor); |
| mp_clear(&oddPart); |
| mp_clear(&evenPart); |
| mp_clear(&C2); |
| mp_clear(&tmp1); |
| mp_clear(&tmp2); |
| return res; |
| } |
| |
| |
| /* {{{ mp_invmod(a, m, c) */ |
| |
| /* |
| mp_invmod(a, m, c) |
| |
| Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
| This is equivalent to the question of whether (a, m) = 1. If not, |
| MP_UNDEF is returned, and there is no inverse. |
| */ |
| |
| mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) |
| { |
| |
| ARGCHK(a && m && c, MP_BADARG); |
| |
| if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| return MP_RANGE; |
| |
| if (mp_isodd(m)) { |
| return s_mp_invmod_odd_m(a, m, c); |
| } |
| if (mp_iseven(a)) |
| return MP_UNDEF; /* not invertable */ |
| |
| return s_mp_invmod_even_m(a, m, c); |
| |
| } /* end mp_invmod() */ |
| |
| /* }}} */ |
| #endif /* if MP_NUMTH */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ mp_print(mp, ofp) */ |
| |
| #if MP_IOFUNC |
| /* |
| mp_print(mp, ofp) |
| |
| Print a textual representation of the given mp_int on the output |
| stream 'ofp'. Output is generated using the internal radix. |
| */ |
| |
| void mp_print(mp_int *mp, FILE *ofp) |
| { |
| int ix; |
| |
| if(mp == NULL || ofp == NULL) |
| return; |
| |
| fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); |
| |
| for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
| } |
| |
| } /* end mp_print() */ |
| |
| #endif /* if MP_IOFUNC */ |
| |
| /* }}} */ |
| |
| /*------------------------------------------------------------------------*/ |
| /* {{{ More I/O Functions */ |
| |
| /* {{{ mp_read_raw(mp, str, len) */ |
| |
| /* |
| mp_read_raw(mp, str, len) |
| |
| Read in a raw value (base 256) into the given mp_int |
| */ |
| |
| mp_err mp_read_raw(mp_int *mp, char *str, int len) |
| { |
| int ix; |
| mp_err res; |
| unsigned char *ustr = (unsigned char *)str; |
| |
| ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
| |
| mp_zero(mp); |
| |
| /* Get sign from first byte */ |
| if(ustr[0]) |
| SIGN(mp) = NEG; |
| else |
| SIGN(mp) = ZPOS; |
| |
| /* Read the rest of the digits */ |
| for(ix = 1; ix < len; ix++) { |
| if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) |
| return res; |
| if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) |
| return res; |
| } |
| |
| return MP_OKAY; |
| |
| } /* end mp_read_raw() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_raw_size(mp) */ |
| |
| int mp_raw_size(mp_int *mp) |
| { |
| ARGCHK(mp != NULL, 0); |
| |
| return (USED(mp) * sizeof(mp_digit)) + 1; |
| |
| } /* end mp_raw_size() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_toraw(mp, str) */ |
| |
| mp_err mp_toraw(mp_int *mp, char *str) |
| { |
| int ix, jx, pos = 1; |
| |
| ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
| |
| str[0] = (char)SIGN(mp); |
| |
| /* Iterate over each digit... */ |
| for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| mp_digit d = DIGIT(mp, ix); |
| |
| /* Unpack digit bytes, high order first */ |
| for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
| str[pos++] = (char)(d >> (jx * CHAR_BIT)); |
| } |
| } |
| |
| return MP_OKAY; |
| |
| } /* end mp_toraw() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_read_radix(mp, str, radix) */ |
| |
| /* |
| mp_read_radix(mp, str, radix) |
| |
| Read an integer from the given string, and set mp to the resulting |
| value. The input is presumed to be in base 10. Leading non-digit |
| characters are ignored, and the function reads until a non-digit |
| character or the end of the string. |
| */ |
| |
| mp_err mp_read_radix(mp_int *mp, const char *str, int radix) |
| { |
| int ix = 0, val = 0; |
| mp_err res; |
| mp_sign sig = ZPOS; |
| |
| ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
| MP_BADARG); |
| |
| mp_zero(mp); |
| |
| /* Skip leading non-digit characters until a digit or '-' or '+' */ |
| while(str[ix] && |
| (s_mp_tovalue(str[ix], radix) < 0) && |
| str[ix] != '-' && |
| str[ix] != '+') { |
| ++ix; |
| } |
| |
| if(str[ix] == '-') { |
| sig = NEG; |
| ++ix; |
| } else if(str[ix] == '+') { |
| sig = ZPOS; /* this is the default anyway... */ |
| ++ix; |
| } |
| |
| while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
| if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
| return res; |
| if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
| return res; |
| ++ix; |
| } |
| |
| if(s_mp_cmp_d(mp, 0) == MP_EQ) |
| SIGN(mp) = ZPOS; |
| else |
| SIGN(mp) = sig; |
| |
| return MP_OKAY; |
| |
| } /* end mp_read_radix() */ |
| |
| mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) |
| { |
| int radix = default_radix; |
| int cx; |
| mp_sign sig = ZPOS; |
| mp_err res; |
| |
| /* Skip leading non-digit characters until a digit or '-' or '+' */ |
| while ((cx = *str) != 0 && |
| (s_mp_tovalue(cx, radix) < 0) && |
| cx != '-' && |
| cx != '+') { |
| ++str; |
| } |
| |
| if (cx == '-') { |
| sig = NEG; |
| ++str; |
| } else if (cx == '+') { |
| sig = ZPOS; /* this is the default anyway... */ |
| ++str; |
| } |
| |
| if (str[0] == '0') { |
| if ((str[1] | 0x20) == 'x') { |
| radix = 16; |
| str += 2; |
| } else { |
| radix = 8; |
| str++; |
| } |
| } |
| res = mp_read_radix(a, str, radix); |
| if (res == MP_OKAY) { |
| MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; |
| } |
| return res; |
| } |
| |
| /* }}} */ |
| |
| /* {{{ mp_radix_size(mp, radix) */ |
| |
| int mp_radix_size(mp_int *mp, int radix) |
| { |
| int bits; |
| |
| if(!mp || radix < 2 || radix > MAX_RADIX) |
| return 0; |
| |
| bits = USED(mp) * DIGIT_BIT - 1; |
| |
| return s_mp_outlen(bits, radix); |
| |
| } /* end mp_radix_size() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_toradix(mp, str, radix) */ |
| |
| mp_err mp_toradix(mp_int *mp, char *str, int radix) |
| { |
| int ix, pos = 0; |
| |
| ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
| ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
| |
| if(mp_cmp_z(mp) == MP_EQ) { |
| str[0] = '0'; |
| str[1] = '\0'; |
| } else { |
| mp_err res; |
| mp_int tmp; |
| mp_sign sgn; |
| mp_digit rem, rdx = (mp_digit)radix; |
| char ch; |
| |
| if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
| return res; |
| |
| /* Save sign for later, and take absolute value */ |
| sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; |
| |
| /* Generate output digits in reverse order */ |
| while(mp_cmp_z(&tmp) != 0) { |
| if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| /* Generate digits, use capital letters */ |
| ch = s_mp_todigit(rem, radix, 0); |
| |
| str[pos++] = ch; |
| } |
| |
| /* Add - sign if original value was negative */ |
| if(sgn == NEG) |
| str[pos++] = '-'; |
| |
| /* Add trailing NUL to end the string */ |
| str[pos--] = '\0'; |
| |
| /* Reverse the digits and sign indicator */ |
| ix = 0; |
| while(ix < pos) { |
| char tmp = str[ix]; |
| |
| str[ix] = str[pos]; |
| str[pos] = tmp; |
| ++ix; |
| --pos; |
| } |
| |
| mp_clear(&tmp); |
| } |
| |
| return MP_OKAY; |
| |
| } /* end mp_toradix() */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_tovalue(ch, r) */ |
| |
| int mp_tovalue(char ch, int r) |
| { |
| return s_mp_tovalue(ch, r); |
| |
| } /* end mp_tovalue() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /* {{{ mp_strerror(ec) */ |
| |
| /* |
| mp_strerror(ec) |
| |
| Return a string describing the meaning of error code 'ec'. The |
| string returned is allocated in static memory, so the caller should |
| not attempt to modify or free the memory associated with this |
| string. |
| */ |
| const char *mp_strerror(mp_err ec) |
| { |
| int aec = (ec < 0) ? -ec : ec; |
| |
| /* Code values are negative, so the senses of these comparisons |
| are accurate */ |
| if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
| return mp_err_string[0]; /* unknown error code */ |
| } else { |
| return mp_err_string[aec + 1]; |
| } |
| |
| } /* end mp_strerror() */ |
| |
| /* }}} */ |
| |
| /*========================================================================*/ |
| /*------------------------------------------------------------------------*/ |
| /* Static function definitions (internal use only) */ |
| |
| /* {{{ Memory management */ |
| |
| /* {{{ s_mp_grow(mp, min) */ |
| |
| /* Make sure there are at least 'min' digits allocated to mp */ |
| mp_err s_mp_grow(mp_int *mp, mp_size min) |
| { |
| if(min > ALLOC(mp)) { |
| mp_digit *tmp; |
| |
| /* Set min to next nearest default precision block size */ |
| min = MP_ROUNDUP(min, s_mp_defprec); |
| |
| if((tmp = s_mp_alloc(min, sizeof(mp_digit), FLAG(mp))) == NULL) |
| return MP_MEM; |
| |
| s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
| |
| #if MP_CRYPTO |
| s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| #endif |
| s_mp_free(DIGITS(mp), ALLOC(mp)); |
| DIGITS(mp) = tmp; |
| ALLOC(mp) = min; |
| } |
| |
| return MP_OKAY; |
| |
| } /* end s_mp_grow() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_pad(mp, min) */ |
| |
| /* Make sure the used size of mp is at least 'min', growing if needed */ |
| mp_err s_mp_pad(mp_int *mp, mp_size min) |
| { |
| if(min > USED(mp)) { |
| mp_err res; |
| |
| /* Make sure there is room to increase precision */ |
| if (min > ALLOC(mp)) { |
| if ((res = s_mp_grow(mp, min)) != MP_OKAY) |
| return res; |
| } else { |
| s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); |
| } |
| |
| /* Increase precision; should already be 0-filled */ |
| USED(mp) = min; |
| } |
| |
| return MP_OKAY; |
| |
| } /* end s_mp_pad() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_setz(dp, count) */ |
| |
| #if MP_MACRO == 0 |
| /* Set 'count' digits pointed to by dp to be zeroes */ |
| void s_mp_setz(mp_digit *dp, mp_size count) |
| { |
| #if MP_MEMSET == 0 |
| int ix; |
| |
| for(ix = 0; ix < count; ix++) |
| dp[ix] = 0; |
| #else |
| memset(dp, 0, count * sizeof(mp_digit)); |
| #endif |
| |
| } /* end s_mp_setz() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_copy(sp, dp, count) */ |
| |
| #if MP_MACRO == 0 |
| /* Copy 'count' digits from sp to dp */ |
| void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) |
| { |
| #if MP_MEMCPY == 0 |
| int ix; |
| |
| for(ix = 0; ix < count; ix++) |
| dp[ix] = sp[ix]; |
| #else |
| memcpy(dp, sp, count * sizeof(mp_digit)); |
| #endif |
| |
| } /* end s_mp_copy() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_alloc(nb, ni, kmflag) */ |
| |
| #if MP_MACRO == 0 |
| /* Allocate ni records of nb bytes each, and return a pointer to that */ |
| void *s_mp_alloc(size_t nb, size_t ni, int kmflag) |
| { |
| ++mp_allocs; |
| #ifdef _KERNEL |
| mp_int *mp; |
| mp = kmem_zalloc(nb * ni, kmflag); |
| if (mp != NULL) |
| FLAG(mp) = kmflag; |
| return (mp); |
| #else |
| return calloc(nb, ni); |
| #endif |
| |
| } /* end s_mp_alloc() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_free(ptr) */ |
| |
| #if MP_MACRO == 0 |
| /* Free the memory pointed to by ptr */ |
| void s_mp_free(void *ptr, mp_size alloc) |
| { |
| if(ptr) { |
| ++mp_frees; |
| #ifdef _KERNEL |
| kmem_free(ptr, alloc * sizeof (mp_digit)); |
| #else |
| free(ptr); |
| #endif |
| } |
| } /* end s_mp_free() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_clamp(mp) */ |
| |
| #if MP_MACRO == 0 |
| /* Remove leading zeroes from the given value */ |
| void s_mp_clamp(mp_int *mp) |
| { |
| mp_size used = MP_USED(mp); |
| while (used > 1 && DIGIT(mp, used - 1) == 0) |
| --used; |
| MP_USED(mp) = used; |
| } /* end s_mp_clamp() */ |
| #endif |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_exch(a, b) */ |
| |
| /* Exchange the data for a and b; (b, a) = (a, b) */ |
| void s_mp_exch(mp_int *a, mp_int *b) |
| { |
| mp_int tmp; |
| |
| tmp = *a; |
| *a = *b; |
| *b = tmp; |
| |
| } /* end s_mp_exch() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /* {{{ Arithmetic helpers */ |
| |
| /* {{{ s_mp_lshd(mp, p) */ |
| |
| /* |
| Shift mp leftward by p digits, growing if needed, and zero-filling |
| the in-shifted digits at the right end. This is a convenient |
| alternative to multiplication by powers of the radix |
| The value of USED(mp) must already have been set to the value for |
| the shifted result. |
| */ |
| |
| mp_err s_mp_lshd(mp_int *mp, mp_size p) |
| { |
| mp_err res; |
| mp_size pos; |
| int ix; |
| |
| if(p == 0) |
| return MP_OKAY; |
| |
| if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) |
| return MP_OKAY; |
| |
| if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
| return res; |
| |
| pos = USED(mp) - 1; |
| |
| /* Shift all the significant figures over as needed */ |
| for(ix = pos - p; ix >= 0; ix--) |
| DIGIT(mp, ix + p) = DIGIT(mp, ix); |
| |
| /* Fill the bottom digits with zeroes */ |
| for(ix = 0; ix < p; ix++) |
| DIGIT(mp, ix) = 0; |
| |
| return MP_OKAY; |
| |
| } /* end s_mp_lshd() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_mul_2d(mp, d) */ |
| |
| /* |
| Multiply the integer by 2^d, where d is a number of bits. This |
| amounts to a bitwise shift of the value. |
| */ |
| mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
| { |
| mp_err res; |
| mp_digit dshift, bshift; |
| mp_digit mask; |
| |
| ARGCHK(mp != NULL, MP_BADARG); |
| |
| dshift = d / MP_DIGIT_BIT; |
| bshift = d % MP_DIGIT_BIT; |
| /* bits to be shifted out of the top word */ |
| mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); |
| mask &= MP_DIGIT(mp, MP_USED(mp) - 1); |
| |
| if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) |
| return res; |
| |
| if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) |
| return res; |
| |
| if (bshift) { |
| mp_digit *pa = MP_DIGITS(mp); |
| mp_digit *alim = pa + MP_USED(mp); |
| mp_digit prev = 0; |
| |
| for (pa += dshift; pa < alim; ) { |
| mp_digit x = *pa; |
| *pa++ = (x << bshift) | prev; |
| prev = x >> (DIGIT_BIT - bshift); |
| } |
| } |
| |
| s_mp_clamp(mp); |
| return MP_OKAY; |
| } /* end s_mp_mul_2d() */ |
| |
| /* {{{ s_mp_rshd(mp, p) */ |
| |
| /* |
| Shift mp rightward by p digits. Maintains the invariant that |
| digits above the precision are all zero. Digits shifted off the |
| end are lost. Cannot fail. |
| */ |
| |
| void s_mp_rshd(mp_int *mp, mp_size p) |
| { |
| mp_size ix; |
| mp_digit *src, *dst; |
| |
| if(p == 0) |
| return; |
| |
| /* Shortcut when all digits are to be shifted off */ |
| if(p >= USED(mp)) { |
| s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| USED(mp) = 1; |
| SIGN(mp) = ZPOS; |
| return; |
| } |
| |
| /* Shift all the significant figures over as needed */ |
| dst = MP_DIGITS(mp); |
| src = dst + p; |
| for (ix = USED(mp) - p; ix > 0; ix--) |
| *dst++ = *src++; |
| |
| MP_USED(mp) -= p; |
| /* Fill the top digits with zeroes */ |
| while (p-- > 0) |
| *dst++ = 0; |
| |
| #if 0 |
| /* Strip off any leading zeroes */ |
| s_mp_clamp(mp); |
| #endif |
| |
| } /* end s_mp_rshd() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_div_2(mp) */ |
| |
| /* Divide by two -- take advantage of radix properties to do it fast */ |
| void s_mp_div_2(mp_int *mp) |
| { |
| s_mp_div_2d(mp, 1); |
| |
| } /* end s_mp_div_2() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_mul_2(mp) */ |
| |
| mp_err s_mp_mul_2(mp_int *mp) |
| { |
| mp_digit *pd; |
| unsigned int ix, used; |
| mp_digit kin = 0; |
| |
| /* Shift digits leftward by 1 bit */ |
| used = MP_USED(mp); |
| pd = MP_DIGITS(mp); |
| for (ix = 0; ix < used; ix++) { |
| mp_digit d = *pd; |
| *pd++ = (d << 1) | kin; |
| kin = (d >> (DIGIT_BIT - 1)); |
| } |
| |
| /* Deal with rollover from last digit */ |
| if (kin) { |
| if (ix >= ALLOC(mp)) { |
| mp_err res; |
| if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
| return res; |
| } |
| |
| DIGIT(mp, ix) = kin; |
| USED(mp) += 1; |
| } |
| |
| return MP_OKAY; |
| |
| } /* end s_mp_mul_2() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_mod_2d(mp, d) */ |
| |
| /* |
| Remainder the integer by 2^d, where d is a number of bits. This |
| amounts to a bitwise AND of the value, and does not require the full |
| division code |
| */ |
| void s_mp_mod_2d(mp_int *mp, mp_digit d) |
| { |
| mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
| mp_size ix; |
| mp_digit dmask; |
| |
| if(ndig >= USED(mp)) |
| return; |
| |
| /* Flush all the bits above 2^d in its digit */ |
| dmask = ((mp_digit)1 << nbit) - 1; |
| DIGIT(mp, ndig) &= dmask; |
| |
| /* Flush all digits above the one with 2^d in it */ |
| for(ix = ndig + 1; ix < USED(mp); ix++) |
| DIGIT(mp, ix) = 0; |
| |
| s_mp_clamp(mp); |
| |
| } /* end s_mp_mod_2d() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_div_2d(mp, d) */ |
| |
| /* |
| Divide the integer by 2^d, where d is a number of bits. This |
| amounts to a bitwise shift of the value, and does not require the |
| full division code (used in Barrett reduction, see below) |
| */ |
| void s_mp_div_2d(mp_int *mp, mp_digit d) |
| { |
| int ix; |
| mp_digit save, next, mask; |
| |
| s_mp_rshd(mp, d / DIGIT_BIT); |
| d %= DIGIT_BIT; |
| if (d) { |
| mask = ((mp_digit)1 << d) - 1; |
| save = 0; |
| for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| next = DIGIT(mp, ix) & mask; |
| DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); |
| save = next; |
| } |
| } |
| s_mp_clamp(mp); |
| |
| } /* end s_mp_div_2d() */ |
| |
| /* }}} */ |
| |
| /* {{{ s_mp_norm(a, b, *d) */ |
| |
| /* |
| s_mp_norm(a, b, *d) |
| |
| Normalize a and b for division, where b is the divisor. In order |
| that we might make good guesses for quotient digits, we want the |
| leading digit of b to be at least half the radix, which we |
| accomplish by multiplying a and b by a power of 2. The exponent |
| (shift count) is placed in *pd, so that the remainder can be shifted |
| back at the end of the division process. |
| */ |
| |
| mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) |
| { |
| mp_digit d; |
| mp_digit mask; |
| mp_digit b_msd; |
| mp_err res = MP_OKAY; |
| |
| d = 0; |
| mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ |
| b_msd = DIGIT(b, USED(b) - 1); |
| while (!(b_msd & mask)) { |
| b_msd <<= 1; |
| ++d; |
| } |
| |
| if (d) { |
| MP_CHECKOK( s_mp_mul_2d(a, d) ); |
| MP_CHECKOK( s_mp_mul_2d(b, d) ); |
| } |
| |
| *pd = d; |
| CLEANUP: |
| return res; |
| |
| } /* end s_mp_norm() */ |
| |
| /* }}} */ |
| |
| /* }}} */ |
| |
| /* {{{ Primitive digit arithmetic */ |
| |
| /* {{{ s_mp_add_d(mp, d) */ |
| |
| /* Add d to |mp| in place */ |
| mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
| { |
| #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| mp_word w, k = 0; |
| mp_size ix = 1; |
| |
| w = (mp_word)DIGIT(mp, 0) + d; |
| DIGIT(mp, 0) = ACCUM(w); |
| k = CARRYOUT(w); |
| |
| while(ix < USED(mp) && k) { |
| w = (mp_word)DIGIT(mp, ix) + k; |
| DIGIT(mp, ix) = ACCUM(w); |
| k = CARRYOUT(w); |
| ++ix; |
| } |
| |
| if(k != 0) { |
| mp_err res; |
| |
| if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
| return res; |
| |
| DIGIT(mp, ix) = (mp_digit)k; |
| } |
| |
| return MP_OKAY; |
| |