blob: f28849ae943459427c89e417c5df6c5e50c1f34e [file] [log] [blame]
#include <crm/common/mainloop.h>
/*!
* \internal
* \brief Check to see if target was fenced in the last few seconds.
* \param tolerance, The number of seconds to look back in time
* \param target, The node to search for
* \param action, The action we want to match.
*
* \retval FALSE, not match
* \retval TRUE, fencing operation took place in the last 'tolerance' number of seconds.
*/
gboolean stonith_check_fence_tolerance(int tolerance, const char *target, const char *action);
typedef struct stonith_device_s {
char *id;
char *agent;
char *namespace;
/*! list of actions that must execute on the target node. Used for unfencing */
char *on_target_actions;
GListPtr targets;
time_t targets_age;
gboolean has_attr_map;
/* should nodeid parameter for victim be included in agent arguments */
gboolean include_nodeid;
/* whether the cluster should automatically unfence nodes with the device */
gboolean automatic_unfencing;
guint priority;
enum st_device_flags flags;
GHashTable *params;
GHashTable *aliases;
GList *pending_ops;
crm_trigger_t *work;
xmlNode *agent_metadata;
/*! A verified device is one that has contacted the
* agent successfully to perform a monitor operation */
gboolean verified;
gboolean cib_registered;
gboolean api_registered;
} stonith_device_t;
/* These values are used to index certain arrays by "phase". Usually an
* operation has only one "phase", so phase is always zero. However, some
* reboots are remapped to "off" then "on", in which case "reboot" will be
* phase 0, "off" will be phase 1 and "on" will be phase 2.
*/
enum st_remap_phase {
st_phase_requested = 0,
st_phase_off = 1,
st_phase_on = 2,
st_phase_max = 3
};
typedef struct remote_fencing_op_s {
/* The unique id associated with this operation */
char *id;
/*! The node this operation will fence */
char *target;
/*! The fencing action to perform on the target. (reboot, on, off) */
char *action;
/*! When was the fencing action recorded (seconds since epoch) */
time_t created;
/*! Marks if the final notifications have been sent to local stonith clients. */
gboolean notify_sent;
/*! The number of query replies received */
guint replies;
/*! The number of query replies expected */
guint replies_expected;
/*! Does this node own control of this operation */
gboolean owner;
/*! After query is complete, This the high level timer that expires the entire operation */
guint op_timer_total;
/*! This timer expires the current fencing request. Many fencing
* requests may exist in a single operation */
guint op_timer_one;
/*! This timer expires the query request sent out to determine
* what nodes are contain what devices, and who those devices can fence */
guint query_timer;
/*! This is the default timeout to use for each fencing device if no
* custom timeout is received in the query. */
gint base_timeout;
/*! This is the calculated total timeout an operation can take before
* expiring. This is calculated by adding together all the timeout
* values associated with the devices this fencing operation may call */
gint total_timeout;
/*! Requested fencing delay.
* Value -1 means disable any static/random fencing delays. */
int delay;
/*! Delegate is the node being asked to perform a fencing action
* on behalf of the node that owns the remote operation. Some operations
* will involve multiple delegates. This value represents the final delegate
* that is used. */
char *delegate;
/*! The point at which the remote operation completed */
time_t completed;
/*! The stonith_call_options associated with this remote operation */
long long call_options;
/*! The current state of the remote operation. This indicates
* what stage the op is in, query, exec, done, duplicate, failed. */
enum op_state state;
/*! The node that owns the remote operation */
char *originator;
/*! The local client id that initiated the fencing request */
char *client_id;
/*! The client's call_id that initiated the fencing request */
int client_callid;
/*! The name of client that initiated the fencing request */
char *client_name;
/*! List of the received query results for all the nodes in the cpg group */
GListPtr query_results;
/*! The original request that initiated the remote stonith operation */
xmlNode *request;
/*! The current topology level being executed */
guint level;
/*! The current operation phase being executed */
enum st_remap_phase phase;
/*! Devices with automatic unfencing (always run if "on" requested, never if remapped) */
GListPtr automatic_list;
/*! List of all devices at the currently executing topology level */
GListPtr devices_list;
/*! Current entry in the topology device list */
GListPtr devices;
/*! List of duplicate operations attached to this operation. Once this operation
* completes, the duplicate operations will be closed out as well. */
GListPtr duplicates;
} remote_fencing_op_t;
/*!
* \internal
* \brief Broadcast the result of an operation to the peers.
* \param op, Operation whose result should be broadcast
* \param rc, Result of the operation
*/
void stonith_bcast_result_to_peers(remote_fencing_op_t * op, int rc);
enum st_callback_flags {
st_callback_unknown = 0x0000,
st_callback_notify_fence = 0x0001,
st_callback_device_add = 0x0004,
st_callback_device_del = 0x0010,
st_callback_notify_history = 0x0020,
st_callback_notify_history_synced = 0x0040
};
/*
* Complex fencing requirements are specified via fencing topologies.
* A topology consists of levels; each level is a list of fencing devices.
* Topologies are stored in a hash table by node name. When a node needs to be
* fenced, if it has an entry in the topology table, the levels are tried
* sequentially, and the devices in each level are tried sequentially.
* Fencing is considered successful as soon as any level succeeds;
* a level is considered successful if all its devices succeed.
* Essentially, all devices at a given level are "and-ed" and the
* levels are "or-ed".
*
* This structure is used for the topology table entries.
* Topology levels start from 1, so levels[0] is unused and always NULL.
*/
typedef struct stonith_topology_s {
int kind;
/*! Node name regex or attribute name=value for which topology applies */
char *target;
char *target_value;
char *target_pattern;
char *target_attribute;
/*! Names of fencing devices at each topology level */
GListPtr levels[ST_LEVEL_MAX];
} stonith_topology_t;
void free_stonith_remote_op_list(void);
void init_stonith_remote_op_hash_table(GHashTable **table);
long long get_stonith_flag(const char *name);
void stonith_command(crm_client_t * client, uint32_t id, uint32_t flags,
xmlNode * op_request, const char *remote_peer);
int stonith_device_register(xmlNode * msg, const char **desc, gboolean from_cib);
int stonith_device_remove(const char *id, gboolean from_cib);
char *stonith_level_key(xmlNode * msg, int mode);
int stonith_level_kind(xmlNode * msg);
int stonith_level_register(xmlNode * msg, char **desc);
int stonith_level_remove(xmlNode * msg, char **desc);
stonith_topology_t *find_topology_for_host(const char *host);
void do_local_reply(xmlNode * notify_src, const char *client_id, gboolean sync_reply,
gboolean from_peer);
xmlNode *stonith_construct_reply(xmlNode * request, const char *output, xmlNode * data,
int rc);
void
do_stonith_async_timeout_update(const char *client, const char *call_id, int timeout);
void do_stonith_notify(int options, const char *type, int result, xmlNode * data);
void do_stonith_notify_device(int options, const char *op, int rc, const char *desc);
void do_stonith_notify_level(int options, const char *op, int rc, const char *desc);
remote_fencing_op_t *initiate_remote_stonith_op(crm_client_t * client, xmlNode * request,
gboolean manual_ack);
int process_remote_stonith_exec(xmlNode * msg);
int process_remote_stonith_query(xmlNode * msg);
void *create_remote_stonith_op(const char *client, xmlNode * request, gboolean peer);
int stonith_fence_history(xmlNode *msg, xmlNode **output,
const char *remote_peer, int options);
void free_device(gpointer data);
void free_topology_entry(gpointer data);
void stonith_fence_history_trim(void);
bool fencing_peer_active(crm_node_t *peer);
int stonith_manual_ack(xmlNode * msg, remote_fencing_op_t * op);
void unfence_cb(GPid pid, int rc, const char *output, gpointer user_data);
gboolean string_in_list(GListPtr list, const char *item);
gboolean node_has_attr(const char *node, const char *name, const char *value);
void
schedule_internal_command(const char *origin,
stonith_device_t * device,
const char *action,
const char *victim,
int timeout,
void *internal_user_data,
void (*done_cb) (GPid pid, int rc, const char *output,
gpointer user_data));
extern char *stonith_our_uname;
extern gboolean stand_alone;
extern GHashTable *device_list;
extern GHashTable *topology;
extern long stonith_watchdog_timeout_ms;
extern GHashTable *stonith_remote_op_list;