blob: 85449ebb9d97221722b4425a5ad778754183f9fd [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
* All rights reserved.
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/acl.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/cmn_err.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/sunddi.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/spa_boot.h>
#include <sys/jail.h>
#include <sys/osd.h>
#include <ufs/ufs/quota.h>
#include <sys/zfs_quota.h>
#include "zfs_comutil.h"
#ifndef MNTK_VMSETSIZE_BUG
#define MNTK_VMSETSIZE_BUG 0
#endif
#ifndef MNTK_NOMSYNC
#define MNTK_NOMSYNC 8
#endif
/* BEGIN CSTYLED */
struct mtx zfs_debug_mtx;
MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
int zfs_super_owner;
SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
"File system owner can perform privileged operation on his file systems");
int zfs_debug_level;
SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
"Debug level");
struct zfs_jailparam {
int mount_snapshot;
};
static struct zfs_jailparam zfs_jailparam0 = {
.mount_snapshot = 0,
};
static int zfs_jailparam_slot;
SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters");
SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I",
"Allow mounting snapshots in the .zfs directory for unjailed datasets");
SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
static int zfs_version_acl = ZFS_ACL_VERSION;
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
"ZFS_ACL_VERSION");
static int zfs_version_spa = SPA_VERSION;
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
"SPA_VERSION");
static int zfs_version_zpl = ZPL_VERSION;
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
"ZPL_VERSION");
/* END CSTYLED */
#if __FreeBSD_version >= 1400018
static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg,
bool *mp_busy);
#else
static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
#endif
static int zfs_mount(vfs_t *vfsp);
static int zfs_umount(vfs_t *vfsp, int fflag);
static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
static int zfs_sync(vfs_t *vfsp, int waitfor);
#if __FreeBSD_version >= 1300098
static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
struct ucred **credanonp, int *numsecflavors, int *secflavors);
#else
static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
struct ucred **credanonp, int *numsecflavors, int **secflavors);
#endif
static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
static void zfs_freevfs(vfs_t *vfsp);
struct vfsops zfs_vfsops = {
.vfs_mount = zfs_mount,
.vfs_unmount = zfs_umount,
#if __FreeBSD_version >= 1300049
.vfs_root = vfs_cache_root,
.vfs_cachedroot = zfs_root,
#else
.vfs_root = zfs_root,
#endif
.vfs_statfs = zfs_statfs,
.vfs_vget = zfs_vget,
.vfs_sync = zfs_sync,
.vfs_checkexp = zfs_checkexp,
.vfs_fhtovp = zfs_fhtovp,
.vfs_quotactl = zfs_quotactl,
};
VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
/*
* We need to keep a count of active fs's.
* This is necessary to prevent our module
* from being unloaded after a umount -f
*/
static uint32_t zfs_active_fs_count = 0;
int
zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
char *setpoint)
{
int error;
zfsvfs_t *zfvp;
vfs_t *vfsp;
objset_t *os;
uint64_t tmp = *val;
error = dmu_objset_from_ds(ds, &os);
if (error != 0)
return (error);
error = getzfsvfs_impl(os, &zfvp);
if (error != 0)
return (error);
if (zfvp == NULL)
return (ENOENT);
vfsp = zfvp->z_vfs;
switch (zfs_prop) {
case ZFS_PROP_ATIME:
if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
tmp = 1;
break;
case ZFS_PROP_DEVICES:
if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
tmp = 1;
break;
case ZFS_PROP_EXEC:
if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
tmp = 1;
break;
case ZFS_PROP_SETUID:
if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
tmp = 1;
break;
case ZFS_PROP_READONLY:
if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
tmp = 1;
break;
case ZFS_PROP_XATTR:
if (zfvp->z_flags & ZSB_XATTR)
tmp = zfvp->z_xattr;
break;
case ZFS_PROP_NBMAND:
if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
tmp = 0;
if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
tmp = 1;
break;
default:
vfs_unbusy(vfsp);
return (ENOENT);
}
vfs_unbusy(vfsp);
if (tmp != *val) {
(void) strcpy(setpoint, "temporary");
*val = tmp;
}
return (0);
}
static int
zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
{
int error = 0;
char buf[32];
uint64_t usedobj, quotaobj;
uint64_t quota, used = 0;
timespec_t now;
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
if (quotaobj == 0 || zfsvfs->z_replay) {
error = ENOENT;
goto done;
}
(void) sprintf(buf, "%llx", (longlong_t)id);
if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
buf, sizeof (quota), 1, &quota)) != 0) {
dprintf("%s(%d): quotaobj lookup failed\n",
__FUNCTION__, __LINE__);
goto done;
}
/*
* quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
* So we set them to be the same.
*/
dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
if (error && error != ENOENT) {
dprintf("%s(%d): usedobj failed; %d\n",
__FUNCTION__, __LINE__, error);
goto done;
}
dqp->dqb_curblocks = btodb(used);
dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
vfs_timestamp(&now);
/*
* Setting this to 0 causes FreeBSD quota(8) to print
* the number of days since the epoch, which isn't
* particularly useful.
*/
dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
done:
return (error);
}
static int
#if __FreeBSD_version >= 1400018
zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy)
#else
zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
#endif
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
struct thread *td;
int cmd, type, error = 0;
int bitsize;
zfs_userquota_prop_t quota_type;
struct dqblk64 dqblk = { 0 };
td = curthread;
cmd = cmds >> SUBCMDSHIFT;
type = cmds & SUBCMDMASK;
ZFS_ENTER(zfsvfs);
if (id == -1) {
switch (type) {
case USRQUOTA:
id = td->td_ucred->cr_ruid;
break;
case GRPQUOTA:
id = td->td_ucred->cr_rgid;
break;
default:
error = EINVAL;
#if __FreeBSD_version < 1400018
if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
vfs_unbusy(vfsp);
#endif
goto done;
}
}
/*
* Map BSD type to:
* ZFS_PROP_USERUSED,
* ZFS_PROP_USERQUOTA,
* ZFS_PROP_GROUPUSED,
* ZFS_PROP_GROUPQUOTA
*/
switch (cmd) {
case Q_SETQUOTA:
case Q_SETQUOTA32:
if (type == USRQUOTA)
quota_type = ZFS_PROP_USERQUOTA;
else if (type == GRPQUOTA)
quota_type = ZFS_PROP_GROUPQUOTA;
else
error = EINVAL;
break;
case Q_GETQUOTA:
case Q_GETQUOTA32:
if (type == USRQUOTA)
quota_type = ZFS_PROP_USERUSED;
else if (type == GRPQUOTA)
quota_type = ZFS_PROP_GROUPUSED;
else
error = EINVAL;
break;
}
/*
* Depending on the cmd, we may need to get
* the ruid and domain (see fuidstr_to_sid?),
* the fuid (how?), or other information.
* Create fuid using zfs_fuid_create(zfsvfs, id,
* ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
* I think I can use just the id?
*
* Look at zfs_id_overquota() to look up a quota.
* zap_lookup(something, quotaobj, fuidstring,
* sizeof (long long), 1, &quota)
*
* See zfs_set_userquota() to set a quota.
*/
if ((uint32_t)type >= MAXQUOTAS) {
error = EINVAL;
goto done;
}
switch (cmd) {
case Q_GETQUOTASIZE:
bitsize = 64;
error = copyout(&bitsize, arg, sizeof (int));
break;
case Q_QUOTAON:
// As far as I can tell, you can't turn quotas on or off on zfs
error = 0;
#if __FreeBSD_version < 1400018
vfs_unbusy(vfsp);
#endif
break;
case Q_QUOTAOFF:
error = ENOTSUP;
#if __FreeBSD_version < 1400018
vfs_unbusy(vfsp);
#endif
break;
case Q_SETQUOTA:
error = copyin(arg, &dqblk, sizeof (dqblk));
if (error == 0)
error = zfs_set_userquota(zfsvfs, quota_type,
"", id, dbtob(dqblk.dqb_bhardlimit));
break;
case Q_GETQUOTA:
error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
if (error == 0)
error = copyout(&dqblk, arg, sizeof (dqblk));
break;
default:
error = EINVAL;
break;
}
done:
ZFS_EXIT(zfsvfs);
return (error);
}
boolean_t
zfs_is_readonly(zfsvfs_t *zfsvfs)
{
return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
}
/*ARGSUSED*/
static int
zfs_sync(vfs_t *vfsp, int waitfor)
{
/*
* Data integrity is job one. We don't want a compromised kernel
* writing to the storage pool, so we never sync during panic.
*/
if (panicstr)
return (0);
/*
* Ignore the system syncher. ZFS already commits async data
* at zfs_txg_timeout intervals.
*/
if (waitfor == MNT_LAZY)
return (0);
if (vfsp != NULL) {
/*
* Sync a specific filesystem.
*/
zfsvfs_t *zfsvfs = vfsp->vfs_data;
dsl_pool_t *dp;
int error;
error = vfs_stdsync(vfsp, waitfor);
if (error != 0)
return (error);
ZFS_ENTER(zfsvfs);
dp = dmu_objset_pool(zfsvfs->z_os);
/*
* If the system is shutting down, then skip any
* filesystems which may exist on a suspended pool.
*/
if (rebooting && spa_suspended(dp->dp_spa)) {
ZFS_EXIT(zfsvfs);
return (0);
}
if (zfsvfs->z_log != NULL)
zil_commit(zfsvfs->z_log, 0);
ZFS_EXIT(zfsvfs);
} else {
/*
* Sync all ZFS filesystems. This is what happens when you
* run sync(8). Unlike other filesystems, ZFS honors the
* request by waiting for all pools to commit all dirty data.
*/
spa_sync_allpools();
}
return (0);
}
static void
atime_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == TRUE) {
zfsvfs->z_atime = TRUE;
zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
} else {
zfsvfs->z_atime = FALSE;
zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
}
}
static void
xattr_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == ZFS_XATTR_OFF) {
zfsvfs->z_flags &= ~ZSB_XATTR;
} else {
zfsvfs->z_flags |= ZSB_XATTR;
if (newval == ZFS_XATTR_SA)
zfsvfs->z_xattr_sa = B_TRUE;
else
zfsvfs->z_xattr_sa = B_FALSE;
}
}
static void
blksz_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
ASSERT(ISP2(newval));
zfsvfs->z_max_blksz = newval;
zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
}
static void
readonly_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval) {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
} else {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
}
}
static void
setuid_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
} else {
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
}
}
static void
exec_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
} else {
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
}
}
/*
* The nbmand mount option can be changed at mount time.
* We can't allow it to be toggled on live file systems or incorrect
* behavior may be seen from cifs clients
*
* This property isn't registered via dsl_prop_register(), but this callback
* will be called when a file system is first mounted
*/
static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
} else {
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
}
}
static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_show_ctldir = newval;
}
static void
vscan_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_vscan = newval;
}
static void
acl_mode_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_acl_mode = newval;
}
static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_acl_inherit = newval;
}
static void
acl_type_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_acl_type = newval;
}
static int
zfs_register_callbacks(vfs_t *vfsp)
{
struct dsl_dataset *ds = NULL;
objset_t *os = NULL;
zfsvfs_t *zfsvfs = NULL;
uint64_t nbmand;
boolean_t readonly = B_FALSE;
boolean_t do_readonly = B_FALSE;
boolean_t setuid = B_FALSE;
boolean_t do_setuid = B_FALSE;
boolean_t exec = B_FALSE;
boolean_t do_exec = B_FALSE;
boolean_t xattr = B_FALSE;
boolean_t atime = B_FALSE;
boolean_t do_atime = B_FALSE;
boolean_t do_xattr = B_FALSE;
int error = 0;
ASSERT3P(vfsp, !=, NULL);
zfsvfs = vfsp->vfs_data;
ASSERT3P(zfsvfs, !=, NULL);
os = zfsvfs->z_os;
/*
* This function can be called for a snapshot when we update snapshot's
* mount point, which isn't really supported.
*/
if (dmu_objset_is_snapshot(os))
return (EOPNOTSUPP);
/*
* The act of registering our callbacks will destroy any mount
* options we may have. In order to enable temporary overrides
* of mount options, we stash away the current values and
* restore them after we register the callbacks.
*/
if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
!spa_writeable(dmu_objset_spa(os))) {
readonly = B_TRUE;
do_readonly = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
readonly = B_FALSE;
do_readonly = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
setuid = B_FALSE;
do_setuid = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
setuid = B_TRUE;
do_setuid = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
exec = B_FALSE;
do_exec = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
exec = B_TRUE;
do_exec = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
do_xattr = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
do_xattr = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
do_xattr = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
do_xattr = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
atime = B_FALSE;
do_atime = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
atime = B_TRUE;
do_atime = B_TRUE;
}
/*
* We need to enter pool configuration here, so that we can use
* dsl_prop_get_int_ds() to handle the special nbmand property below.
* dsl_prop_get_integer() can not be used, because it has to acquire
* spa_namespace_lock and we can not do that because we already hold
* z_teardown_lock. The problem is that spa_write_cachefile() is called
* with spa_namespace_lock held and the function calls ZFS vnode
* operations to write the cache file and thus z_teardown_lock is
* acquired after spa_namespace_lock.
*/
ds = dmu_objset_ds(os);
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
/*
* nbmand is a special property. It can only be changed at
* mount time.
*
* This is weird, but it is documented to only be changeable
* at mount time.
*/
if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
nbmand = B_FALSE;
} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
nbmand = B_TRUE;
} else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) {
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
return (error);
}
/*
* Register property callbacks.
*
* It would probably be fine to just check for i/o error from
* the first prop_register(), but I guess I like to go
* overboard...
*/
error = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
zfsvfs);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
if (error)
goto unregister;
/*
* Invoke our callbacks to restore temporary mount options.
*/
if (do_readonly)
readonly_changed_cb(zfsvfs, readonly);
if (do_setuid)
setuid_changed_cb(zfsvfs, setuid);
if (do_exec)
exec_changed_cb(zfsvfs, exec);
if (do_xattr)
xattr_changed_cb(zfsvfs, xattr);
if (do_atime)
atime_changed_cb(zfsvfs, atime);
nbmand_changed_cb(zfsvfs, nbmand);
return (0);
unregister:
dsl_prop_unregister_all(ds, zfsvfs);
return (error);
}
/*
* Associate this zfsvfs with the given objset, which must be owned.
* This will cache a bunch of on-disk state from the objset in the
* zfsvfs.
*/
static int
zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
{
int error;
uint64_t val;
zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
zfsvfs->z_os = os;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
if (error != 0)
return (error);
if (zfsvfs->z_version >
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
(void) printf("Can't mount a version %lld file system "
"on a version %lld pool\n. Pool must be upgraded to mount "
"this file system.", (u_longlong_t)zfsvfs->z_version,
(u_longlong_t)spa_version(dmu_objset_spa(os)));
return (SET_ERROR(ENOTSUP));
}
error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
if (error != 0)
return (error);
zfsvfs->z_norm = (int)val;
error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
if (error != 0)
return (error);
zfsvfs->z_utf8 = (val != 0);
error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
if (error != 0)
return (error);
zfsvfs->z_case = (uint_t)val;
error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val);
if (error != 0)
return (error);
zfsvfs->z_acl_type = (uint_t)val;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
zfsvfs->z_case == ZFS_CASE_MIXED)
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
uint64_t sa_obj = 0;
if (zfsvfs->z_use_sa) {
/* should either have both of these objects or none */
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
&sa_obj);
if (error != 0)
return (error);
error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
if (error == 0 && val == ZFS_XATTR_SA)
zfsvfs->z_xattr_sa = B_TRUE;
}
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zfsvfs->z_attr_table);
if (error != 0)
return (error);
if (zfsvfs->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(os, zfs_sa_upgrade);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zfsvfs->z_root);
if (error != 0)
return (error);
ASSERT3U(zfsvfs->z_root, !=, 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zfsvfs->z_unlinkedobj);
if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
8, 1, &zfsvfs->z_userquota_obj);
if (error == ENOENT)
zfsvfs->z_userquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
8, 1, &zfsvfs->z_groupquota_obj);
if (error == ENOENT)
zfsvfs->z_groupquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
8, 1, &zfsvfs->z_projectquota_obj);
if (error == ENOENT)
zfsvfs->z_projectquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
8, 1, &zfsvfs->z_userobjquota_obj);
if (error == ENOENT)
zfsvfs->z_userobjquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
8, 1, &zfsvfs->z_groupobjquota_obj);
if (error == ENOENT)
zfsvfs->z_groupobjquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
8, 1, &zfsvfs->z_projectobjquota_obj);
if (error == ENOENT)
zfsvfs->z_projectobjquota_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zfsvfs->z_fuid_obj);
if (error == ENOENT)
zfsvfs->z_fuid_obj = 0;
else if (error != 0)
return (error);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
&zfsvfs->z_shares_dir);
if (error == ENOENT)
zfsvfs->z_shares_dir = 0;
else if (error != 0)
return (error);
/*
* Only use the name cache if we are looking for a
* name on a file system that does not require normalization
* or case folding. We can also look there if we happen to be
* on a non-normalizing, mixed sensitivity file system IF we
* are looking for the exact name (which is always the case on
* FreeBSD).
*/
zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
((zfsvfs->z_case == ZFS_CASE_MIXED) &&
!(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
return (0);
}
taskq_t *zfsvfs_taskq;
static void
zfsvfs_task_unlinked_drain(void *context, int pending __unused)
{
zfs_unlinked_drain((zfsvfs_t *)context);
}
int
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
{
objset_t *os;
zfsvfs_t *zfsvfs;
int error;
boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
/*
* XXX: Fix struct statfs so this isn't necessary!
*
* The 'osname' is used as the filesystem's special node, which means
* it must fit in statfs.f_mntfromname, or else it can't be
* enumerated, so libzfs_mnttab_find() returns NULL, which causes
* 'zfs unmount' to think it's not mounted when it is.
*/
if (strlen(osname) >= MNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
&os);
if (error != 0) {
kmem_free(zfsvfs, sizeof (zfsvfs_t));
return (error);
}
error = zfsvfs_create_impl(zfvp, zfsvfs, os);
return (error);
}
int
zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
{
int error;
zfsvfs->z_vfs = NULL;
zfsvfs->z_parent = zfsvfs;
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
zfsvfs_task_unlinked_drain, zfsvfs);
ZFS_TEARDOWN_INIT(zfsvfs);
ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs);
rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
error = zfsvfs_init(zfsvfs, os);
if (error != 0) {
dmu_objset_disown(os, B_TRUE, zfsvfs);
*zfvp = NULL;
kmem_free(zfsvfs, sizeof (zfsvfs_t));
return (error);
}
*zfvp = zfsvfs;
return (0);
}
static int
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
{
int error;
/*
* Check for a bad on-disk format version now since we
* lied about owning the dataset readonly before.
*/
if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
return (SET_ERROR(EROFS));
error = zfs_register_callbacks(zfsvfs->z_vfs);
if (error)
return (error);
zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
/*
* If we are not mounting (ie: online recv), then we don't
* have to worry about replaying the log as we blocked all
* operations out since we closed the ZIL.
*/
if (mounting) {
boolean_t readonly;
ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
/*
* During replay we remove the read only flag to
* allow replays to succeed.
*/
readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
if (readonly != 0) {
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
} else {
dsl_dir_t *dd;
zap_stats_t zs;
if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
&zs) == 0) {
dataset_kstats_update_nunlinks_kstat(
&zfsvfs->z_kstat, zs.zs_num_entries);
dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
"num_entries in unlinked set: %llu",
(u_longlong_t)zs.zs_num_entries);
}
zfs_unlinked_drain(zfsvfs);
dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
dd->dd_activity_cancelled = B_FALSE;
}
/*
* Parse and replay the intent log.
*
* Because of ziltest, this must be done after
* zfs_unlinked_drain(). (Further note: ziltest
* doesn't use readonly mounts, where
* zfs_unlinked_drain() isn't called.) This is because
* ziltest causes spa_sync() to think it's committed,
* but actually it is not, so the intent log contains
* many txg's worth of changes.
*
* In particular, if object N is in the unlinked set in
* the last txg to actually sync, then it could be
* actually freed in a later txg and then reallocated
* in a yet later txg. This would write a "create
* object N" record to the intent log. Normally, this
* would be fine because the spa_sync() would have
* written out the fact that object N is free, before
* we could write the "create object N" intent log
* record.
*
* But when we are in ziltest mode, we advance the "open
* txg" without actually spa_sync()-ing the changes to
* disk. So we would see that object N is still
* allocated and in the unlinked set, and there is an
* intent log record saying to allocate it.
*/
if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
if (zil_replay_disable) {
zil_destroy(zfsvfs->z_log, B_FALSE);
} else {
boolean_t use_nc = zfsvfs->z_use_namecache;
zfsvfs->z_use_namecache = B_FALSE;
zfsvfs->z_replay = B_TRUE;
zil_replay(zfsvfs->z_os, zfsvfs,
zfs_replay_vector);
zfsvfs->z_replay = B_FALSE;
zfsvfs->z_use_namecache = use_nc;
}
}
/* restore readonly bit */
if (readonly != 0)
zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
}
/*
* Set the objset user_ptr to track its zfsvfs.
*/
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
return (0);
}
void
zfsvfs_free(zfsvfs_t *zfsvfs)
{
int i;
zfs_fuid_destroy(zfsvfs);
mutex_destroy(&zfsvfs->z_znodes_lock);
mutex_destroy(&zfsvfs->z_lock);
ASSERT3U(zfsvfs->z_nr_znodes, ==, 0);
list_destroy(&zfsvfs->z_all_znodes);
ZFS_TEARDOWN_DESTROY(zfsvfs);
ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs);
rw_destroy(&zfsvfs->z_fuid_lock);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zfsvfs->z_hold_mtx[i]);
dataset_kstats_destroy(&zfsvfs->z_kstat);
kmem_free(zfsvfs, sizeof (zfsvfs_t));
}
static void
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
{
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
if (zfsvfs->z_vfs) {
if (zfsvfs->z_use_fuids) {
vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
} else {
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
}
}
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
}
static int
zfs_domount(vfs_t *vfsp, char *osname)
{
uint64_t recordsize, fsid_guid;
int error = 0;
zfsvfs_t *zfsvfs;
ASSERT3P(vfsp, !=, NULL);
ASSERT3P(osname, !=, NULL);
error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
if (error)
return (error);
zfsvfs->z_vfs = vfsp;
if ((error = dsl_prop_get_integer(osname,
"recordsize", &recordsize, NULL)))
goto out;
zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
vfsp->vfs_data = zfsvfs;
vfsp->mnt_flag |= MNT_LOCAL;
vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
/*
* This can cause a loss of coherence between ARC and page cache
* on ZoF - unclear if the problem is in FreeBSD or ZoF
*/
vfsp->mnt_kern_flag |= MNTK_NO_IOPF; /* vn_io_fault can be used */
vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
#if defined(_KERNEL) && !defined(KMEM_DEBUG)
vfsp->mnt_kern_flag |= MNTK_FPLOOKUP;
#endif
/*
* The fsid is 64 bits, composed of an 8-bit fs type, which
* separates our fsid from any other filesystem types, and a
* 56-bit objset unique ID. The objset unique ID is unique to
* all objsets open on this system, provided by unique_create().
* The 8-bit fs type must be put in the low bits of fsid[1]
* because that's where other Solaris filesystems put it.
*/
fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0);
vfsp->vfs_fsid.val[0] = fsid_guid;
vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) |
(vfsp->mnt_vfc->vfc_typenum & 0xFF);
/*
* Set features for file system.
*/
zfs_set_fuid_feature(zfsvfs);
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
}
vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
uint64_t pval;
atime_changed_cb(zfsvfs, B_FALSE);
readonly_changed_cb(zfsvfs, B_TRUE);
if ((error = dsl_prop_get_integer(osname,
"xattr", &pval, NULL)))
goto out;
xattr_changed_cb(zfsvfs, pval);
if ((error = dsl_prop_get_integer(osname,
"acltype", &pval, NULL)))
goto out;
acl_type_changed_cb(zfsvfs, pval);
zfsvfs->z_issnap = B_TRUE;
zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
} else {
if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
goto out;
}
vfs_mountedfrom(vfsp, osname);
if (!zfsvfs->z_issnap)
zfsctl_create(zfsvfs);
out:
if (error) {
dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
zfsvfs_free(zfsvfs);
} else {
atomic_inc_32(&zfs_active_fs_count);
}
return (error);
}
static void
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
{
objset_t *os = zfsvfs->z_os;
if (!dmu_objset_is_snapshot(os))
dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
}
static int
getpoolname(const char *osname, char *poolname)
{
char *p;
p = strchr(osname, '/');
if (p == NULL) {
if (strlen(osname) >= MAXNAMELEN)
return (ENAMETOOLONG);
(void) strcpy(poolname, osname);
} else {
if (p - osname >= MAXNAMELEN)
return (ENAMETOOLONG);
(void) strncpy(poolname, osname, p - osname);
poolname[p - osname] = '\0';
}
return (0);
}
static void
fetch_osname_options(char *name, bool *checkpointrewind)
{
if (name[0] == '!') {
*checkpointrewind = true;
memmove(name, name + 1, strlen(name));
} else {
*checkpointrewind = false;
}
}
/*ARGSUSED*/
static int
zfs_mount(vfs_t *vfsp)
{
kthread_t *td = curthread;
vnode_t *mvp = vfsp->mnt_vnodecovered;
cred_t *cr = td->td_ucred;
char *osname;
int error = 0;
int canwrite;
bool checkpointrewind, isctlsnap = false;
if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
return (SET_ERROR(EINVAL));
/*
* If full-owner-access is enabled and delegated administration is
* turned on, we must set nosuid.
*/
if (zfs_super_owner &&
dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
secpolicy_fs_mount_clearopts(cr, vfsp);
}
fetch_osname_options(osname, &checkpointrewind);
isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) &&
strchr(osname, '@') != NULL);
/*
* Check for mount privilege?
*
* If we don't have privilege then see if
* we have local permission to allow it
*/
error = secpolicy_fs_mount(cr, mvp, vfsp);
if (error && isctlsnap) {
secpolicy_fs_mount_clearopts(cr, vfsp);
} else if (error) {
if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
goto out;
if (!(vfsp->vfs_flag & MS_REMOUNT)) {
vattr_t vattr;
/*
* Make sure user is the owner of the mount point
* or has sufficient privileges.
*/
vattr.va_mask = AT_UID;
vn_lock(mvp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(mvp, &vattr, cr)) {
VOP_UNLOCK1(mvp);
goto out;
}
if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
VOP_UNLOCK1(mvp);
goto out;
}
VOP_UNLOCK1(mvp);
}
secpolicy_fs_mount_clearopts(cr, vfsp);
}
/*
* Refuse to mount a filesystem if we are in a local zone and the
* dataset is not visible.
*/
if (!INGLOBALZONE(curproc) &&
(!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
boolean_t mount_snapshot = B_FALSE;
/*
* Snapshots may be mounted in .zfs for unjailed datasets
* if allowed by the jail param zfs.mount_snapshot.
*/
if (isctlsnap) {
struct prison *pr;
struct zfs_jailparam *zjp;
pr = curthread->td_ucred->cr_prison;
mtx_lock(&pr->pr_mtx);
zjp = osd_jail_get(pr, zfs_jailparam_slot);
mtx_unlock(&pr->pr_mtx);
if (zjp && zjp->mount_snapshot)
mount_snapshot = B_TRUE;
}
if (!mount_snapshot) {
error = SET_ERROR(EPERM);
goto out;
}
}
vfsp->vfs_flag |= MNT_NFS4ACLS;
/*
* When doing a remount, we simply refresh our temporary properties
* according to those options set in the current VFS options.
*/
if (vfsp->vfs_flag & MS_REMOUNT) {
zfsvfs_t *zfsvfs = vfsp->vfs_data;
/*
* Refresh mount options with z_teardown_lock blocking I/O while
* the filesystem is in an inconsistent state.
* The lock also serializes this code with filesystem
* manipulations between entry to zfs_suspend_fs() and return
* from zfs_resume_fs().
*/
ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
zfs_unregister_callbacks(zfsvfs);
error = zfs_register_callbacks(vfsp);
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
goto out;
}
/* Initial root mount: try hard to import the requested root pool. */
if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
(vfsp->vfs_flag & MNT_UPDATE) == 0) {
char pname[MAXNAMELEN];
error = getpoolname(osname, pname);
if (error == 0)
error = spa_import_rootpool(pname, checkpointrewind);
if (error)
goto out;
}
DROP_GIANT();
error = zfs_domount(vfsp, osname);
PICKUP_GIANT();
out:
return (error);
}
static int
zfs_statfs(vfs_t *vfsp, struct statfs *statp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
uint64_t refdbytes, availbytes, usedobjs, availobjs;
statp->f_version = STATFS_VERSION;
ZFS_ENTER(zfsvfs);
dmu_objset_space(zfsvfs->z_os,
&refdbytes, &availbytes, &usedobjs, &availobjs);
/*
* The underlying storage pool actually uses multiple block sizes.
* We report the fragsize as the smallest block size we support,
* and we report our blocksize as the filesystem's maximum blocksize.
*/
statp->f_bsize = SPA_MINBLOCKSIZE;
statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
/*
* The following report "total" blocks of various kinds in the
* file system, but reported in terms of f_frsize - the
* "fragment" size.
*/
statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
statp->f_bfree = availbytes / statp->f_bsize;
statp->f_bavail = statp->f_bfree; /* no root reservation */
/*
* statvfs() should really be called statufs(), because it assumes
* static metadata. ZFS doesn't preallocate files, so the best
* we can do is report the max that could possibly fit in f_files,
* and that minus the number actually used in f_ffree.
* For f_ffree, report the smaller of the number of object available
* and the number of blocks (each object will take at least a block).
*/
statp->f_ffree = MIN(availobjs, statp->f_bfree);
statp->f_files = statp->f_ffree + usedobjs;
/*
* We're a zfs filesystem.
*/
strlcpy(statp->f_fstypename, "zfs",
sizeof (statp->f_fstypename));
strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
sizeof (statp->f_mntfromname));
strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
sizeof (statp->f_mntonname));
statp->f_namemax = MAXNAMELEN - 1;
ZFS_EXIT(zfsvfs);
return (0);
}
static int
zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
znode_t *rootzp;
int error;
ZFS_ENTER(zfsvfs);
error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
if (error == 0)
*vpp = ZTOV(rootzp);
ZFS_EXIT(zfsvfs);
if (error == 0) {
error = vn_lock(*vpp, flags);
if (error != 0) {
VN_RELE(*vpp);
*vpp = NULL;
}
}
return (error);
}
/*
* Teardown the zfsvfs::z_os.
*
* Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
* and 'z_teardown_inactive_lock' held.
*/
static int
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
{
znode_t *zp;
dsl_dir_t *dd;
/*
* If someone has not already unmounted this file system,
* drain the zrele_taskq to ensure all active references to the
* zfsvfs_t have been handled only then can it be safely destroyed.
*/
if (zfsvfs->z_os) {
/*
* If we're unmounting we have to wait for the list to
* drain completely.
*
* If we're not unmounting there's no guarantee the list
* will drain completely, but zreles run from the taskq
* may add the parents of dir-based xattrs to the taskq
* so we want to wait for these.
*
* We can safely read z_nr_znodes without locking because the
* VFS has already blocked operations which add to the
* z_all_znodes list and thus increment z_nr_znodes.
*/
int round = 0;
while (zfsvfs->z_nr_znodes > 0) {
taskq_wait_outstanding(dsl_pool_zrele_taskq(
dmu_objset_pool(zfsvfs->z_os)), 0);
if (++round > 1 && !unmounting)
break;
}
}
ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
if (!unmounting) {
/*
* We purge the parent filesystem's vfsp as the parent
* filesystem and all of its snapshots have their vnode's
* v_vfsp set to the parent's filesystem's vfsp. Note,
* 'z_parent' is self referential for non-snapshots.
*/
#ifdef FREEBSD_NAMECACHE
#if __FreeBSD_version >= 1300117
cache_purgevfs(zfsvfs->z_parent->z_vfs);
#else
cache_purgevfs(zfsvfs->z_parent->z_vfs, true);
#endif
#endif
}
/*
* Close the zil. NB: Can't close the zil while zfs_inactive
* threads are blocked as zil_close can call zfs_inactive.
*/
if (zfsvfs->z_log) {
zil_close(zfsvfs->z_log);
zfsvfs->z_log = NULL;
}
ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs);
/*
* If we are not unmounting (ie: online recv) and someone already
* unmounted this file system while we were doing the switcheroo,
* or a reopen of z_os failed then just bail out now.
*/
if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
return (SET_ERROR(EIO));
}
/*
* At this point there are no vops active, and any new vops will
* fail with EIO since we have z_teardown_lock for writer (only
* relevant for forced unmount).
*
* Release all holds on dbufs.
*/
mutex_enter(&zfsvfs->z_znodes_lock);
for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
if (zp->z_sa_hdl != NULL) {
zfs_znode_dmu_fini(zp);
}
}
mutex_exit(&zfsvfs->z_znodes_lock);
/*
* If we are unmounting, set the unmounted flag and let new vops
* unblock. zfs_inactive will have the unmounted behavior, and all
* other vops will fail with EIO.
*/
if (unmounting) {
zfsvfs->z_unmounted = B_TRUE;
ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
}
/*
* z_os will be NULL if there was an error in attempting to reopen
* zfsvfs, so just return as the properties had already been
* unregistered and cached data had been evicted before.
*/
if (zfsvfs->z_os == NULL)
return (0);
/*
* Unregister properties.
*/
zfs_unregister_callbacks(zfsvfs);
/*
* Evict cached data
*/
if (!zfs_is_readonly(zfsvfs))
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
dmu_objset_evict_dbufs(zfsvfs->z_os);
dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
dsl_dir_cancel_waiters(dd);
return (0);
}
/*ARGSUSED*/
static int
zfs_umount(vfs_t *vfsp, int fflag)
{
kthread_t *td = curthread;
zfsvfs_t *zfsvfs = vfsp->vfs_data;
objset_t *os;
cred_t *cr = td->td_ucred;
int ret;
ret = secpolicy_fs_unmount(cr, vfsp);
if (ret) {
if (dsl_deleg_access((char *)vfsp->vfs_resource,
ZFS_DELEG_PERM_MOUNT, cr))
return (ret);
}
/*
* Unmount any snapshots mounted under .zfs before unmounting the
* dataset itself.
*/
if (zfsvfs->z_ctldir != NULL) {
if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
return (ret);
}
if (fflag & MS_FORCE) {
/*
* Mark file system as unmounted before calling
* vflush(FORCECLOSE). This way we ensure no future vnops
* will be called and risk operating on DOOMED vnodes.
*/
ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
zfsvfs->z_unmounted = B_TRUE;
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
}
/*
* Flush all the files.
*/
ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
if (ret != 0)
return (ret);
while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
&zfsvfs->z_unlinked_drain_task, NULL) != 0)
taskqueue_drain(zfsvfs_taskq->tq_queue,
&zfsvfs->z_unlinked_drain_task);
VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
os = zfsvfs->z_os;
/*
* z_os will be NULL if there was an error in
* attempting to reopen zfsvfs.
*/
if (os != NULL) {
/*
* Unset the objset user_ptr.
*/
mutex_enter(&os->os_user_ptr_lock);
dmu_objset_set_user(os, NULL);
mutex_exit(&os->os_user_ptr_lock);
/*
* Finally release the objset
*/
dmu_objset_disown(os, B_TRUE, zfsvfs);
}
/*
* We can now safely destroy the '.zfs' directory node.
*/
if (zfsvfs->z_ctldir != NULL)
zfsctl_destroy(zfsvfs);
zfs_freevfs(vfsp);
return (0);
}
static int
zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
znode_t *zp;
int err;
/*
* zfs_zget() can't operate on virtual entries like .zfs/ or
* .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
* This will make NFS to switch to LOOKUP instead of using VGET.
*/
if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
(zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
return (EOPNOTSUPP);
ZFS_ENTER(zfsvfs);
err = zfs_zget(zfsvfs, ino, &zp);
if (err == 0 && zp->z_unlinked) {
vrele(ZTOV(zp));
err = EINVAL;
}
if (err == 0)
*vpp = ZTOV(zp);
ZFS_EXIT(zfsvfs);
if (err == 0) {
err = vn_lock(*vpp, flags);
if (err != 0)
vrele(*vpp);
}
if (err != 0)
*vpp = NULL;
return (err);
}
static int
#if __FreeBSD_version >= 1300098
zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
struct ucred **credanonp, int *numsecflavors, int *secflavors)
#else
zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
struct ucred **credanonp, int *numsecflavors, int **secflavors)
#endif
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
/*
* If this is regular file system vfsp is the same as
* zfsvfs->z_parent->z_vfs, but if it is snapshot,
* zfsvfs->z_parent->z_vfs represents parent file system
* which we have to use here, because only this file system
* has mnt_export configured.
*/
return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
credanonp, numsecflavors, secflavors));
}
CTASSERT(SHORT_FID_LEN <= sizeof (struct fid));
CTASSERT(LONG_FID_LEN <= sizeof (struct fid));
static int
zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
{
struct componentname cn;
zfsvfs_t *zfsvfs = vfsp->vfs_data;
znode_t *zp;
vnode_t *dvp;
uint64_t object = 0;
uint64_t fid_gen = 0;
uint64_t setgen = 0;
uint64_t gen_mask;
uint64_t zp_gen;
int i, err;
*vpp = NULL;
ZFS_ENTER(zfsvfs);
/*
* On FreeBSD we can get snapshot's mount point or its parent file
* system mount point depending if snapshot is already mounted or not.
*/
if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint64_t objsetid = 0;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
ZFS_EXIT(zfsvfs);
err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
if (err)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
}
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
zfid_short_t *zfid = (zfid_short_t *)fidp;
for (i = 0; i < sizeof (zfid->zf_object); i++)
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
for (i = 0; i < sizeof (zfid->zf_gen); i++)
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
} else {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (fidp->fid_len == LONG_FID_LEN && setgen != 0) {
ZFS_EXIT(zfsvfs);
dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n",
(u_longlong_t)fid_gen, (u_longlong_t)setgen);
return (SET_ERROR(EINVAL));
}
/*
* A zero fid_gen means we are in .zfs or the .zfs/snapshot
* directory tree. If the object == zfsvfs->z_shares_dir, then
* we are in the .zfs/shares directory tree.
*/
if ((fid_gen == 0 &&
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
(zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
ZFS_EXIT(zfsvfs);
VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
if (object == ZFSCTL_INO_SNAPDIR) {
cn.cn_nameptr = "snapshot";
cn.cn_namelen = strlen(cn.cn_nameptr);
cn.cn_nameiop = LOOKUP;
cn.cn_flags = ISLASTCN | LOCKLEAF;
cn.cn_lkflags = flags;
VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
vput(dvp);
} else if (object == zfsvfs->z_shares_dir) {
/*
* XXX This branch must not be taken,
* if it is, then the lookup below will
* explode.
*/
cn.cn_nameptr = "shares";
cn.cn_namelen = strlen(cn.cn_nameptr);
cn.cn_nameiop = LOOKUP;
cn.cn_flags = ISLASTCN;
cn.cn_lkflags = flags;
VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
vput(dvp);
} else {
*vpp = dvp;
}
return (err);
}
gen_mask = -1ULL >> (64 - 8 * i);
dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object,
(u_longlong_t)fid_gen,
(u_longlong_t)gen_mask);
if ((err = zfs_zget(zfsvfs, object, &zp))) {
ZFS_EXIT(zfsvfs);
return (err);
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
sizeof (uint64_t));
zp_gen = zp_gen & gen_mask;
if (zp_gen == 0)
zp_gen = 1;
if (zp->z_unlinked || zp_gen != fid_gen) {
dprintf("znode gen (%llu) != fid gen (%llu)\n",
(u_longlong_t)zp_gen, (u_longlong_t)fid_gen);
vrele(ZTOV(zp));
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
*vpp = ZTOV(zp);
ZFS_EXIT(zfsvfs);
err = vn_lock(*vpp, flags);
if (err == 0)
vnode_create_vobject(*vpp, zp->z_size, curthread);
else
*vpp = NULL;
return (err);
}
/*
* Block out VOPs and close zfsvfs_t::z_os
*
* Note, if successful, then we return with the 'z_teardown_lock' and
* 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
* dataset and objset intact so that they can be atomically handed off during
* a subsequent rollback or recv operation and the resume thereafter.
*/
int
zfs_suspend_fs(zfsvfs_t *zfsvfs)
{
int error;
if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
return (error);
return (0);
}
/*
* Rebuild SA and release VOPs. Note that ownership of the underlying dataset
* is an invariant across any of the operations that can be performed while the
* filesystem was suspended. Whether it succeeded or failed, the preconditions
* are the same: the relevant objset and associated dataset are owned by
* zfsvfs, held, and long held on entry.
*/
int
zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
{
int err;
znode_t *zp;
ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
/*
* We already own this, so just update the objset_t, as the one we
* had before may have been evicted.
*/
objset_t *os;
VERIFY3P(ds->ds_owner, ==, zfsvfs);
VERIFY(dsl_dataset_long_held(ds));
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
dsl_pool_config_enter(dp, FTAG);
VERIFY0(dmu_objset_from_ds(ds, &os));
dsl_pool_config_exit(dp, FTAG);
err = zfsvfs_init(zfsvfs, os);
if (err != 0)
goto bail;
ds->ds_dir->dd_activity_cancelled = B_FALSE;
VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
zfs_set_fuid_feature(zfsvfs);
/*
* Attempt to re-establish all the active znodes with
* their dbufs. If a zfs_rezget() fails, then we'll let
* any potential callers discover that via ZFS_ENTER_VERIFY_VP
* when they try to use their znode.
*/
mutex_enter(&zfsvfs->z_znodes_lock);
for (zp = list_head(&zfsvfs->z_all_znodes); zp;
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
(void) zfs_rezget(zp);
}
mutex_exit(&zfsvfs->z_znodes_lock);
bail:
/* release the VOPs */
ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
if (err) {
/*
* Since we couldn't setup the sa framework, try to force
* unmount this file system.
*/
if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
vfs_ref(zfsvfs->z_vfs);
(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
}
}
return (err);
}
static void
zfs_freevfs(vfs_t *vfsp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
zfsvfs_free(zfsvfs);
atomic_dec_32(&zfs_active_fs_count);
}
#ifdef __i386__
static int desiredvnodes_backup;
#include <sys/vmmeter.h>
#include <vm/vm_page.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#endif
static void
zfs_vnodes_adjust(void)
{
#ifdef __i386__
int newdesiredvnodes;
desiredvnodes_backup = desiredvnodes;
/*
* We calculate newdesiredvnodes the same way it is done in
* vntblinit(). If it is equal to desiredvnodes, it means that
* it wasn't tuned by the administrator and we can tune it down.
*/
newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
vm_kmem_size / (5 * (sizeof (struct vm_object) +
sizeof (struct vnode))));
if (newdesiredvnodes == desiredvnodes)
desiredvnodes = (3 * newdesiredvnodes) / 4;
#endif
}
static void
zfs_vnodes_adjust_back(void)
{
#ifdef __i386__
desiredvnodes = desiredvnodes_backup;
#endif
}
void
zfs_init(void)
{
printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
/*
* Initialize .zfs directory structures
*/
zfsctl_init();
/*
* Initialize znode cache, vnode ops, etc...
*/
zfs_znode_init();
/*
* Reduce number of vnodes. Originally number of vnodes is calculated
* with UFS inode in mind. We reduce it here, because it's too big for
* ZFS/i386.
*/
zfs_vnodes_adjust();
dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
}
void
zfs_fini(void)
{
taskq_destroy(zfsvfs_taskq);
zfsctl_fini();
zfs_znode_fini();
zfs_vnodes_adjust_back();
}
int
zfs_busy(void)
{
return (zfs_active_fs_count != 0);
}
/*
* Release VOPs and unmount a suspended filesystem.
*/
int
zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
{
ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
/*
* We already own this, so just hold and rele it to update the
* objset_t, as the one we had before may have been evicted.
*/
objset_t *os;
VERIFY3P(ds->ds_owner, ==, zfsvfs);
VERIFY(dsl_dataset_long_held(ds));
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
dsl_pool_config_enter(dp, FTAG);
VERIFY0(dmu_objset_from_ds(ds, &os));
dsl_pool_config_exit(dp, FTAG);
zfsvfs->z_os = os;
/* release the VOPs */
ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
/*
* Try to force unmount this file system.
*/
(void) zfs_umount(zfsvfs->z_vfs, 0);
zfsvfs->z_unmounted = B_TRUE;
return (0);
}
int
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
{
int error;
objset_t *os = zfsvfs->z_os;
dmu_tx_t *tx;
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
return (SET_ERROR(EINVAL));
if (newvers < zfsvfs->z_version)
return (SET_ERROR(EINVAL));
if (zfs_spa_version_map(newvers) >
spa_version(dmu_objset_spa(zfsvfs->z_os)))
return (SET_ERROR(ENOTSUP));
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
ZFS_SA_ATTRS);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (error);
}
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &newvers, tx);
if (error) {
dmu_tx_commit(tx);
return (error);
}
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
uint64_t sa_obj;
ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
SPA_VERSION_SA);
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT0(error);
VERIFY0(sa_set_sa_object(os, sa_obj));
sa_register_update_callback(os, zfs_sa_upgrade);
}
spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
"from %ju to %ju", (uintmax_t)zfsvfs->z_version,
(uintmax_t)newvers);
dmu_tx_commit(tx);
zfsvfs->z_version = newvers;
os->os_version = newvers;
zfs_set_fuid_feature(zfsvfs);
return (0);
}
/*
* Read a property stored within the master node.
*/
int
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
{
uint64_t *cached_copy = NULL;
/*
* Figure out where in the objset_t the cached copy would live, if it
* is available for the requested property.
*/
if (os != NULL) {
switch (prop) {
case ZFS_PROP_VERSION:
cached_copy = &os->os_version;
break;
case ZFS_PROP_NORMALIZE:
cached_copy = &os->os_normalization;
break;
case ZFS_PROP_UTF8ONLY:
cached_copy = &os->os_utf8only;
break;
case ZFS_PROP_CASE:
cached_copy = &os->os_casesensitivity;
break;
default:
break;
}
}
if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
*value = *cached_copy;
return (0);
}
/*
* If the property wasn't cached, look up the file system's value for
* the property. For the version property, we look up a slightly
* different string.
*/
const char *pname;
int error = ENOENT;
if (prop == ZFS_PROP_VERSION) {
pname = ZPL_VERSION_STR;
} else {
pname = zfs_prop_to_name(prop);
}
if (os != NULL) {
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
}
if (error == ENOENT) {
/* No value set, use the default value */
switch (prop) {
case ZFS_PROP_VERSION:
*value = ZPL_VERSION;
break;
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
*value = 0;
break;
case ZFS_PROP_CASE:
*value = ZFS_CASE_SENSITIVE;
break;
case ZFS_PROP_ACLTYPE:
*value = ZFS_ACLTYPE_NFSV4;
break;
default:
return (error);
}
error = 0;
}
/*
* If one of the methods for getting the property value above worked,
* copy it into the objset_t's cache.
*/
if (error == 0 && cached_copy != NULL) {
*cached_copy = *value;
}
return (error);
}
/*
* Return true if the corresponding vfs's unmounted flag is set.
* Otherwise return false.
* If this function returns true we know VFS unmount has been initiated.
*/
boolean_t
zfs_get_vfs_flag_unmounted(objset_t *os)
{
zfsvfs_t *zfvp;
boolean_t unmounted = B_FALSE;
ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS);
mutex_enter(&os->os_user_ptr_lock);
zfvp = dmu_objset_get_user(os);
if (zfvp != NULL && zfvp->z_vfs != NULL &&
(zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
unmounted = B_TRUE;
mutex_exit(&os->os_user_ptr_lock);
return (unmounted);
}
#ifdef _KERNEL
void
zfsvfs_update_fromname(const char *oldname, const char *newname)
{
char tmpbuf[MAXPATHLEN];
struct mount *mp;
char *fromname;
size_t oldlen;
oldlen = strlen(oldname);
mtx_lock(&mountlist_mtx);
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
fromname = mp->mnt_stat.f_mntfromname;
if (strcmp(fromname, oldname) == 0) {
(void) strlcpy(fromname, newname,
sizeof (mp->mnt_stat.f_mntfromname));
continue;
}
if (strncmp(fromname, oldname, oldlen) == 0 &&
(fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
(void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
newname, fromname + oldlen);
(void) strlcpy(fromname, tmpbuf,
sizeof (mp->mnt_stat.f_mntfromname));
continue;
}
}
mtx_unlock(&mountlist_mtx);
}
#endif
/*
* Find a prison with ZFS info.
* Return the ZFS info and the (locked) prison.
*/
static struct zfs_jailparam *
zfs_jailparam_find(struct prison *spr, struct prison **prp)
{
struct prison *pr;
struct zfs_jailparam *zjp;
for (pr = spr; ; pr = pr->pr_parent) {
mtx_lock(&pr->pr_mtx);
if (pr == &prison0) {
zjp = &zfs_jailparam0;
break;
}
zjp = osd_jail_get(pr, zfs_jailparam_slot);
if (zjp != NULL)
break;
mtx_unlock(&pr->pr_mtx);
}
*prp = pr;
return (zjp);
}
/*
* Ensure a prison has its own ZFS info. If zjpp is non-null, point it to the
* ZFS info and lock the prison.
*/
static void
zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp)
{
struct prison *ppr;
struct zfs_jailparam *zjp, *nzjp;
void **rsv;
/* If this prison already has ZFS info, return that. */
zjp = zfs_jailparam_find(pr, &ppr);
if (ppr == pr)
goto done;
/*
* Allocate a new info record. Then check again, in case something
* changed during the allocation.
*/
mtx_unlock(&ppr->pr_mtx);
nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK);
rsv = osd_reserve(zfs_jailparam_slot);
zjp = zfs_jailparam_find(pr, &ppr);
if (ppr == pr) {
free(nzjp, M_PRISON);
osd_free_reserved(rsv);
goto done;
}
/* Inherit the initial values from the ancestor. */
mtx_lock(&pr->pr_mtx);
(void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp);
(void) memcpy(nzjp, zjp, sizeof (*zjp));
zjp = nzjp;
mtx_unlock(&ppr->pr_mtx);
done:
if (zjpp != NULL)
*zjpp = zjp;
else
mtx_unlock(&pr->pr_mtx);
}
/*
* Jail OSD methods for ZFS VFS info.
*/
static int
zfs_jailparam_create(void *obj, void *data)
{
struct prison *pr = obj;
struct vfsoptlist *opts = data;
int jsys;
if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 &&
jsys == JAIL_SYS_INHERIT)
return (0);
/*
* Inherit a prison's initial values from its parent
* (different from JAIL_SYS_INHERIT which also inherits changes).
*/
zfs_jailparam_alloc(pr, NULL);
return (0);
}
static int
zfs_jailparam_get(void *obj, void *data)
{
struct prison *ppr, *pr = obj;
struct vfsoptlist *opts = data;
struct zfs_jailparam *zjp;
int jsys, error;
zjp = zfs_jailparam_find(pr, &ppr);
jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT;
error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys));
if (error != 0 && error != ENOENT)
goto done;
if (jsys == JAIL_SYS_NEW) {
error = vfs_setopt(opts, "zfs.mount_snapshot",
&zjp->mount_snapshot, sizeof (zjp->mount_snapshot));
if (error != 0 && error != ENOENT)
goto done;
} else {
/*
* If this prison is inheriting its ZFS info, report
* empty/zero parameters.
*/
static int mount_snapshot = 0;
error = vfs_setopt(opts, "zfs.mount_snapshot",
&mount_snapshot, sizeof (mount_snapshot));
if (error != 0 && error != ENOENT)
goto done;
}
error = 0;
done:
mtx_unlock(&ppr->pr_mtx);
return (error);
}
static int
zfs_jailparam_set(void *obj, void *data)
{
struct prison *pr = obj;
struct prison *ppr;
struct vfsoptlist *opts = data;
int error, jsys, mount_snapshot;
/* Set the parameters, which should be correct. */
error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
if (error == ENOENT)
jsys = -1;
error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
sizeof (mount_snapshot));
if (error == ENOENT)
mount_snapshot = -1;
else
jsys = JAIL_SYS_NEW;
if (jsys == JAIL_SYS_NEW) {
/* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */
struct zfs_jailparam *zjp;
/*
* A child jail cannot have more permissions than its parent
*/
if (pr->pr_parent != &prison0) {
zjp = zfs_jailparam_find(pr->pr_parent, &ppr);
mtx_unlock(&ppr->pr_mtx);
if (zjp->mount_snapshot < mount_snapshot) {
return (EPERM);
}
}
zfs_jailparam_alloc(pr, &zjp);
if (mount_snapshot != -1)
zjp->mount_snapshot = mount_snapshot;
mtx_unlock(&pr->pr_mtx);
} else {
/* "zfs=inherit": inherit the parent's ZFS info. */
mtx_lock(&pr->pr_mtx);
osd_jail_del(pr, zfs_jailparam_slot);
mtx_unlock(&pr->pr_mtx);
}
return (0);
}
static int
zfs_jailparam_check(void *obj __unused, void *data)
{
struct vfsoptlist *opts = data;
int error, jsys, mount_snapshot;
/* Check that the parameters are correct. */
error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
if (error != ENOENT) {
if (error != 0)
return (error);
if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT)
return (EINVAL);
}
error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
sizeof (mount_snapshot));
if (error != ENOENT) {
if (error != 0)
return (error);
if (mount_snapshot != 0 && mount_snapshot != 1)
return (EINVAL);
}
return (0);
}
static void
zfs_jailparam_destroy(void *data)
{
free(data, M_PRISON);
}
static void
zfs_jailparam_sysinit(void *arg __unused)
{
struct prison *pr;
osd_method_t methods[PR_MAXMETHOD] = {
[PR_METHOD_CREATE] = zfs_jailparam_create,
[PR_METHOD_GET] = zfs_jailparam_get,
[PR_METHOD_SET] = zfs_jailparam_set,
[PR_METHOD_CHECK] = zfs_jailparam_check,
};
zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods);
/* Copy the defaults to any existing prisons. */
sx_slock(&allprison_lock);
TAILQ_FOREACH(pr, &allprison, pr_list)
zfs_jailparam_alloc(pr, NULL);
sx_sunlock(&allprison_lock);
}
static void
zfs_jailparam_sysuninit(void *arg __unused)
{
osd_jail_deregister(zfs_jailparam_slot);
}
SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY,
zfs_jailparam_sysinit, NULL);
SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY,
zfs_jailparam_sysuninit, NULL);