blob: 8de14ff2a2663eebec95c52e34d4c1572bccba84 [file] [log] [blame]
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright (c) 2019 by Delphix. All rights reserved.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/avl.h>
#include <sys/btree.h>
#include <sys/time.h>
#include <sys/resource.h>
#define BUFSIZE 256
int seed = 0;
int stress_timeout = 180;
int contents_frequency = 100;
int tree_limit = 64 * 1024;
boolean_t stress_only = B_FALSE;
static void
usage(int exit_value)
{
(void) fprintf(stderr, "Usage:\tbtree_test -n <test_name>\n");
(void) fprintf(stderr, "\tbtree_test -s [-r <seed>] [-l <limit>] "
"[-t timeout>] [-c check_contents]\n");
(void) fprintf(stderr, "\tbtree_test [-r <seed>] [-l <limit>] "
"[-t timeout>] [-c check_contents]\n");
(void) fprintf(stderr, "\n With the -n option, run the named "
"negative test. With the -s option,\n");
(void) fprintf(stderr, " run the stress test according to the "
"other options passed. With\n");
(void) fprintf(stderr, " neither, run all the positive tests, "
"including the stress test with\n");
(void) fprintf(stderr, " the default options.\n");
(void) fprintf(stderr, "\n Options that control the stress test\n");
(void) fprintf(stderr, "\t-c stress iterations after which to compare "
"tree contents [default: 100]\n");
(void) fprintf(stderr, "\t-l the largest value to allow in the tree "
"[default: 1M]\n");
(void) fprintf(stderr, "\t-r random seed [default: from "
"gettimeofday()]\n");
(void) fprintf(stderr, "\t-t seconds to let the stress test run "
"[default: 180]\n");
exit(exit_value);
}
typedef struct int_node {
avl_node_t node;
uint64_t data;
} int_node_t;
/*
* Utility functions
*/
static int
avl_compare(const void *v1, const void *v2)
{
const int_node_t *n1 = v1;
const int_node_t *n2 = v2;
uint64_t a = n1->data;
uint64_t b = n2->data;
return (TREE_CMP(a, b));
}
static int
zfs_btree_compare(const void *v1, const void *v2)
{
const uint64_t *a = v1;
const uint64_t *b = v2;
return (TREE_CMP(*a, *b));
}
static void
verify_contents(avl_tree_t *avl, zfs_btree_t *bt)
{
static int count = 0;
zfs_btree_index_t bt_idx = {0};
int_node_t *node;
uint64_t *data;
boolean_t forward = count % 2 == 0 ? B_TRUE : B_FALSE;
count++;
ASSERT3U(avl_numnodes(avl), ==, zfs_btree_numnodes(bt));
if (forward == B_TRUE) {
node = avl_first(avl);
data = zfs_btree_first(bt, &bt_idx);
} else {
node = avl_last(avl);
data = zfs_btree_last(bt, &bt_idx);
}
while (node != NULL) {
ASSERT3U(*data, ==, node->data);
if (forward == B_TRUE) {
data = zfs_btree_next(bt, &bt_idx, &bt_idx);
node = AVL_NEXT(avl, node);
} else {
data = zfs_btree_prev(bt, &bt_idx, &bt_idx);
node = AVL_PREV(avl, node);
}
}
}
static void
verify_node(avl_tree_t *avl, zfs_btree_t *bt, int_node_t *node)
{
zfs_btree_index_t bt_idx = {0};
zfs_btree_index_t bt_idx2 = {0};
int_node_t *inp;
uint64_t data = node->data;
uint64_t *rv = NULL;
ASSERT3U(avl_numnodes(avl), ==, zfs_btree_numnodes(bt));
ASSERT3P((rv = (uint64_t *)zfs_btree_find(bt, &data, &bt_idx)), !=,
NULL);
ASSERT3S(*rv, ==, data);
ASSERT3P(zfs_btree_get(bt, &bt_idx), !=, NULL);
ASSERT3S(data, ==, *(uint64_t *)zfs_btree_get(bt, &bt_idx));
if ((inp = AVL_NEXT(avl, node)) != NULL) {
ASSERT3P((rv = zfs_btree_next(bt, &bt_idx, &bt_idx2)), !=,
NULL);
ASSERT3P(rv, ==, zfs_btree_get(bt, &bt_idx2));
ASSERT3S(inp->data, ==, *rv);
} else {
ASSERT3U(data, ==, *(uint64_t *)zfs_btree_last(bt, &bt_idx));
}
if ((inp = AVL_PREV(avl, node)) != NULL) {
ASSERT3P((rv = zfs_btree_prev(bt, &bt_idx, &bt_idx2)), !=,
NULL);
ASSERT3P(rv, ==, zfs_btree_get(bt, &bt_idx2));
ASSERT3S(inp->data, ==, *rv);
} else {
ASSERT3U(data, ==, *(uint64_t *)zfs_btree_first(bt, &bt_idx));
}
}
/*
* Tests
*/
/* Verify that zfs_btree_find works correctly with a NULL index. */
static int
find_without_index(zfs_btree_t *bt, char *why)
{
u_longlong_t *p, i = 12345;
zfs_btree_add(bt, &i);
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, NULL)) == NULL ||
*p != i) {
snprintf(why, BUFSIZE, "Unexpectedly found %llu\n",
p == NULL ? 0 : *p);
return (1);
}
i++;
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, NULL)) != NULL) {
snprintf(why, BUFSIZE, "Found bad value: %llu\n", *p);
return (1);
}
return (0);
}
/* Verify simple insertion and removal from the tree. */
static int
insert_find_remove(zfs_btree_t *bt, char *why)
{
u_longlong_t *p, i = 12345;
zfs_btree_index_t bt_idx = {0};
/* Insert 'i' into the tree, and attempt to find it again. */
zfs_btree_add(bt, &i);
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, &bt_idx)) == NULL) {
snprintf(why, BUFSIZE, "Didn't find value in tree\n");
return (1);
} else if (*p != i) {
snprintf(why, BUFSIZE, "Found (%llu) in tree\n", *p);
return (1);
}
ASSERT3S(zfs_btree_numnodes(bt), ==, 1);
zfs_btree_verify(bt);
/* Remove 'i' from the tree, and verify it is not found. */
zfs_btree_remove(bt, &i);
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, &bt_idx)) != NULL) {
snprintf(why, BUFSIZE, "Found removed value (%llu)\n", *p);
return (1);
}
ASSERT3S(zfs_btree_numnodes(bt), ==, 0);
zfs_btree_verify(bt);
return (0);
}
/*
* Add a number of random entries into a btree and avl tree. Then walk them
* backwards and forwards while emptying the tree, verifying the trees look
* the same.
*/
static int
drain_tree(zfs_btree_t *bt, char *why)
{
uint64_t *p;
avl_tree_t avl;
int i = 0;
int_node_t *node;
avl_index_t avl_idx = {0};
zfs_btree_index_t bt_idx = {0};
avl_create(&avl, avl_compare, sizeof (int_node_t),
offsetof(int_node_t, node));
/* Fill both trees with the same data */
for (i = 0; i < 64 * 1024; i++) {
void *ret;
u_longlong_t randval = random();
node = malloc(sizeof (int_node_t));
if ((p = (uint64_t *)zfs_btree_find(bt, &randval, &bt_idx)) !=
NULL) {
continue;
}
zfs_btree_add_idx(bt, &randval, &bt_idx);
node->data = randval;
if ((ret = avl_find(&avl, node, &avl_idx)) != NULL) {
snprintf(why, BUFSIZE, "Found in avl: %llu\n", randval);
return (1);
}
avl_insert(&avl, node, avl_idx);
}
/* Remove data from either side of the trees, comparing the data */
while (avl_numnodes(&avl) != 0) {
uint64_t *data;
ASSERT3U(avl_numnodes(&avl), ==, zfs_btree_numnodes(bt));
if (avl_numnodes(&avl) % 2 == 0) {
node = avl_first(&avl);
data = zfs_btree_first(bt, &bt_idx);
} else {
node = avl_last(&avl);
data = zfs_btree_last(bt, &bt_idx);
}
ASSERT3U(node->data, ==, *data);
zfs_btree_remove_idx(bt, &bt_idx);
avl_remove(&avl, node);
if (avl_numnodes(&avl) == 0) {
break;
}
node = avl_first(&avl);
ASSERT3U(node->data, ==,
*(uint64_t *)zfs_btree_first(bt, NULL));
node = avl_last(&avl);
ASSERT3U(node->data, ==, *(uint64_t *)zfs_btree_last(bt, NULL));
}
ASSERT3S(zfs_btree_numnodes(bt), ==, 0);
void *avl_cookie = NULL;
while ((node = avl_destroy_nodes(&avl, &avl_cookie)) != NULL)
free(node);
avl_destroy(&avl);
return (0);
}
/*
* This test uses an avl and btree, and continually processes new random
* values. Each value is either removed or inserted, depending on whether
* or not it is found in the tree. The test periodically checks that both
* trees have the same data and does consistency checks. This stress
* option can also be run on its own from the command line.
*/
static int
stress_tree(zfs_btree_t *bt, char *why)
{
avl_tree_t avl;
int_node_t *node;
struct timeval tp;
time_t t0;
int insertions = 0, removals = 0, iterations = 0;
u_longlong_t max = 0, min = UINT64_MAX;
(void) gettimeofday(&tp, NULL);
t0 = tp.tv_sec;
avl_create(&avl, avl_compare, sizeof (int_node_t),
offsetof(int_node_t, node));
while (1) {
zfs_btree_index_t bt_idx = {0};
avl_index_t avl_idx = {0};
uint64_t randval = random() % tree_limit;
node = malloc(sizeof (*node));
node->data = randval;
max = randval > max ? randval : max;
min = randval < min ? randval : min;
void *ret = avl_find(&avl, node, &avl_idx);
if (ret == NULL) {
insertions++;
avl_insert(&avl, node, avl_idx);
ASSERT3P(zfs_btree_find(bt, &randval, &bt_idx), ==,
NULL);
zfs_btree_add_idx(bt, &randval, &bt_idx);
verify_node(&avl, bt, node);
} else {
removals++;
verify_node(&avl, bt, ret);
zfs_btree_remove(bt, &randval);
avl_remove(&avl, ret);
free(ret);
free(node);
}
zfs_btree_verify(bt);
iterations++;
if (iterations % contents_frequency == 0) {
verify_contents(&avl, bt);
}
zfs_btree_verify(bt);
(void) gettimeofday(&tp, NULL);
if (tp.tv_sec > t0 + stress_timeout) {
fprintf(stderr, "insertions/removals: %u/%u\nmax/min: "
"%llu/%llu\n", insertions, removals, max, min);
break;
}
}
void *avl_cookie = NULL;
while ((node = avl_destroy_nodes(&avl, &avl_cookie)) != NULL)
free(node);
avl_destroy(&avl);
if (stress_only) {
zfs_btree_index_t *idx = NULL;
uint64_t *rv;
while ((rv = zfs_btree_destroy_nodes(bt, &idx)) != NULL)
;
zfs_btree_verify(bt);
}
return (0);
}
/*
* Verify inserting a duplicate value will cause a crash.
* Note: negative test; return of 0 is a failure.
*/
static int
insert_duplicate(zfs_btree_t *bt)
{
uint64_t *p, i = 23456;
zfs_btree_index_t bt_idx = {0};
if ((p = (uint64_t *)zfs_btree_find(bt, &i, &bt_idx)) != NULL) {
fprintf(stderr, "Found value in empty tree.\n");
return (0);
}
zfs_btree_add_idx(bt, &i, &bt_idx);
if ((p = (uint64_t *)zfs_btree_find(bt, &i, &bt_idx)) == NULL) {
fprintf(stderr, "Did not find expected value.\n");
return (0);
}
/* Crash on inserting a duplicate */
zfs_btree_add_idx(bt, &i, NULL);
return (0);
}
/*
* Verify removing a non-existent value will cause a crash.
* Note: negative test; return of 0 is a failure.
*/
static int
remove_missing(zfs_btree_t *bt)
{
uint64_t *p, i = 23456;
zfs_btree_index_t bt_idx = {0};
if ((p = (uint64_t *)zfs_btree_find(bt, &i, &bt_idx)) != NULL) {
fprintf(stderr, "Found value in empty tree.\n");
return (0);
}
/* Crash removing a nonexistent entry */
zfs_btree_remove(bt, &i);
return (0);
}
static int
do_negative_test(zfs_btree_t *bt, char *test_name)
{
int rval = 0;
struct rlimit rlim = {0};
setrlimit(RLIMIT_CORE, &rlim);
if (strcmp(test_name, "insert_duplicate") == 0) {
rval = insert_duplicate(bt);
} else if (strcmp(test_name, "remove_missing") == 0) {
rval = remove_missing(bt);
}
/*
* Return 0, since callers will expect non-zero return values for
* these tests, and we should have crashed before getting here anyway.
*/
(void) fprintf(stderr, "Test: %s returned %d.\n", test_name, rval);
return (0);
}
typedef struct btree_test {
const char *name;
int (*func)(zfs_btree_t *, char *);
} btree_test_t;
static btree_test_t test_table[] = {
{ "insert_find_remove", insert_find_remove },
{ "find_without_index", find_without_index },
{ "drain_tree", drain_tree },
{ "stress_tree", stress_tree },
{ NULL, NULL }
};
int
main(int argc, char *argv[])
{
char *negative_test = NULL;
int failed_tests = 0;
struct timeval tp;
zfs_btree_t bt;
int c;
while ((c = getopt(argc, argv, "c:l:n:r:st:")) != -1) {
switch (c) {
case 'c':
contents_frequency = atoi(optarg);
break;
case 'l':
tree_limit = atoi(optarg);
break;
case 'n':
negative_test = optarg;
break;
case 'r':
seed = atoi(optarg);
break;
case 's':
stress_only = B_TRUE;
break;
case 't':
stress_timeout = atoi(optarg);
break;
case 'h':
default:
usage(1);
break;
}
}
argc -= optind;
argv += optind;
optind = 1;
if (seed == 0) {
(void) gettimeofday(&tp, NULL);
seed = tp.tv_sec;
}
srandom(seed);
zfs_btree_init();
zfs_btree_create(&bt, zfs_btree_compare, sizeof (uint64_t));
/*
* This runs the named negative test. None of them should
* return, as they both cause crashes.
*/
if (negative_test) {
return (do_negative_test(&bt, negative_test));
}
fprintf(stderr, "Seed: %u\n", seed);
/*
* This is a stress test that does operations on a btree over the
* requested timeout period, verifying them against identical
* operations in an avl tree.
*/
if (stress_only != 0) {
return (stress_tree(&bt, NULL));
}
/* Do the positive tests */
btree_test_t *test = &test_table[0];
while (test->name) {
int retval;
uint64_t *rv;
char why[BUFSIZE] = {0};
zfs_btree_index_t *idx = NULL;
(void) fprintf(stdout, "%-20s", test->name);
retval = test->func(&bt, why);
if (retval == 0) {
(void) fprintf(stdout, "ok\n");
} else {
(void) fprintf(stdout, "failed with %d\n", retval);
if (strlen(why) != 0)
(void) fprintf(stdout, "\t%s\n", why);
why[0] = '\0';
failed_tests++;
}
/* Remove all the elements and re-verify the tree */
while ((rv = zfs_btree_destroy_nodes(&bt, &idx)) != NULL)
;
zfs_btree_verify(&bt);
test++;
}
zfs_btree_verify(&bt);
zfs_btree_fini();
return (failed_tests);
}