| /* |
| * Implementation of the Skein block functions. |
| * Source code author: Doug Whiting, 2008. |
| * This algorithm and source code is released to the public domain. |
| * Compile-time switches: |
| * SKEIN_USE_ASM -- set bits (256/512/1024) to select which |
| * versions use ASM code for block processing |
| * [default: use C for all block sizes] |
| */ |
| /* Copyright 2013 Doug Whiting. This code is released to the public domain. */ |
| |
| #include <sys/skein.h> |
| #include "skein_impl.h" |
| #include <sys/isa_defs.h> /* for _ILP32 */ |
| |
| #ifndef SKEIN_USE_ASM |
| #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */ |
| #endif |
| |
| #ifndef SKEIN_LOOP |
| /* |
| * The low-level checksum routines use a lot of stack space. On systems where |
| * small stacks frame are enforced (like 32-bit kernel builds), do not unroll |
| * checksum calculations to save stack space. |
| * |
| * Even with no loops unrolled, we still can exceed the 1k stack frame limit |
| * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can |
| * safely ignore it though, since that the checksum functions will be called |
| * from a worker thread that won't be using much stack. That's why we have |
| * the #pragma here to ignore the warning. |
| */ |
| #if defined(_ILP32) || defined(__powerpc) /* Assume small stack */ |
| #pragma GCC diagnostic ignored "-Wframe-larger-than=" |
| /* |
| * We're running on 32-bit, don't unroll loops to save stack frame space |
| * |
| * Due to the ways the calculations on SKEIN_LOOP are done in |
| * Skein_*_Process_Block(), a value of 111 disables unrolling loops |
| * in any of those functions. |
| */ |
| #define SKEIN_LOOP 111 |
| #else |
| /* We're compiling with large stacks */ |
| #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */ |
| #endif |
| #endif |
| |
| /* some useful definitions for code here */ |
| #define BLK_BITS (WCNT*64) |
| #define KW_TWK_BASE (0) |
| #define KW_KEY_BASE (3) |
| #define ks (kw + KW_KEY_BASE) |
| #define ts (kw + KW_TWK_BASE) |
| |
| /* no debugging in Illumos version */ |
| #define DebugSaveTweak(ctx) |
| |
| /* Skein_256 */ |
| #if !(SKEIN_USE_ASM & 256) |
| void |
| Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr, |
| size_t blkCnt, size_t byteCntAdd) |
| { |
| enum { |
| WCNT = SKEIN_256_STATE_WORDS |
| }; |
| #undef RCNT |
| #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8) |
| |
| #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ |
| #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10) |
| #else |
| #define SKEIN_UNROLL_256 (0) |
| #endif |
| |
| #if SKEIN_UNROLL_256 |
| #if (RCNT % SKEIN_UNROLL_256) |
| #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */ |
| #endif |
| size_t r; |
| /* key schedule words : chaining vars + tweak + "rotation" */ |
| uint64_t kw[WCNT + 4 + RCNT * 2]; |
| #else |
| uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */ |
| #endif |
| /* local copy of context vars, for speed */ |
| uint64_t X0, X1, X2, X3; |
| uint64_t w[WCNT]; /* local copy of input block */ |
| #ifdef SKEIN_DEBUG |
| /* use for debugging (help compiler put Xn in registers) */ |
| const uint64_t *Xptr[4]; |
| Xptr[0] = &X0; |
| Xptr[1] = &X1; |
| Xptr[2] = &X2; |
| Xptr[3] = &X3; |
| #endif |
| Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */ |
| ts[0] = ctx->h.T[0]; |
| ts[1] = ctx->h.T[1]; |
| do { |
| /* |
| * this implementation only supports 2**64 input bytes |
| * (no carry out here) |
| */ |
| ts[0] += byteCntAdd; /* update processed length */ |
| |
| /* precompute the key schedule for this block */ |
| ks[0] = ctx->X[0]; |
| ks[1] = ctx->X[1]; |
| ks[2] = ctx->X[2]; |
| ks[3] = ctx->X[3]; |
| ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY; |
| |
| ts[2] = ts[0] ^ ts[1]; |
| |
| /* get input block in little-endian format */ |
| Skein_Get64_LSB_First(w, blkPtr, WCNT); |
| DebugSaveTweak(ctx); |
| Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts); |
| |
| X0 = w[0] + ks[0]; /* do the first full key injection */ |
| X1 = w[1] + ks[1] + ts[0]; |
| X2 = w[2] + ks[2] + ts[1]; |
| X3 = w[3] + ks[3]; |
| |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, |
| Xptr); /* show starting state values */ |
| |
| blkPtr += SKEIN_256_BLOCK_BYTES; |
| |
| /* run the rounds */ |
| |
| #define Round256(p0, p1, p2, p3, ROT, rNum) \ |
| X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ |
| X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ |
| |
| #if SKEIN_UNROLL_256 == 0 |
| #define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \ |
| Round256(p0, p1, p2, p3, ROT, rNum) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr); |
| |
| #define I256(R) \ |
| X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \ |
| X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \ |
| X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \ |
| X3 += ks[((R) + 4) % 5] + (R) + 1; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| #else /* looping version */ |
| #define R256(p0, p1, p2, p3, ROT, rNum) \ |
| Round256(p0, p1, p2, p3, ROT, rNum) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr); |
| |
| #define I256(R) \ |
| X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \ |
| X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \ |
| X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \ |
| X3 += ks[r + (R) + 3] + r + (R); \ |
| ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \ |
| ts[r + (R) + 2] = ts[r + (R) - 1]; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| |
| /* loop through it */ |
| for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256) |
| #endif |
| { |
| #define R256_8_rounds(R) \ |
| R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \ |
| R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \ |
| R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \ |
| R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \ |
| I256(2 * (R)); \ |
| R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \ |
| R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \ |
| R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \ |
| R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \ |
| I256(2 * (R) + 1); |
| |
| R256_8_rounds(0); |
| |
| #define R256_Unroll_R(NN) \ |
| ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \ |
| (SKEIN_UNROLL_256 > (NN))) |
| |
| #if R256_Unroll_R(1) |
| R256_8_rounds(1); |
| #endif |
| #if R256_Unroll_R(2) |
| R256_8_rounds(2); |
| #endif |
| #if R256_Unroll_R(3) |
| R256_8_rounds(3); |
| #endif |
| #if R256_Unroll_R(4) |
| R256_8_rounds(4); |
| #endif |
| #if R256_Unroll_R(5) |
| R256_8_rounds(5); |
| #endif |
| #if R256_Unroll_R(6) |
| R256_8_rounds(6); |
| #endif |
| #if R256_Unroll_R(7) |
| R256_8_rounds(7); |
| #endif |
| #if R256_Unroll_R(8) |
| R256_8_rounds(8); |
| #endif |
| #if R256_Unroll_R(9) |
| R256_8_rounds(9); |
| #endif |
| #if R256_Unroll_R(10) |
| R256_8_rounds(10); |
| #endif |
| #if R256_Unroll_R(11) |
| R256_8_rounds(11); |
| #endif |
| #if R256_Unroll_R(12) |
| R256_8_rounds(12); |
| #endif |
| #if R256_Unroll_R(13) |
| R256_8_rounds(13); |
| #endif |
| #if R256_Unroll_R(14) |
| R256_8_rounds(14); |
| #endif |
| #if (SKEIN_UNROLL_256 > 14) |
| #error "need more unrolling in Skein_256_Process_Block" |
| #endif |
| } |
| /* |
| * do the final "feedforward" xor, update context chaining vars |
| */ |
| ctx->X[0] = X0 ^ w[0]; |
| ctx->X[1] = X1 ^ w[1]; |
| ctx->X[2] = X2 ^ w[2]; |
| ctx->X[3] = X3 ^ w[3]; |
| |
| Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); |
| |
| ts[1] &= ~SKEIN_T1_FLAG_FIRST; |
| } while (--blkCnt); |
| ctx->h.T[0] = ts[0]; |
| ctx->h.T[1] = ts[1]; |
| } |
| |
| #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) |
| size_t |
| Skein_256_Process_Block_CodeSize(void) |
| { |
| return ((uint8_t *)Skein_256_Process_Block_CodeSize) - |
| ((uint8_t *)Skein_256_Process_Block); |
| } |
| |
| uint_t |
| Skein_256_Unroll_Cnt(void) |
| { |
| return (SKEIN_UNROLL_256); |
| } |
| #endif |
| #endif |
| |
| /* Skein_512 */ |
| #if !(SKEIN_USE_ASM & 512) |
| void |
| Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr, |
| size_t blkCnt, size_t byteCntAdd) |
| { |
| enum { |
| WCNT = SKEIN_512_STATE_WORDS |
| }; |
| #undef RCNT |
| #define RCNT (SKEIN_512_ROUNDS_TOTAL / 8) |
| |
| #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ |
| #define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10) |
| #else |
| #define SKEIN_UNROLL_512 (0) |
| #endif |
| |
| #if SKEIN_UNROLL_512 |
| #if (RCNT % SKEIN_UNROLL_512) |
| #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */ |
| #endif |
| size_t r; |
| /* key schedule words : chaining vars + tweak + "rotation" */ |
| uint64_t kw[WCNT + 4 + RCNT * 2]; |
| #else |
| uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */ |
| #endif |
| /* local copy of vars, for speed */ |
| uint64_t X0, X1, X2, X3, X4, X5, X6, X7; |
| uint64_t w[WCNT]; /* local copy of input block */ |
| #ifdef SKEIN_DEBUG |
| /* use for debugging (help compiler put Xn in registers) */ |
| const uint64_t *Xptr[8]; |
| Xptr[0] = &X0; |
| Xptr[1] = &X1; |
| Xptr[2] = &X2; |
| Xptr[3] = &X3; |
| Xptr[4] = &X4; |
| Xptr[5] = &X5; |
| Xptr[6] = &X6; |
| Xptr[7] = &X7; |
| #endif |
| |
| Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */ |
| ts[0] = ctx->h.T[0]; |
| ts[1] = ctx->h.T[1]; |
| do { |
| /* |
| * this implementation only supports 2**64 input bytes |
| * (no carry out here) |
| */ |
| ts[0] += byteCntAdd; /* update processed length */ |
| |
| /* precompute the key schedule for this block */ |
| ks[0] = ctx->X[0]; |
| ks[1] = ctx->X[1]; |
| ks[2] = ctx->X[2]; |
| ks[3] = ctx->X[3]; |
| ks[4] = ctx->X[4]; |
| ks[5] = ctx->X[5]; |
| ks[6] = ctx->X[6]; |
| ks[7] = ctx->X[7]; |
| ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ |
| ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY; |
| |
| ts[2] = ts[0] ^ ts[1]; |
| |
| /* get input block in little-endian format */ |
| Skein_Get64_LSB_First(w, blkPtr, WCNT); |
| DebugSaveTweak(ctx); |
| Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts); |
| |
| X0 = w[0] + ks[0]; /* do the first full key injection */ |
| X1 = w[1] + ks[1]; |
| X2 = w[2] + ks[2]; |
| X3 = w[3] + ks[3]; |
| X4 = w[4] + ks[4]; |
| X5 = w[5] + ks[5] + ts[0]; |
| X6 = w[6] + ks[6] + ts[1]; |
| X7 = w[7] + ks[7]; |
| |
| blkPtr += SKEIN_512_BLOCK_BYTES; |
| |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, |
| Xptr); |
| /* run the rounds */ |
| #define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \ |
| X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\ |
| X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\ |
| X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\ |
| X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; |
| |
| #if SKEIN_UNROLL_512 == 0 |
| #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \ |
| Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr); |
| |
| #define I512(R) \ |
| X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\ |
| X1 += ks[((R) + 2) % 9]; \ |
| X2 += ks[((R) + 3) % 9]; \ |
| X3 += ks[((R) + 4) % 9]; \ |
| X4 += ks[((R) + 5) % 9]; \ |
| X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \ |
| X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \ |
| X7 += ks[((R) + 8) % 9] + (R) + 1; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| #else /* looping version */ |
| #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \ |
| Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr); |
| |
| #define I512(R) \ |
| X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \ |
| X1 += ks[r + (R) + 1]; \ |
| X2 += ks[r + (R) + 2]; \ |
| X3 += ks[r + (R) + 3]; \ |
| X4 += ks[r + (R) + 4]; \ |
| X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \ |
| X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \ |
| X7 += ks[r + (R) + 7] + r + (R); \ |
| ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\ |
| ts[r + (R)+2] = ts[r + (R) - 1]; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| |
| /* loop through it */ |
| for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512) |
| #endif /* end of looped code definitions */ |
| { |
| #define R512_8_rounds(R) /* do 8 full rounds */ \ |
| R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \ |
| R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \ |
| R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \ |
| R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \ |
| I512(2 * (R)); \ |
| R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \ |
| R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \ |
| R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \ |
| R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \ |
| I512(2*(R) + 1); /* and key injection */ |
| |
| R512_8_rounds(0); |
| |
| #define R512_Unroll_R(NN) \ |
| ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \ |
| (SKEIN_UNROLL_512 > (NN))) |
| |
| #if R512_Unroll_R(1) |
| R512_8_rounds(1); |
| #endif |
| #if R512_Unroll_R(2) |
| R512_8_rounds(2); |
| #endif |
| #if R512_Unroll_R(3) |
| R512_8_rounds(3); |
| #endif |
| #if R512_Unroll_R(4) |
| R512_8_rounds(4); |
| #endif |
| #if R512_Unroll_R(5) |
| R512_8_rounds(5); |
| #endif |
| #if R512_Unroll_R(6) |
| R512_8_rounds(6); |
| #endif |
| #if R512_Unroll_R(7) |
| R512_8_rounds(7); |
| #endif |
| #if R512_Unroll_R(8) |
| R512_8_rounds(8); |
| #endif |
| #if R512_Unroll_R(9) |
| R512_8_rounds(9); |
| #endif |
| #if R512_Unroll_R(10) |
| R512_8_rounds(10); |
| #endif |
| #if R512_Unroll_R(11) |
| R512_8_rounds(11); |
| #endif |
| #if R512_Unroll_R(12) |
| R512_8_rounds(12); |
| #endif |
| #if R512_Unroll_R(13) |
| R512_8_rounds(13); |
| #endif |
| #if R512_Unroll_R(14) |
| R512_8_rounds(14); |
| #endif |
| #if (SKEIN_UNROLL_512 > 14) |
| #error "need more unrolling in Skein_512_Process_Block" |
| #endif |
| } |
| |
| /* |
| * do the final "feedforward" xor, update context chaining vars |
| */ |
| ctx->X[0] = X0 ^ w[0]; |
| ctx->X[1] = X1 ^ w[1]; |
| ctx->X[2] = X2 ^ w[2]; |
| ctx->X[3] = X3 ^ w[3]; |
| ctx->X[4] = X4 ^ w[4]; |
| ctx->X[5] = X5 ^ w[5]; |
| ctx->X[6] = X6 ^ w[6]; |
| ctx->X[7] = X7 ^ w[7]; |
| Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); |
| |
| ts[1] &= ~SKEIN_T1_FLAG_FIRST; |
| } while (--blkCnt); |
| ctx->h.T[0] = ts[0]; |
| ctx->h.T[1] = ts[1]; |
| } |
| |
| #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) |
| size_t |
| Skein_512_Process_Block_CodeSize(void) |
| { |
| return ((uint8_t *)Skein_512_Process_Block_CodeSize) - |
| ((uint8_t *)Skein_512_Process_Block); |
| } |
| |
| uint_t |
| Skein_512_Unroll_Cnt(void) |
| { |
| return (SKEIN_UNROLL_512); |
| } |
| #endif |
| #endif |
| |
| /* Skein1024 */ |
| #if !(SKEIN_USE_ASM & 1024) |
| void |
| Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr, |
| size_t blkCnt, size_t byteCntAdd) |
| { |
| /* do it in C, always looping (unrolled is bigger AND slower!) */ |
| enum { |
| WCNT = SKEIN1024_STATE_WORDS |
| }; |
| #undef RCNT |
| #define RCNT (SKEIN1024_ROUNDS_TOTAL/8) |
| |
| #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ |
| #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10) |
| #else |
| #define SKEIN_UNROLL_1024 (0) |
| #endif |
| |
| #if (SKEIN_UNROLL_1024 != 0) |
| #if (RCNT % SKEIN_UNROLL_1024) |
| #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */ |
| #endif |
| size_t r; |
| /* key schedule words : chaining vars + tweak + "rotation" */ |
| uint64_t kw[WCNT + 4 + RCNT * 2]; |
| #else |
| uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */ |
| #endif |
| |
| /* local copy of vars, for speed */ |
| uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11, |
| X12, X13, X14, X15; |
| uint64_t w[WCNT]; /* local copy of input block */ |
| #ifdef SKEIN_DEBUG |
| /* use for debugging (help compiler put Xn in registers) */ |
| const uint64_t *Xptr[16]; |
| Xptr[0] = &X00; |
| Xptr[1] = &X01; |
| Xptr[2] = &X02; |
| Xptr[3] = &X03; |
| Xptr[4] = &X04; |
| Xptr[5] = &X05; |
| Xptr[6] = &X06; |
| Xptr[7] = &X07; |
| Xptr[8] = &X08; |
| Xptr[9] = &X09; |
| Xptr[10] = &X10; |
| Xptr[11] = &X11; |
| Xptr[12] = &X12; |
| Xptr[13] = &X13; |
| Xptr[14] = &X14; |
| Xptr[15] = &X15; |
| #endif |
| |
| Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */ |
| ts[0] = ctx->h.T[0]; |
| ts[1] = ctx->h.T[1]; |
| do { |
| /* |
| * this implementation only supports 2**64 input bytes |
| * (no carry out here) |
| */ |
| ts[0] += byteCntAdd; /* update processed length */ |
| |
| /* precompute the key schedule for this block */ |
| ks[0] = ctx->X[0]; |
| ks[1] = ctx->X[1]; |
| ks[2] = ctx->X[2]; |
| ks[3] = ctx->X[3]; |
| ks[4] = ctx->X[4]; |
| ks[5] = ctx->X[5]; |
| ks[6] = ctx->X[6]; |
| ks[7] = ctx->X[7]; |
| ks[8] = ctx->X[8]; |
| ks[9] = ctx->X[9]; |
| ks[10] = ctx->X[10]; |
| ks[11] = ctx->X[11]; |
| ks[12] = ctx->X[12]; |
| ks[13] = ctx->X[13]; |
| ks[14] = ctx->X[14]; |
| ks[15] = ctx->X[15]; |
| ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ |
| ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ |
| ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^ |
| ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY; |
| |
| ts[2] = ts[0] ^ ts[1]; |
| |
| /* get input block in little-endian format */ |
| Skein_Get64_LSB_First(w, blkPtr, WCNT); |
| DebugSaveTweak(ctx); |
| Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts); |
| |
| X00 = w[0] + ks[0]; /* do the first full key injection */ |
| X01 = w[1] + ks[1]; |
| X02 = w[2] + ks[2]; |
| X03 = w[3] + ks[3]; |
| X04 = w[4] + ks[4]; |
| X05 = w[5] + ks[5]; |
| X06 = w[6] + ks[6]; |
| X07 = w[7] + ks[7]; |
| X08 = w[8] + ks[8]; |
| X09 = w[9] + ks[9]; |
| X10 = w[10] + ks[10]; |
| X11 = w[11] + ks[11]; |
| X12 = w[12] + ks[12]; |
| X13 = w[13] + ks[13] + ts[0]; |
| X14 = w[14] + ks[14] + ts[1]; |
| X15 = w[15] + ks[15]; |
| |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, |
| Xptr); |
| |
| #define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \ |
| pD, pE, pF, ROT, rNum) \ |
| X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\ |
| X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\ |
| X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\ |
| X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\ |
| X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\ |
| X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\ |
| X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\ |
| X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE; |
| |
| #if SKEIN_UNROLL_1024 == 0 |
| #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \ |
| pE, pF, ROT, rn) \ |
| Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \ |
| pD, pE, pF, ROT, rn) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr); |
| |
| #define I1024(R) \ |
| X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\ |
| X01 += ks[((R) + 2) % 17]; \ |
| X02 += ks[((R) + 3) % 17]; \ |
| X03 += ks[((R) + 4) % 17]; \ |
| X04 += ks[((R) + 5) % 17]; \ |
| X05 += ks[((R) + 6) % 17]; \ |
| X06 += ks[((R) + 7) % 17]; \ |
| X07 += ks[((R) + 8) % 17]; \ |
| X08 += ks[((R) + 9) % 17]; \ |
| X09 += ks[((R) + 10) % 17]; \ |
| X10 += ks[((R) + 11) % 17]; \ |
| X11 += ks[((R) + 12) % 17]; \ |
| X12 += ks[((R) + 13) % 17]; \ |
| X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \ |
| X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \ |
| X15 += ks[((R) + 16) % 17] + (R) +1; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| #else /* looping version */ |
| #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \ |
| pE, pF, ROT, rn) \ |
| Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \ |
| pD, pE, pF, ROT, rn) \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr); |
| |
| #define I1024(R) \ |
| X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \ |
| X01 += ks[r + (R) + 1]; \ |
| X02 += ks[r + (R) + 2]; \ |
| X03 += ks[r + (R) + 3]; \ |
| X04 += ks[r + (R) + 4]; \ |
| X05 += ks[r + (R) + 5]; \ |
| X06 += ks[r + (R) + 6]; \ |
| X07 += ks[r + (R) + 7]; \ |
| X08 += ks[r + (R) + 8]; \ |
| X09 += ks[r + (R) + 9]; \ |
| X10 += ks[r + (R) + 10]; \ |
| X11 += ks[r + (R) + 11]; \ |
| X12 += ks[r + (R) + 12]; \ |
| X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \ |
| X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \ |
| X15 += ks[r + (R) + 15] + r + (R); \ |
| ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\ |
| ts[r + (R) + 2] = ts[r + (R) - 1]; \ |
| Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); |
| |
| /* loop through it */ |
| for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024) |
| #endif |
| { |
| #define R1024_8_rounds(R) /* do 8 full rounds */ \ |
| R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \ |
| 14, 15, R1024_0, 8 * (R) + 1); \ |
| R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \ |
| 08, 01, R1024_1, 8 * (R) + 2); \ |
| R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \ |
| 10, 09, R1024_2, 8 * (R) + 3); \ |
| R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \ |
| 12, 07, R1024_3, 8 * (R) + 4); \ |
| I1024(2 * (R)); \ |
| R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \ |
| 14, 15, R1024_4, 8 * (R) + 5); \ |
| R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \ |
| 08, 01, R1024_5, 8 * (R) + 6); \ |
| R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \ |
| 10, 09, R1024_6, 8 * (R) + 7); \ |
| R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \ |
| 12, 07, R1024_7, 8 * (R) + 8); \ |
| I1024(2 * (R) + 1); |
| |
| R1024_8_rounds(0); |
| |
| #define R1024_Unroll_R(NN) \ |
| ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \ |
| (SKEIN_UNROLL_1024 > (NN))) |
| |
| #if R1024_Unroll_R(1) |
| R1024_8_rounds(1); |
| #endif |
| #if R1024_Unroll_R(2) |
| R1024_8_rounds(2); |
| #endif |
| #if R1024_Unroll_R(3) |
| R1024_8_rounds(3); |
| #endif |
| #if R1024_Unroll_R(4) |
| R1024_8_rounds(4); |
| #endif |
| #if R1024_Unroll_R(5) |
| R1024_8_rounds(5); |
| #endif |
| #if R1024_Unroll_R(6) |
| R1024_8_rounds(6); |
| #endif |
| #if R1024_Unroll_R(7) |
| R1024_8_rounds(7); |
| #endif |
| #if R1024_Unroll_R(8) |
| R1024_8_rounds(8); |
| #endif |
| #if R1024_Unroll_R(9) |
| R1024_8_rounds(9); |
| #endif |
| #if R1024_Unroll_R(10) |
| R1024_8_rounds(10); |
| #endif |
| #if R1024_Unroll_R(11) |
| R1024_8_rounds(11); |
| #endif |
| #if R1024_Unroll_R(12) |
| R1024_8_rounds(12); |
| #endif |
| #if R1024_Unroll_R(13) |
| R1024_8_rounds(13); |
| #endif |
| #if R1024_Unroll_R(14) |
| R1024_8_rounds(14); |
| #endif |
| #if (SKEIN_UNROLL_1024 > 14) |
| #error "need more unrolling in Skein_1024_Process_Block" |
| #endif |
| } |
| /* |
| * do the final "feedforward" xor, update context chaining vars |
| */ |
| |
| ctx->X[0] = X00 ^ w[0]; |
| ctx->X[1] = X01 ^ w[1]; |
| ctx->X[2] = X02 ^ w[2]; |
| ctx->X[3] = X03 ^ w[3]; |
| ctx->X[4] = X04 ^ w[4]; |
| ctx->X[5] = X05 ^ w[5]; |
| ctx->X[6] = X06 ^ w[6]; |
| ctx->X[7] = X07 ^ w[7]; |
| ctx->X[8] = X08 ^ w[8]; |
| ctx->X[9] = X09 ^ w[9]; |
| ctx->X[10] = X10 ^ w[10]; |
| ctx->X[11] = X11 ^ w[11]; |
| ctx->X[12] = X12 ^ w[12]; |
| ctx->X[13] = X13 ^ w[13]; |
| ctx->X[14] = X14 ^ w[14]; |
| ctx->X[15] = X15 ^ w[15]; |
| |
| Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); |
| |
| ts[1] &= ~SKEIN_T1_FLAG_FIRST; |
| blkPtr += SKEIN1024_BLOCK_BYTES; |
| } while (--blkCnt); |
| ctx->h.T[0] = ts[0]; |
| ctx->h.T[1] = ts[1]; |
| } |
| |
| #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF) |
| size_t |
| Skein1024_Process_Block_CodeSize(void) |
| { |
| return ((uint8_t *)Skein1024_Process_Block_CodeSize) - |
| ((uint8_t *)Skein1024_Process_Block); |
| } |
| |
| uint_t |
| Skein1024_Unroll_Cnt(void) |
| { |
| return (SKEIN_UNROLL_1024); |
| } |
| #endif |
| #endif |